
Abstract. Current developments in medical information
technologies provide the clinical researcher with
overwhelming amounts of data that need to be retrieved,
organized, analyzed, and shared using secure, efficient, and
robust protocols. The development of a local research
database can provide an infrastructure for improved data
management and detailed data analysis. For example, a
pediatric brain tumor database of magnetic resonance imaging
data, including conventional MRI imaging, hemodynamic
MRI, diffusion weighted MRI and MR spectroscopic imaging,
combined with neuropathological and neurological evaluation
data, will significantly enhance the assessment and treatment
of pediatric brain tumor patients. Furthermore, a negotiation
system by which different clinical research facilities can
share and combine data will permit re-analyses and meta-
analyses of large data arrays that are beyond the focus or
time constraints of the original researchers. Such a system
will greatly enhance the utility of different data sets to a wide
array of scientists. At present, efforts to organize medical
data locally and between different sites is limited by diversity,
interoperability, security, and accountability difficulties.

Introduction

The progress in medical technology coupled with increased
computing capabilities have created a new landscape in
the hospital environment. Automated diagnostic medical
procedures have ‘industrialized’ the acquisition and storage
of medical data, which have created both opportunities and
difficulties regarding their management and exploitation. A

representative example of this trend is the Picture Archiving
and Communications System (PACS), which in combination
with the Radiology Information System (RIS), has created
filmless radiology departments and revolutionized access to
diagnostic images (1). Digital organization schemes in
modern hospitals now allow both the clinician and researcher
to readily incorporate data from different imaging modalities.
This multi-source approach can significantly aid both clinical
patient evaluation and the production of new scientific
knowledge, as we have established for pediatric brain tumors.

Multi-center cooperative research organizations, such as
the Pediatric Brain Tumor Consortium (PBTS; www.pbts.org),
which is focused on central nervous system (CNS) childhood
tumors, often bring together resources from different
institutions and communities. Such large-scale organizations
are typically directed at the improvement of treatment
strategies, clinical protocols, data analysis, and the under-
standing and cure of particular diseases. To date, the utility
of such organizations has often been limited by their
centralized structures and the absence of complete, secure,
and effective methods for sharing data and methodologies
among different researchers. Based on our clinical experience
with pediatric brain tumors, we present steps to build research-
oriented organizations that overcome these limitations. In our
scheme, the members of multi-center collaborations place
their data in a central archive to create a large-scale database,
which is then accessible, under different conditions, to the
individual members.

Materials and methods

Our local pediatric brain tumor patient database includes
magnetic resonance imaging (MRI) data, combined with
neuropathological and neurological evaluation data. While
this database is based on more than 200 initial patients,
specific inclusion criteria (e.g. type of tumor, treatment
protocol, exam protocol) limit its largest dataset to 66 subjects.
Magnetic resonance imaging (MRI) is widely used in the
diagnosis and follow-up of pediatric brain tumor patients
because of its ability to provide anatomical detail in the
absence of invasive procedures. Conventional MR imaging is
limited as an analytical tool to estimate the extent of active
tumors because it fails to provide tissue biochemistry data,

ONCOLOGY REPORTS  15:  1065-1069,  2006

The clinical perspective of large scale projects: 
A case study of multiparametric MR imaging of 

pediatric brain tumors

L. ASTRAKAS1,  SONG YE2,  M. ZARIFI1,  F. MAKEDON2 and  A. ARIA TZIKA1

1NMR Surgical Laboratory, Massachusetts General Hospital, Boston, MA 02114;
2Dartmouth College, 6211 Sudikoff Laboratory, Hanover, NH 03755, USA

Received September 7, 2005;  Accepted September 27, 2005

_________________________________________

Correspondence to: Dr A. Aria Tzika, Department of Surgery,
Massachusetts General Hospital, Harvard Medical School, 51
Blossom Street, Room 261, Boston, MA 02114, USA
E-mail: atzika@partners.org

Key words: magnetic resonance, pediatric tumors, data sharing,
medical databases, data mining

Astrakas  27/2/06  17:32  Page 1065



and is unsuitable for tumor classification and interpretation.
Also, while MR contrast enhancement can assist in defining
tumor borders, it is unreliable in the determination of
malignancy (2). We have extended conventional MRI to
include hemodynamic MR imaging (HMRI), proton MR
spectroscopic imaging (MRSI) and diffusion-weighted MR
imaging (DWMRI) to better utilize MRI to study pediatric
brain tumors. Furthermore, we have used several data
analysis statistical tools, including ANOVA, linear and
logistic regressions, correlation analysis, and classification
algorithms based on receiver operating characteristic
curves.

Proton MR spectroscopy shows the presence and
concentration of hydrogen protons attached to different brain
compounds. A generated spectrum corresponds to a scale of

resonant frequencies versus amplitude (concentration).
Molecular compounds identified within cerebral tissue
include N-acetyl-aspartate (NAA), a neuronal marker; choline,
a cell membrane marker; creatinine, phosphocreatinin and
energy metabolites; and lipids and lactate. 

Perfusion MR shows the microscopic vascular proliferation,
termed neovascularization, associated with tumor growth.
Cerebral tissue perfusion can be assessed following a dynamic
injection of gadolinium. During its first pass transit through
the cerebrovascular bed, which lasts from 5 to 15 sec,
gadolinium is restricted to the intravascular space. The
restricted presence of highly paramagnetic contrast gadolinium
molecules generates microscopic field gradients around the
cerebral microvasculature, resulting in shortened T2 relaxation
and signal loss. The gadolinium concentration in each pixel
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Figure 1. Conventional T2-weighted MR images (T2W), Gd-enhanced T1-weighted (T1Gd), perfusion MR imaging (rCBV image), diffusion-weighted MR
imaging (ADC image) and MR spectroscopic imaging with metabolite mapping, within the posterior fossa of a 7 year-old boy with a brain stem glioma. The
baseline MR imaging exam (prior to therapy) showed a large mass in the pons compressing the 4th ventricle of high T2 signal on T2W, with no significant
enhancement on T1Gd images, but with high ADC and low perfusion on rCBV. Metabolite images (Cho images) demonstrated increased Cho in the region of
the T2 signal abnormality compared to normal surroundings. After 2 months, the resolution of both T2 and ADC hyperintensities was detected and the Cho
image showed decreased intensity, while the perfusions remained low on rCBV. Furthermore, the lipid metabolite images demonstrated increased lipids
implicating the induction of apoptotic cell death by 7 months. These findings were consistent with stable or regressing disease.
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can be calculated from the amount of signal loss, to produce
a pixel by pixel relative estimate of blood volume. To this
end, maps of cerebral blood volume (CBV) and cerebral blood
flow (CBF) can be generated. 

DWMRI shows water movement in different tissue areas
to produce apparent diffusion coefficient (ADC) maps that
describe CNS water molecule mobility. Hyperintense and
hypointense ADC areas respectively correspond to free water
molecules in cysts, and restricted water molecules in necrotic
areas.

Results

We applied multiparametric MRI, including conventional
imaging, HMRI, DWMRI, and MRSI, to examine the
relationship between MR imaging and MRSI parameters, and
correlate these data with histopathology indices and clinical
evaluation results. We propose these relationships reflect
the functional and biochemical tumor status, as they are
influenced by physiological status and correlate with tumor
histopathology. Our results show that this multiparametric
MR approach: a) predicts histologic findings, b) follows
tumor grade serial changes, c) corroborates responses to
chemo-therapy and/or radiation, and d) accurately
differentiates tumor tissue from radiation necrosis and other
structural abnormalities, and normal tissue (3-7). Fig. 1
presents multiparametric data for a 7 year-old patient with a
brain stem glioma. 

Discussion

The development of a database is essential to improve data
collection and management, and achieve greater power and
flexibility in detailed data analysis for medical research, such
as brain tumor tracking studies. It is further essential that the

identification, processing, and retrieval methods be fully
automated, especially when considering large amounts of raw
data, to minimize human error and uncover parameters that
may escape human biased approaches.

Automated retrieval requires the specific tagging of data.
In most cases, clinical data headers contain information that
is helpful to hospital operational needs, but often irrelevant to
research. Clinical data typically offer user-defined fields that
can be used as research related tags. For example, fields for
disease description or treatment protocol can be useful to
automatically identify interesting patients groups. To this
end, clinical research departments should adopt research-
friendly policies of data entry.

Raw clinical data must often first be processed to be
useful. For example, quantification of MRI spectra requires
signal processing to create metabolite maps that depict the
spatial distribution of MRS detectable brain metabolites.
Similarly, raw perfusion data must be processed to calculate
various hemodynamic maps (rCBV, rCBF and MTT), and
raw diffusion data must be processed to give ADC maps.
Unsupervised data processing has become essential, as MRS
data analysis has progressed from a single spectrum to 3D
grids of spectra. Since processing manipulations cannot be
subjectively performed, as they are unknown, robust black-
box spectra quantification methods have been developed that
use Bayesian estimation or prior knowledge (8). Similar
automated algorithms are needed for perfusion imaging when
motion correction is involved, and identification of the
middle cerebral artery is required to provide the arterial input
function (9).

Data analysis aims to answer specific scientific questions,
and the full exploitation of all available data is most likely to
produce insightful answers. Data organization in a local
database can facilitate multiparametric efforts to combine
and merge different information types. Such efforts are
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Figure 2. Layer 1 provides web-based negotiation services for human beings, and layer 2 interacts with negotiation agents through web services.
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limited by difficulties related to data diversity and volume.
For example, diversity of the imaging data reflects differences
in contrast, resolution, signal-to-noise ratio, geometrical
distortions, and movements. Conventional anatomical images
have better resolution versus the perfusion or diffusion
images and their parametric maps in our data, so the inter-
and intra-subject registrations are challenging. Although
many robust algorithms exist, including rigid and non-rigid
transformations, new image registration protocols continue to
be developed (10,11). 

The large amounts of data produced by modern medical
research instruments pose further difficulties. Although
unsupervised data mining techniques can be used to uncover
hidden relationships, researcher contribution can reduce the
dimensionality of the original dataset. For example, we have
used spectroscopic, hemodynamic and diffusion imaging,
and less contrast enhanced or T2 imaging to investigate
pediatric brain tumors. We chose the rCBV from the many
hemodynamic parameters (rCBV, rCBF and MTT), as it better
reveals vascularization changes. Furthermore, we chose to
assess the highest choline regions in tumors since they
exhibit particular importance in tumor monitoring. These
examples show how human intervention can be fundamental
in medical data design and analysis. 

Equally important is that data analysis be clinically
oriented. For example, if a new diagnostic index is sought,
then the analysis must consider its sensitivity, specificity and
accuracy over the entire domain of its values. For instance,
where environmental factors are known to increase the
incidence of high-grade tumors, a cut-off point with increased
sensitivity and decreased specificity is called for, whereas a
cut-off point with increased specificity and decreased
sensitivity is called for when using a novel therapy that
benefits high-grade tumors and significant side effects to
low-grade tumors. Also, numerical approaches are preferred
in testing the dependence of an index on disease prevalence,
or the cost of a false positive, i.e. for a low prevalence
condition, high false positive referrals will put an unacceptable
burden on the health care system. We have combined
spectroscopic indices using a distribution-free approach to
meet all of the above requirements (12).

Local hospital databases are often inadequate for research
due to limited patient numbers, especially in rare diseases,
and limited human/hardware resources preventing robust
analyses. These problems can be solved by creating
collaborative schemes where knowledge and data are shared
between groups and facilities. Indeed, this occurred several
years ago for genomics research, which requires the
organization and synthesis of great amounts of data.
Collaboration allows researchers to pool resources to study
open scientific questions and obtain insight that might not
otherwise be discovered in isolation.

Although several large disease-oriented research efforts
have been instituted in medical research, no universal scheme
yet exists to access the resultant data, possibly due to their
sensitive nature and extensive non-homogeneity. The Digital
Imaging and Communication in Medicine (DICOM) standard
is a universal method to transmit medical images and their
associated information (13). DICOM has continuously
evolved since its inception, and now describes raw images,

parametric maps, and medical documents (14). Similar
standards are needed in other areas of medical information,
such as for histopathology data, to better enable sharing and
collaboration. 

We propose a flexible front end to medical research
databases to increase their utility by translating different
local database formats into standard formats and providing
access via a single Internet portal to large numbers of different
research groups having different levels of access permission.
Secure Content Exchange Negotiation System (SCENS) is
designed to support the sharing of scientific research by
providing incentives specific to a research community (15).
SCENS is a trusted third party software infrastructure enabling
independent entities to interact and conduct multiple forms of
negotiation. With our focus on the flexibility and scalability
in design and implementation of SCENS, our implemented
SCENS services include user authentication, data quality
assessment, web-based negotiation, web service-based
negotiation, usage tracking, user evaluation, and other services.
We have also developed synthetic tools that simulate
negotiation activities to evaluate the whole system. 

SCENS has a flexible 3-layer service structure that provides
different levels of negotiation services for different users.
Layer 1 is a traditional web-based negotiation support system,
where users can customize the SCENS negotiation agents via
multiple parameters. Layer 2 provides negotiation strategy
customization support for users, especially negotiation agents,
which are treated as web service consumers through web
services. Fig. 2 shows the interrelationship between layers 1
and 2. Layer 3 provides an open automatic negotiation
environment. DAML+OIL (16,17), a language with which to
create ontologies and mark up information, is used in layer 3
to define a negotiation ontology. This allows agents to
acquire knowledge about how to conduct negotiations, and
this knowledge includes negotiation protocols and proposals,
and conditions. While the negotiation rules are hand-coded
into the layer 2 agents, the layer 3 agents can be used in any
negotiation activity, given the appropriate ontology.
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