
Abstract. Computational and statistical analysis of microarray
data is a daunting challenge. Perhaps even more daunting is
the biological interpretation of microarray data analysis results.
We have previously developed the exploratory visual analysis
(EVA) software and database for exploring data analysis
results in the context of biological information on each gene
available in public databases such as Entrez Gene. EVA
brings a flexible combination of statistics and biological
annotation to the user's desktop in a straightforward visual
interface. Using a publicly available microarray dataset of gene
expression response to chemotherapeutic agents in human
breast cancer cell lines, we demonstrate the usefulness of the
EVA system for interpreting statistical results. EVA can extend
previous analyses as well as aid in making novel discoveries.
Thus, we anticipate EVA will prove a useful addition to the
repertoire of computational methods for microarray data
analysis. The EVA software is freely available to academic
users.

Introduction

Visualization as an analytical strategy. Modern experimental
methods have generated an explosion in the volume of raw
data that must be analyzed. The downside to this information
abundance is that cancer researchers must wade through an
analytical maze of spreadsheets and arbitrary statistical
significance thresholds. Visualization is a proven solution to
this challenge of scale. In his work on visualizing quantitative
information, Tufte states that ‘the most effective way to
describe, explore, and summarize a set of numbers - even a
very large set - is to look at pictures of those numbers.
Furthermore, of all methods for analyzing and communicating

statistical information, well-designed data graphics are usually
the simplest and at the same time the most powerful’ (1).
Thus, effective analysis tools are needed to organize and
display results so that readily distinguishable patterns emerge.

The novel combination of features in EVA supports
comprehensive analysis. Other analysis tools have appeared
in recent years, such as DAVID (2), FatiGO (3), GoMiner
(4), GoSurfer (5), GOTree Machine (6), and Onto-Express
(7). Each of these tools fills a specific niche in the community
of genomic analysis methods. However, each has significant
functional limitations that must be addressed. The drawbacks
include inflexibility, dependence on only those statistical
methods provided, inadequate information display density,
sluggishness, and a lack of any mechanism to replicate
analyses. These gaps in the functionality of other available
tools leave a critical void in genomic analysis and bio-
informatics. The EVA system was developed to address the
limitations of other approaches to analysis of genomic
results. Combining flexibility, speed, and visualization of
both statistical and annotative information into a single
package, EVA fulfills a crucial role in comprehensive micro-
array analysis.

EVA is designed for flexibility across a wide range of
research goals - allowing a truly exploratory analysis. The
software can handle any kind of statistical result(s) for any
number of experiments. The user is thus free to use any
statistic of choice or to define a custom statistic, rather than
be limited by those implemented in the software. EVA's
graphical results display can be organized into nested groupings
for any combination of six biological categories: gene ontology
(GO) (8), biopath (9), domain (10), map location (11), chromo-
some (11), and phenotype (12). Permutation testing is used to
assess the statistical significance of certain biological groups
that contain a higher proportion of differentially expressed
genes relative to other groups. As a complement to statistical
analysis, EVA links to multiple annotation sources via Entrez
Gene (13). This aspect affords immediate evaluation of the
biological relevancy of candidate genes or groups of genes. To
ensure that the user can replicate findings, EVA incorporates a
printable command log feature into the graphical user interface
(GUI).
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Speed enhances EVA's interactive flexibility. Switching
between annotative groupings, statistics, significance levels,
and display modes occurs seamlessly, because all of the data
and links are loaded into memory upon opening the software.
The permutation testing and reporting features provide an
immediate complement to visual exploration.

Visualization binds the various components of EVA into
a single coherent exploratory tool. Users can instantaneously
modify color choices, sliding significance scales, category
display thresholds, and other display parameters to highlight
extremely significant genes, marginally significant genes, or
both. Most importantly, the graphical nature of EVA facilitates
interpretation of multitudes of information simultaneously.
Since EVA translates numbers into pictures and vice-versa,
graphical discoveries can be verified statistically, and statistical
significance can be verified graphically. In order to have
confidence that all aspects of the data have been sufficiently
explored, both types of information are essential. The ability
of graphics to rationally condense vast amounts of data is
crucial for evaluating biological systems in which the concerted
action of numerous contributing factors is the final determinant
of phenotype.

EVA brings together diverse abilities that allow the kind
of comprehensive analysis necessary to answer complex bio-
logical questions. The annotative groupings and immediate
expert-knowledge links provided by EVA are essential to
understanding diseases of a systemic nature, such as cancer
(14). The synergistic pieces of EVA coalesce into an analysis
tool wherein the visual, numerical, and annotative components
are entirely complementary. EVA encourages a truly integrated
analysis - beyond spreadsheets of flat statistical results.

Materials and methods

Details of the EVA software package. Versatility, speed, and
user-friendliness are the key design elements of the EVA
database. The user downloads the client, which provides a
portal to the EVA web server via the custom GUI. This
architecture provides ease of security, distributability, and
expandability. Thus, once the user has downloaded the client,
updates or expansions of the EVA modules are transparent
from the user's perspective. Performance is not limited by
demand on the web server because information about a
particular experiment is stored in memory upon loading. This
aspect negates the query lag time typical of other analysis
packages.

The graphical user interface (GUI) is the portal through
which the user manipulates the components of the EVA
package. Upon opening the software, the user supplies a user-
name and secure password. Login grants the user access to
interfaces for various administrative tasks, including creating,
updating, deleting, or loading experiments and results. Defining
a new experiment involves deciding upon a descriptive name,
choosing the type of gene identifier (Affymetrix, Genbank,
etc.), selecting or defining the statistical tests used, and
uploading the text file of results. Once a new experiment has
been defined or an existing experiment selected, all of the
results and links for that experiment are loaded for viewing
on the user's desktop. An abbreviated overview of features
is provided in Fig. 1, and a more complete description of

the EVA interface is given in ref. 15. Additionally, a com-
prehensive, illustrated help menu is included with the software.
It is important to note that the EVA database is designed to
store statistical results (e.g. p-values) and not raw microarray
data. As such, there are no confidentiality concerns since
only summary statistics are stored.

Application of EVA to a breast cancer microarray dataset. The
dataset to which we applied EVA is described fully in ref. 16
and is publicly available at the UNC Microarray Database
(https://genome.unc.edu). Four breast cancer cell lines
(ME16C, HME-CC, MCF-7, and ZR-75) were treated with
the chemotherapeutics 5-fluorouracil (5FU) or doxorubicin
(DOX). In total, there were 25 samples treated with 5FU
and 26 samples treated with DOX (Table I). Cy5- and Cy3-
labeled cDNA was synthesized using mRNA harvested from
treated or cell-line-specific reference samples. Expression
was measured on custom microarrays created in the University
of North Carolina at Chapel Hill Genomics Core Facility and
spotted with human oligonucleotides representing ~22,000
genes.

The significance analysis of microarrays (SAM) procedure
was used to identify genes that were differentially expressed
between treatment classes (17). Prior to analysis, genes were
excluded that did not have median intensity greater than twice
the median background for both the red (Cy5) and green
(Cy3) channel in ≥70% of the experiments. The log2 ratio of
the median red intensity over median green intensity was
calculated for each gene. Imputation of missing data was
carried out using the k-nearest neighbors procedure included
with the SAM software. A two-class, unpaired SAM analysis
compared all 5FU-treated samples to all DOX-treated
samples. SAM computes a q-value for each gene, which can
be interpreted in a manner similar to the familiar p-value.
The q-value represents the chance that the observed treatment
group difference is really a false positive, and it is the
lowest false discovery rate at which that gene can be called
significantly different between treatment classes (see ref. 18
for a discussion of the false discovery rate as it applies to
multiple testing problems). The resulting list of q-values was
loaded into EVA.

Results

EVA can extend previously published results. To identify
genes that distinguish DOX- from 5FU-treated breast cell
lines, the original authors used SAM on subclasses of the
full dataset, as well as a combination of statistical methods
including prediction analysis of microarrays (19), k-nearest
neighbors, and the gene selection approach described by
Dudoit and Fridlyand (20). While their approach is certainly
valid, it demands a great deal of statistical expertise and
requires the researcher to bridge the usual gap between
statistical results and biological knowledge. By using EVA
to examine the results of a simplified application of the SAM
procedure, we were able to identify treatment-specific gene
expression changes having simultaneous statistical and bio-
logical significance.

For example, from their extensive lists of statistically
significant genes, the original authors highlighted the fact
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that MLH-1, CCNE1, MYBL2, E2F, and ID3 made bio-
logical sense. Taking advantage of EVA's biological group
enrichment (batch permutation) testing feature, the ‘nucleus’
gene ontology category - which includes all of the above
genes - was identified as significantly enriched. Thus, EVA
also compiled this list and automatically assigned biological
relevancy. The original authors also found that several ribo-
somal proteins showed differential expression between
treatment groups. At first pass, visual exploration with EVA

did not show a remarkable number of significant genes
within the ribosomal groupings of either the GO or biopath
annotative categories. However, when the significance display
range was softened from 0.05 to 0.06, these same ribosomal
categories attracted immediate visual interest. Importantly,
other biologically plausible ribosomal genes in these categories
had q-values just beyond the significance threshold and would
have been missed by a purely statistical analysis.

Novel patterns identified using EVA. In order to illustrate the
novelty of EVA in packaging a complementary set of visual,
statistical, and annotative analysis tools, an example of findings
capitalizing upon each of these aspects is given.

Visualizing meaningful patterns in a sea of results is the
core of EVA's design philosophy. With the results organized
according to gene ontology as in Fig. 2, it is immediately
apparent that the ‘DNA binding’ group has a relatively high
number of genes that are statistically significant at the
q<0.05 level. Performing a permutation test on this category
statistically verifies this visual impression that the ‘DNA
binding’ group is enriched with respect to the number of
differentially expressed genes it contains. This conclusion
also makes intuitive biological sense since it is expected that
chemotherapeutic agents such as DOX - a topoisomerase
poison - would affect the expression of genes involved in
binding DNA (21).
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Figure 1. Brief overview of the EVA graphical user interface. Each colored square represents a single gene. Visible features include: (A) biological annotation
categories, (B) group boxes, (C) significance threshold color sliders, (D) number of color intervals displayed, (E) display threshold, (F) log, (G) significance
range selector for permutation testing, (H) permutation testing results (also shown in log), (I) analysis types, (J) description of current experiment. In addition
to options under the file, display, view, and help menus, right-clicking accesses a number of features not illustrated here.

Table I. Samples in each treatment group.
–––––––––––––––––––––––––––––––––––––––––––––––––

Treatment group
––––––––––––––––––––––––
5FU DOX

–––––––––––––––––––––––––––––––––––––––––––––––––
MCF-7 6 7
ZR-75 7 6
ME16C 6 6
HME-CC 6 7

Total 25 26
–––––––––––––––––––––––––––––––––––––––––––––––––
The number of samples of each human cell line (MCF-7, ZR-75,
ME16C, or HME-CC) and the total number treated with each chemo-
therapeutic agent (5FU or DOX) is given.
–––––––––––––––––––––––––––––––––––––––––––––––––
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The point-and-click interface for statistically testing the
relative enrichment of certain biological groups is a useful
mechanism for scanning an entire dataset with a single action.
The significant results of such a batch test are highlighted in
the EVA log and can be written to an external file for further
analysis. Using this strategy, interesting biopath groups
involved in carbon metabolism were identified. Inspecting
the genes contained in these groups revealed several mito-
chondrial genes. The biological relevancy of this finding is
that anthracyclines (such as DOX) are known to affect cellular
respiration.

EVA naturally incorporates biomedical knowledge into
the analysis via its biologically-organized display and direct
links to gene-specific annotation through Entrez Gene. For
these data, it is reasonable to assume that differences in
expression profiles of cells treated with DOX or 5FU might
reflect alterations in transcriptional machinery. Not surprisingly,
many differentially expressed genes appear in domain
groups representing common transcription factor domains.
Additionally, GO groups involving transcriptional initiation
and regulation contain many genes identified as significant.
Using EVA's permutation testing capabilities statistically
reinforces the observed high number of differentially regulated
genes in these biological groups relative to others.

Discussion

The broad utility of EVA for oncology. As shown by these
results, EVA provides an easy interface for incorporating
biological knowledge into large-scale analysis challenges,
such as microarrays. The EVA package rationally condenses
volumes of data into a graphical display that assures the
analysis is grounded within a biological context. The visual,
statistical, and annotative abilities of EVA permit a flexible

analysis approach - reflecting the expertise or prior notions
of the particular user. Thus, EVA has the power to build
conclusions supported by a cohesive array of sources without
necessitating advanced statistical expertise. This novel
combination of visualization, statistics, and biological
knowledge in a speedy, user-friendly desktop software
package allows for a truly comprehensive exploration of
results. We anticipate EVA will be a useful addition to the
repertoire of computational methods for microarray data
analysis.

Availability and further development. The current Windows-
compatible prototype of EVA is available at no charge to
academic users. An open-source and platform-independent
Java version with additional functionality is in production.
More information about the open-source version of EVA can
be found at http://www.epistasis.org/open-source-eva-project.
html.
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