
Abstract. Early detection is the key to improve breast cancer
prognosis. The only proven effective method of breast cancer
early detection is mammography. An early sign of 30-50% of
breast cancer is the appearance of clusters of fine, granular
microcalcifications and 60-80% of breast carcinomas reveal
microcalcification clusters upon histological examination.
The high correlation between the appearance of the micro-
calcification clusters and diseases, proves that computer aided
diagnosis (CAD) systems for automated classification of
microcalcification clusters will be very useful and helpful for
breast cancer control. The fuzzy nature of microcalcification,
the low contrast and the low ability of distinguishing them
from their surroundings make automated characterization of
them extremely difficult. In this study, we give an overview
of the currently available literature on characterization of
malignant and benign microcalcifications. We compare and
evaluate some of the classification algorithms on micro-
calcifications in mammograms used in various CAD systems,
which are separated into categories according to the method
in use. Neural networks are used in applications where only a
few decisions are required concerning an amount of data.
The K-nearest neighbour classifier distinguishes unknown
patterns based on the similarity to known samples and the
decision tree approach is much simpler than neural networks
and does not need extensive knowledge of the probability
distribution of the features.
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1. Introduction

Breast cancer is the most common type of cancer among
women and is the second leading cause of cancer deaths for
women today, after lung cancer. According to the World
Health Organization, >1.2 million people will be diagnosed
with breast cancer this year worldwide. The American Cancer
Society estimates that in 2005, approximately 211,240 women
in the United States are expected to have been diagnosed
with invasive breast cancer (stages I-IV). Another 58,490
women are expected to have been diagnosed with in situ
breast cancer, a very early stage of the disease (1). Breast
cancer is also the most common cancer in females in Europe.
It is estimated that in the year 2004 there were 350,000 new
breast cancer cases in Europe, while the number of deaths
from breast cancer was estimated at 130,000. Breast cancer is
responsible for 26.5% of all new cancer cases among women
in Europe and 17.5% of cancer deaths (2).

Primary prevention seems impossible since the causes of
this disease still remain unknown. Thus, early detection is
the key to improve breast cancer prognosis. The only proven
effective method of breast cancer early detection is mammo-
graphy. There are some limitations, though, in human observing
and it is difficult for radiologists to evaluate both accurately and
uniformly the enormous number of mammograms generated in
widespread screening. The presence of microcalcification
clusters is an important sign for the detection of early breast
carcinoma. High correlation between the appearance of the
microcalcification clusters and the disease shows that CAD
systems designed for automated classification of micro-
calcification clusters could be very useful and helpful for
breast cancer control.

Although computer-aided mammography has been studied
for over two decades, the fuzzy nature of microcalcification,
low contrast and low ability of distinguishing them from their
surroundings make extremely difficult an automated chara-
cterization of microcalcifications and that is because: a) micro-
calcifications are very small. The sizes of microcalcifications
range between 0.1 and 1.0 mm and the average size is about
0.3 mm. Some isolated ones that are <0.1 mm cannot be
distinguished in the film-screen mammography due to the
high-frequency noise; b) microcalcifications vary in size,
shape and distribution; therefore, simple template matching
is impossible; c) microcalcifications may have low contrast,
resulting in light intensity difference between suspicious areas
and their surrounding tissues; d) microcalcifications may be
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closely connected to surrounding tissues, in which case simple
segmentation algorithms cannot work well; e) in some dense
tissues and/or skin thickening, especially in the breast of
younger women, suspicious areas are almost invisible. Dense
tissues may easily be misinterpreted as microcalcifications
and a high false-positive (FP) rate will be yielded, that is a
major problem in most of the algorithms. Most FPs are due
to the emulsion error, digitization artefacts or anatomical
structures such as fibrous strands, breast borders or hyper-
trophied lobules that look like microcalcifications.

2. Classification of microcalcifications

It is usually very difficult to distinguish between benign and
malignant microcalcification clusters because of the variability
associated with their appearance. An image region may be
called cancerous (positive) or normal (negative) and a decision
for a detection result may be either correct (true) or incorrect
(false). A decision for a detection result, therefore, will be one
of four possible categories: true positive (TP), true negative
(TN), false positive (FP) and false negative (FN). FN and FP
represent two kinds of errors. An FN error implies that a true
abnormality was not detected and an FP error occurs when
a normal region was falsely identified as abnormal. A TP
decision is a correct judgment of an existing abnormality
and a TN decision means that a normal region was correctly
labelled. In order to measure and report the performance of a
diagnostic system, the following indices are used: sensitivity
and specificity. The terms sensitivity and specificity are
synonymous with true positive and true negative rate,
respectively, that is: sensitivity = TPs/(TPs + FNs) and
specificity = TNs/(TNs + FPs). For a fixed discrimination
capacity, the sensitivity and specificity of a diagnostic system
will depend on the particular confidence threshold that the
system uses to partition evidence into categorical decisions.
Both sensitivity and specificity will change if the confidence
threshold is changed. A solution to this problem is suggested
by the use of receiver operating characteristic (ROC) curve
which indicates the tradeoffs between sensitivity and specificity
that are available from a diagnostic system and thus describes
the inherent discrimination capacity of that system. Another
way to measure the performance of the classification scheme
is with the area under the ROC curve which yields the Az value.
Generally, a larger Az indicates greater overall performance (3).

Feature extraction. Feature extraction is a very important
process for the overall system performance in the classification
of microcalcifications. The extracted features should have the
following characteristics (4): a) reliability: features should
have similar values for all patterns of the same class; b)
independence: features should be as much uncorrelated as
possible; c) discrimination: features should take on significantly
different values for patterns belonging to different classes.

Moreover, the number of features should be sufficiently
limited, since the complexity of a CAD system increases
rapidly with the number of features used.

The features extracted are distinguished according to the
method of extraction and the image characteristics. Thus,
the following categorization of the features can be applied:
a) features extracted directly from mammogram, such as peri-

meter, area, compactness, elongation, eccentricity, thickness,
orientation, direction, line, background, foreground, distance
and contrast. They are easy to extract and they originate from
the experience of radiologists; b) features extracted from
spatial grey level dependence matrix (co-occurrence matrix);
c) features extracted from the grey-level run-length (GLRL)
matrix; d) features extracted from the grey-level difference
(GLD) matrix; e) energy, entropy and norm extracted from
the wavelet transform sub-images; f) features extracted from
the fractal model of an image; g) features used to describe the
distribution of the microcalcification, cluster area and number
of microcalcifications in an area. In the following paragraphs
we summarise these different methods of feature extraction.

Shape feature extraction. Numerous researchers use shape
features extracted from mammogram to directly describe
individual microcalcification. Soltanian-Zadeh et al (5) select
15 features. These are: number of microcalcifications in
cluster, maximum size of calcifications in cluster, standard
deviation of the size of calcifications in cluster, number of
calcifications with size of one pixel, sum of the area of the
calcifications in each cluster, maximum value of compactness
(the ratio of the squared perimeter to the area) in cluster,
average compactness in cluster, maximum value of the moment
which represents the roughness of microcalcifications in
cluster, average roughness in cluster, radius of the circle that
best fits the cluster, scattering of the microcalcifications,
average grey level of the microcalcifications in cluster,
standard deviation of the mean of the microcalcification grey
levels in cluster, maximum standard deviation of the grey
levels in each calcification and average standard deviation of
the grey levels in each calcification in cluster.

Veldkamp et al (6) use a total amount of 16 features for
classification of microcalcification clusters, which are
distinguished in two types: distribution features, based on
the distribution of individual microcalcification features
within a cluster and cluster shape and cluster position
features, describing the location of clusters in a mammogram.
Distribution features are the number of calcifications in a
cluster, the mean and standard deviation of microcalcification
area, orientation, contrast, eccentricity and compactness.
Cluster shape features are cluster area, cluster eccentricity
and cluster orientation. Finally, two cluster position features
are investigated: the relative distance between a cluster and
the pectoral muscle and the relative distance of a cluster to
the breast edge.

Lee et al (7) use the shape orientation information and the
shape curvature to extract the following features: average size
per blob, scattering density of blobs within a ROI, density
of microcalcifications, irregularity of microcalcifications,
elongation of microcalcifications, circularity of micro-
calcifications, compactness and defective degree (the zigzag
boundary of a round microcalcification).

Sun et al (8) use shape features for the classification of
microcalcifications such as the ratio of suspicious areas and
the ratio of circularity between two ROIs in different views
of ipsilateral images.

Foggia et al (9) extract four features, based on the analysis
of the shape: compactness, roughness, border gradient strength
and local contrast.
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Lo et al (10) extract 22 image processing features. These
are the number of calcifications, the logarithm of that number,
total area of all calcifications, the logarithm of that area and
the mean and standard deviation of each of the following
nine morphological features: calcification distance, number of
overlaps (resulting from the overlapping ROIs in histogram
analysis), calcification area, compactness, central moment,
Fourier descriptor, eccentricity, spread and orientation.

Statistical feature extraction. Kim and Park (11) make a
comparative study of the performances of the surrounding
region dependence method (SRDM) and other conventional
statistical texture-analysis methods for detecting clustered
microcalcifications in digitized mammograms such as the
spatial grey-level dependence method (SGLDM), the grey-
level run-length method (GLRLM) and the grey-level
difference method (GLDM). Textural features extracted by
these methods, such as contrast, angular second moment,
entropy, mean and inverse difference moment, are used to
classify ROIs into positive ROIs, containing clustered micro-
calcifications and negative ROIs containing normal tissues.

Kim et al (12) use the SRDM to extract the horizontal-
weighted sum, the vertical-weighted sum, the diagonal-
weighted sum and the grid-weighted sum.

Chan et al (13) apply texture analysis for the evaluation
of textural changes in breast tissue, derived by a developing
malignancy. From the SGLD matrix, they extract the following
features: correlation, entropy, energy (angular second moment),
inertia, inverse difference moment, sum average, sum entropy
and difference entropy, difference average, sum variance,
difference variance and information measure of correlation.

Soltanian-Zadeh et al (5) extract a set of features using the
SGLDM. For quantifying texture, ten features are calculated:
angular second moment, contrast, correlation, variance, inverse
difference moment, entropy, difference variance, difference
entropy and two information measures of correlation.

Instead of applying the co-occurrence matrix method for
analyzing the texture variations in the medical images, Kuo
et al (14) use a statistical method which includes contrast, co-
variance and dissimilarity to evaluate the texture parameters
for several distances between pixels, directly from the image.
The main advantage of this method resides in its calculation
cost, which depends only on the size of the image treated and
not on the number of grey levels.

Halkiotis et al (15) use moments of the grey-level histogram
of an image or region in order to describe texture. From the
central moments, the mean, variance, skewness and kurtosis
are estimated for each object. They also estimate the number
of objects found in a region of radius of 2 cm around each
object.

Sun et al (8) extract a series of spatial, morphology and
texture features in detected areas. The texture features include
the ratio of intensity, the ratio of mean gradient of region
boundary between two areas in different image views.

Foggia et al (9) use the following textural features for the
classification of the clustered microcalcifications: energy in
the ROI which is the average square intensity in the ROI;
energy in the background which is the average square intensity
in the background; average intensity in the ROI; standard
deviation of the intensity in the ROI; entropy of the first

order histogram which is a measure of the uniformity of the
distribution of the grey levels in the ROI (the higher this
parameter is, the more uniform the distribution of grey levels
in the ROI gets); energy of the second order histogram which
is the average square value of the co-occurrence matrix
evaluated on the ROI; contrast of the second order histogram
which is a measure of the distribution of the difference
among the grey levels exhibited by the points in the ROI and
entropy of the second order histogram which is a measure
of the uniformity of the distribution of the values in the co-
occurrence matrix.

Multiscale texture features extraction - wavelet based method.
Wavelet theory provides a powerful framework for multi-
resolution analysis and it can be used for texture analysis. By
using the multiresolution capability, the wavelet transform
could separate small objects such as microcalcifications from
large objects such as large background structures.

Bazzani et al (16) use the wavelet transform in order to
detect signals having size <1 mm by means of a multiresolution
analysis.

Ferreira and Borges (17) apply the wavelet transform, using
the Daubechies 4 and Haar wavelets, in the decomposition
process and keep only the biggest coefficients in magnitude
of the decomposed image in first level of decomposition.

Sentelle et al (18) employ wavelet analysis to detect
calcifications. This is done during wavelet processing by
simply removing the lowest resolution approximation
coefficients and performing a reverse wavelet transform.
The reverse wavelet transform output is then thresholded
appropriately to provide binary detections of calcifications.

Soltanian-Zadeh et al (5) use three different wavelet
packets; Daubechies 6, 10 and 12 wavelets. Their method for
feature extraction is based on decomposing the images and
calculating the entropy and energy of each of the sub-bands.
They also apply the multi-wavelet transformation with GHM,
CL and SA4 multi-wavelets, which uses several scaling
functions and mother wavelets.

Lambrou et al (19) use the Daubechies 4-TAP wavelet
filter in all wavelet architectures. From all the signals and
their wavelet transformation coefficients, they collect the
first and second order statistical values, as well as the grey
level run length measurements.

Yoshida et al (20) apply the wavelet transformation using
the least asymmetric Daubechies' wavelets with length 8, 12
and 20 in order to enhance the microcalcifications.

Cluster features extraction. After individual microcalcifications
are detected, cluster features are used to group them into
clusters. Veldkamp et al (6) investigate a total amount of 16
features for classification of microcalcification clusters. They
use two feature types: distribution features (based on the
distribution of individual microcalcification features within
a cluster) and cluster shape and cluster position features
(describing the location of clusters in a mammogram). The
distribution features that are used are the number of
calcifications in a cluster and the mean and standard deviation
of microcalcification area, orientation, contrast, eccentricity
and compactness. The cluster shape features that are used
are cluster area, cluster eccentricity and cluster orientation.
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Finally, they investigate two cluster position features: the
relative distance between a cluster and the pectoral muscle
and the relative distance of a cluster to the breast edge.

Foggia et al (9) extract three types of features; the first
concerns the shape of the clusters, the second the distribution
of the microcalcifications within the cluster and the third is
based upon the presence of microcalcifications within irregular
and non-uniform shapes, where the more irregular and the
less uniform the shapes of the microcalcifications are, the
more likely a malignant cluster is.

Sorantin et al (21) use a set of 12 features in order to
classify the clusters of microcalcifications in benign and
malignant such as the number of microcalcifications in cluster,
maximum of microcalcification areas within the same cluster,
average of microcalcification areas within the same cluster,
standard deviation of microcalcification areas within the same
cluster, range of microcalcification areas within the same
cluster, standard deviation of microcalcification perimeters
within the same cluster, maximum of inter microcalcification
distances within the same cluster, standard deviation of inter
microcalcification distances within the same cluster, variance
of distances between microcalcifications in cluster, minimum
of horizontal extension in cluster, cluster area and cluster
perimeter.

Classifiers. Classifiers play an important role in the imple-
mentation of computer-aided diagnosis of mammography.
The features or a subset of these features are employed by
classifiers to classify microcalcifications into benign and
malignant. A brief report of five kinds of classifiers is given
below.

Neural networks. The artificial neural networks (ANNs) are
non-parametric pattern recognition systems that can extract
general rules by learning from examples. They are particularly
useful in problems where decision rules are vague and there
is no explicit knowledge about the probability density functions
governing sample distributions. The key characteristics of the
artificial neural networks are the distributed representation,
the local operations and non-linear processing. When needed,
the neural networks can be easily updated to learn in new
features.

Kim and Park (11) use a three layer backpropagation
artificial neural network (BP-ANN), with textural features
used as the input signals of the input layer. A comparative
study of the classification accuracy is performed for the
SRDM, the SGLDM, the GLRLM and the GLDM. The result
of the study is that from the viewpoint of classification
accuracy and computational complexity, the SRDM is
superior to the other conventional methods. The AZ values
of the SRDM (with 5 hidden neurons), the SGLDM (with
10 hidden neurons), the GLDM (with 7 hidden neurons) and
the GLRLM (with 7 hidden neurons) are 93%, 88%, 74%
and 68%, respectively.

Sorantin et al (21) implement two different three layer
ANNs achieving an AZ of 64%, when training the ANN with
all clusters of all patients.

Lo et al (10) use a BP-ANN classifier to determine whether
each ROI contains a calcification and a second BP-ANN
classifier to reduce the number of false positive clusters.

Thus, they result in a very poor outcome, where the best AZ

is only 69% and the best partial AZ, which is the average
specificity over the range of sensitivities from 90% to 100%,
is 21%.

Kim et al (12) also employ a three layer BP-ANN as a
classifier with four hidden neurons and obtain a sensitivity of
>90% with a low FP detection rate of 67% per ROI.

Chan et al (13) train a BP-ANN classifier and test it with
the leave-one-case-out method to recognize the malignant or
benign microcalcification clusters. The performance of the
ANN is analysed and it is found that with a subset of six
texture features out of 22 the ANN classifier achieves an area
under the ROC curve of 88%.

Verma and Zakos (22) employ a number of feature
extraction techniques in order to extract a combination of 3
features (entropy, standard deviation and number of pixels)
and find that this is the best combination to distinguish a
benign microcalcification pattern from one that is malignant.
Then, they use a feedforward BP-ANN for classification. The
BP-ANN architecture uses only one hidden layer. The clas-
sification was implemented in the Nijmegen mammographic
database and the achieved TP is 88.9%.

Lee et al (7) use a shape recognition-based ANN, built
with universal feature planes, called Shape Cognitron (S-
Cognitron). The system is evaluated by using the Nijmegen
mammogram database and the experimental results show
that sensitivity and specificity can reach 86.1% and 74.1%,
respectively.

Bocchi et al (23) implement the classification algorithm
using a Kohonen layer followed by a multilayer feed-forward
network. The use of one hidden layer in the neural network
give 91% TP, whereas without using a hidden layer the result
was 82% TP.

Halkiotis et al (15) invoke a multi-layer perceptron and
evaluate the performance, using two different topologies,
with five and ten hidden nodes respectively. The system with
five hidden neurons achieves a sensitivity of 84.2% with an
average of 26% FP findings per image, whereas the second
one succeeds a sensitivity of 94.7% with an average of 27%
FP findings per image.

Grohman and Dhawan (24) use a convex-set based neuro-
fuzzy algorithm for the classification of 191 difficult-to-
diagnose instances of breast cancer. A 20-dimensional set of
difficult-to-diagnose mammographic microcalcifications is
used to evaluate the neuro-fuzzy pattern classifier (NFPC)
and the backpropagation methods. The comparative results
show that the ability of the convex-set based method to infer
knowledge was better than that of backpropagation in all the
performed tests, making it more suitable for use in real
diagnostic systems. The maximum mean ROC area that is
achieved when using 90% of the features, is 88.37%.

Sun et al (8) develop a supervised three-layer ANN
classifier, in which backpropagation algorithm, combined
with Kalman filtering is used in the neural network's training.
Due to the Kalman filter gain introduced to the BP algorithm,
the adaptive convergence rate of the algorithm is achieved.
Thus, the Kalman filter based backpropagation algorithm
exhibits fast convergence, based on a generalized delta
learning rule. The system achieves 90% sensitivity with 3 FP
findings.
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Cheng et al (25) use a three-layer, feed-forward, error
BP-ANN in order to classify the detected clusters of micro-
calcifications using as inputs the mean and the standard
deviation and achieves an accuracy >97% TP rate with the
FP rate of three clusters per image. The mammographic
database they use is the Nijmegen database.

Lauria et al (26) perform the microcalcification analysis
using two different ANN. The first one is a Feed Forward
Neural Network that classifies windows in which images are
segmented. The output of this ANN becomes the input for
the second ANN which by using the principal component
method, classifies ROIs. In the classification of clusters the
system gets a sensitivity of 92% and a specificity of 92%.

Sajda et al (27) implement a Hierarchical Pyramid Neural
Network (HPNN), where the ANN are multilayer perceptrons,
having one hidden layer with between four and eight hidden
units. Each network in the HPNN hierarchy receives input
from the integrated feature pyramid and the input for the
hidden unit from networks lower in the hierarchy. Networks
are trained either coarse-to-fine or fine-to-coarse, depending
on the architecture. In the coarse-to-fine HPNN, the lowest
network in the hierarchy is first trained until convergence
and then all parameters in this network are held fixed, while
the next network on the hierarchy is trained. Coarse-to-fine
training is possible because the positions of the small objects
are well defined when the resolution is decreased. For the
fine-to-coarse HPNN, extended objects do not have a definite
location at high resolution. The area of ROC curve is 94%
while the FP findings are 21%.

Foggia et al (9) implement an expert system in order to
classify a cluster containing microcalcifications. Each micro-
calcification is classified by the mC-Expert, while the cluster,
considered as a whole, is classified by the Cluster Expert. The
final classification decision is obtained by collecting their
responses and applying a suitable decision scheme, based
on the evaluation of the reliability of each classification.
For both classification systems, BP-ANN is used. The
architecture of the ANN consists of three layers, containing
25 neurons in the hidden layer, 2 output neurons (associated
with the benign and the malignant class) and a number of
nodes in the input layer depending on the size of the feature
vector employed. The system is evaluated by the ROC curve
and achieves 89% sensitivity and 70% FP findings.

K-nearest neighbour classifiers. K-nearest neighbour (KNN)
classifier distinguishes unknown patterns based on the
similarity to known samples. The KNN algorithm computes
the distances from an unknown pattern to every sample and
selects the K-nearest samples as the base for classification.
The unknown pattern is assigned to the class containing the
most samples among the K-nearest samples.

Soltanian-Zadeh et al (5) use a KNN classifier and the
decision criterion they choose is a measure of malignancy.
The input features are extracted using the multi-wavelet
method and the area in the ROC curve reaches 89% for CL
multi-wavelet. This approach generates TP findings of 85%
with FP findings of 10%.

Veldkamp et al (6) use a classification method consisting
of two classification steps. The first step classifier is used for
classification of clusters based on the KNN method. As a

result of this classification step, each cluster is assigned a
likelihood. For the final patient-based classification result,
the classifier combines classification results of corresponding
clusters in medio-lateral oblique and craniocaudal views by
taking their mean likelihood of malignancy. The system
generates Az 83%.

Nearest neighbour classifiers based on Euclidean distance.
Ferreira and Borges (17) design a nearest neighbour classifier,
for the verification of the classification, using Euclidean
distance as a metric between the correspondent wavelet
coefficients.

Sentelle et al (18) calculate the Euclidean distance in
order to classify the calcifications and the TP is nearly 80%.

Binary decision tree. Decision tree is a classification method
that generates a tree to classify a set of input examples
according to their class. Each branch in the tree represents a
decision. Each node in the tree refers to a particular attribute.
Edges connecting nodes are labelled with attribute values and
leaf nodes give a classification that applies to the examples
that were reached through that branch. At each step of the
tree construction a node is selected according to a statistical
measure called information gain, that measures how well a
node (attribute) distributes the input examples with respect to
their class.

Kuo et al (14) use data mining with a decision tree model
to classify breast tumours. The co-variance texture parameters
are used as the input to construct the decision tree model.
This method results in 94.6% sensitivity and 85.4% specificity.

Flores and Gonzalez (28) implement a decision tree in the
data mining task, in order to generate descriptive patterns
based on a set of characteristics. In this decision tree the root
node is the area node. If area has a value of ≤13, the value of
the diameter attribute is verified. If diameter has a value of
≤2, the class of the example is negative. If the value for
diameter is >2, the value of the diameter attribute is verified
again and if it is ≤2.83, the convexity attribute is verified. If the
convexity attribute has a value of ≤0.93, the class is negative,
otherwise the class is positive. The achieved TP with decision
trees is 92.6%.

Support vector machines. Support vector machines (SVM) are
learning machines used in pattern recognition and regression
estimation problems. They grow up from statistical learning
theory (SLT) problems, which give some useful bounds on
the generalization capacity of machines for learning tasks.
The SVM algorithm constructs a separating hypersurface in
the input space. It acts in this way: a) it maps the input space
into a high dimensional feature space through some non-
linear mapping chosen a priori (Kernel); and b) constructs the
maximal margin hyperplane in this feature space.

Bazzani et al (16) construct an SVM classifier and achieves
a sensitivity of 95% with 60% FP clusters per image on the
40 images of the Nijmegen database.

3. Discussion

Automated classification of microcalcifications in breast has
been an issue of investigation for many researchers over the
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Table I. An overview of classifiers for microcalcifications classification.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Classifier Data set Feature extraction Performance Refs.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Neural networks 172 ROI's were selected from 120 SRDM Az: 93% 11

digitized mammograms, source N/A SGLDM Az: 88%
GLDM Az: 74%
GLRLM Az: 68%

272 mammographic films, source N/A Cluster features Az: 64% 21

292 cases, digital database for Features extracted directly Az: 69% 10
screening mammography from the mammogram and

morphological features

120 mammograms, 140 ROIs, SRDM Sensitivity 90% 12
database from Department of Radiology FP 67% per ROI
at Asan Medical Center in Korea

86 mammograms, Department of Radiology SGLD Az: 88% 13
at the University of Michigan

18 microcalcification areas, database of Entropy, standard deviation TP: 88.9% 22
digital mammograms from University and number of pixels
of Nijmegen (The Netherlands)

40 mammograms, 102 ROIs, database of Features extracted directly Sensitivity: 86.1% 7
digital mammograms from University from the mammogram Specificity: 74.1%
of Nijmegen (The Netherlands)

30 mammograms, 50 ROIs, source N/A Morphological features TP: 91% 23

25 mammograms, database by the Textural features Sensitivity: 84.2% 15
Mammographic Image Analysis FP: 26% (5 hidden neurons)
Society (MIAS) Sensitivity: 94.7% 

FP: 27% (10 hidden neurons)

191 difficult-to-diagnose mammograms Wavelet features Az: 88.37% 24

40 mammograms, source N/A Shape features Sensitivity: 90% 8

40 mammograms (Nijmegen database) Statistical features TP: 97% 25
FP: 3 clusters per image

806 microcalcification clusters, source N/A Sensitivity: 92% 26
Specificity: 92%

136 ROIs, source N/A Maximum energy, Az: 94% 27
pixel location, FP: 21%
energy of the orientation

40 mammograms (Nijmegen database) Shape features Sensitivity: 89% 9
FP: 70%

K-nearest  40 mammograms (Nijmegen database) Wavelet and multi- Az: 89% 5
neighbour wavelet features TP: 85%
classifier FP: 10%

165 mammograms Nijmegen database Distribution features Az: 83% 6
cluster shape and cluster 
position features

Nearest neighbour 25 images, digital database for Wavelet features TP: 80% 18
classifiers based screening mammography (DDSM)
on Euclidean 
distance

Binary decision 259 mammograms, HDI 3000 database Statistical features Sensitivity: 94.6% 14
tree Specificity: 85.4%

84 mammograms, database of Features extracted directly TP: 92.6% 28
ISSSTEP hospital from the mammogram

Support vector 40 mammograms (Nijmegen database) Wavelet features Sensitivity: 95% 16
machines FP: 60%
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
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last 20 years. Although great steps towards the amelioration
of these techniques have been made, there are still remaining
challenges and directions for future research; first in the field
of designing better feature detection and selection algorithms,
in order to distinguish in a more efficient way between the
malignant and the benign microcalcification clusters;
secondly in the integration of classifiers to reduce both FPs
and FNs. In order to reduce false positive, several different
types of features, sometimes, with clinical information should
be used. Obviously the higher the complexity of the
algorithm is, the more time-consuming the algorithm gets.
Thus it is important for the researchers to implement algorithms
balanced between accuracy and computational complexity.
Another important issue is to use a standard database for the
evaluation of the algorithms.

According to the comparative results shown in Table I, it
is obvious that the classifiers based on artificial neural networks
is a method that can result in higher detection rate and lower
false positive findings in clustered microcalcifications.
Moreover, the feature vector that is used plays an important
role to the classification rates. The implementation of statistical
methods for feature extraction reveals higher Az values in the
classification process.
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