
Abstract. Perfusion magnetic resonance imaging (pMRI) is
an important tool in assessing tumor angiogenesis for the
early detection of lung cancer. This study presents a novel
integrated framework for spatio-temporal modeling of
pulmonary nodules in pMRI image sequences. After localizing
a nodule region in each image, we perform segmentation in
the region to extract the nodule boundary, then use thin-plate
spline interpolation for nodule registration along the temporal
dimension. The resulting spatio-temporal model can lead to
many types of nodule characterization, e.g. a time-intensity
profile of a nodule region, and be used to capture important
angiogenic patterns in the lung that can distinguish between
cancer and benign nodules and assist in early detection.

Introduction

Lung cancer is among the most commonly occurring
malignancies in the world and the leading cause of cancer death
in both men and women in the U.S. Computed tomography
(CT) can identify suspicious lesions, but its high false-positive
rate often requires additional imaging tests within 3-6 months to
confirm a positive result. To detect lung cancer at an earlier
stage, an alternative and promising method is to apply a
modified perfusion magnetic resonance imaging (pMRI) (1)
to assess tumor angiogenesis. Angiogenesis, defined as the
formation and development of new blood vessels essential for
tumor growth and the eventual spread of cancer cells to
secondary locations throughout the body, is one of the most
promising areas of investigation in cancer research.

One key issue in the analysis of pMRI lung image
sequences is to effectively characterize angiogenic patterns

of pulmonary nodules. To achieve this goal, we present a
novel and automated spatio-temporal modeling technique for
pulmonary nodules in pMRI sequences, and demonstrate our
approach by creating a time-intensity profile for any user-
interested nodule region. Many techniques of nodule detection
(2) and segmentation (3) have been developed based on chest
radiographs or CT images. New challenges arising in our
analysis include: i) as a unique imaging modality, pMRI
requires new processing techniques for detection and
segmentation of lung nodules; and ii) to compensate for
respiratory and cardiovascular motion in pMRI sequences,
registration needs to be done to ensure that corresponding
nodule occurrences in different time frames are comparable.

Materials and methods

Prior written consent was obtained as required by the Hospital
Research Board. Surface EKG electrodes were used for
cardiac cycle timing during the MR imaging procedure. MR
imaging was performed using an eight-channel phased-array
coil of a 1.5-T whole-body GE dual gradient Excite magnet.
After scout images of the chest, a bolus fast gradient-echo train
imaging (FGRET) was performed at the rate of one image per
heartbeat with flip angle adjusted to null the target lesion on
the fourth and subsequent frames prior to arrival of the contrast
agent (TR/TE/flip angle =6.06 ms/1.108 ms/75˚, slice thickness
=20 mm, views per segment =4, matrix =256x256, field of
view =440x440 mm, and EKG-triggered RR=1). Likewise,
static inversion recovery images were adjusted to null the
target lesion, typically using TI =250-300 msec. While
imaging by FGRET, 20 ml of Gd-DTPA (Magnevist; Berlex
Laboratories) was injected into the venous line as a time series
of 84 images were obtained with one frame per heartbeat
observing signal changes relating to arrival and washout of
the contrast agent. Subsequently, at 5, 10 and 15 min after
injection, delayed enhancement static inversion recovery
images were obtained to assess agent retention, which occurs
in damaged cells. In this study, we analyze the time series
of images obtained during the first-pass of the bolus of
contrast agent to demonstrate our spatio-temporal modeling
technique. Fig. 1 shows four examples from this series of
84 images.

Our overall strategy is to divide the problem into several
relatively simple subproblems. Generally speaking, image
registration is a difficult task (4). However, if the relevant
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nodule region of our focus is localized, registration of this
sub-image between different time frames becomes a much
easier task. More conveniently, the nodule boundary from
this sub-image can be extracted, and the segmentation results
can be used to complete nodule registration. Thus, our
framework includes 3 steps: i) nodule identification in each
slice; ii) nodule segmentation in the relevant region; and
iii) nodule registration using segmentation results. The
following subsections describe these steps in more detail.

Identification. To identify a local nodule region in each
image slice, a simple method is employed. In one slice, we
manually define a rectangular region A to enclose the nodule
of interest. In other words, A is an m x n sub-image that
contains the nodule. In our experiments, we define A as the
first slice, which has a size of 26x28.

In each of the other slices, we search for a region B of the
same size that maximizes the correlation coefficient between
A and B. The two-dimensional correlation coefficient
between two matrices A and B of the same size is given by
the formula:

In our implementation, after initializing B to have the
same location as A, we move B in the neighborhood area,
calculate the correlation coefficient for each case, then select
the best one. This approach is simple and works perfectly on
our data. The nodule region is correctly identified in all of
the slices. Fig. 1 shows four sample image slices with
identified nodule regions.

Segmentation. Nodule segmentation is performed on each
sub-image identified in the previous step, which reduces the
complexity of the segmentation task. Fig. 4 shows sample
nodule sub-images, and the nodule appearance in these sub-
images is relatively clear. Thus, a few simple image processing
techniques can be combined to complete the segmentation
task.

A segmentation procedure was designed as follows:
i) apply a filter to reduce the contribution of noise, e.g. 3x3
average, median, or median-average filter (average was used
in our experiments); ii) apply Canny edge detection to extract
object edges; and iii) if necessary, close the object edges to
form a simply-connected object, using an approach described
in the next paragraph. The Canny method used in the second
step finds edges by looking for local maxima of the gradient
of the image. The gradient is calculated using the derivative
of a Gaussian filter. The method uses two thresholds to detect
strong and weak edges, and includes the weak edges in the
output only if they are connected to strong edges. This
method is known to many as the optimal edge detector.

The first row of Fig. 2 shows six sample results after
performing the first two steps of the segmentation procedure.
Some of these results (Fig 2a, d and e) form a closed nodule
region, while others (Fig. 2b, c and f) do not. The third step
was designed to derive a closed nodule boundary: a) start from
the edge detection result; b) bridge previously unconnected
pixels (works only for small gaps), then fill the image
regions; c) calculate the distance transformation map;
d) threshold the transformation map (t=1.5 in our experiments)
and find its connected components; (e) remove the
background component and slightly dilate the remaining
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Figure 1. Nodule region identification. In each slice, the rectangular box indicates the identified nodule region.

Figure 2. Nodule boundary segmentation. The first row shows sample edge detection results (white pixels) and segmentation results (contours). The second
row shows a sample procedure of closing broken edges: (a) intital edges, (b) bridge unconnected pixels and fill image region, (c) distance transformation map,
(d) threshold distance transformation map and find connected components, (e) remove the background component and slightly dilate the rest of the
components, and (f) extract the boundary of (b) and (e).

where denotes the mean of elements of matrix X.
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components (a disk with radius =3 was used as the
morphological structuring element in our experiments); and
f) add the results of b) and e) and extract its boundary. The
second row of Fig. 2 shows a sample run of the procedure.

The above segmentation procedure works for most of the
nodule sub-images. For some noisy cases, however, it fails to
create a reasonable nodule shape. To overcome this problem,
we introduced a weighting mask to capture a general nodule
shape, then applied it to each image to impose some structural
constraint on the segmentation results.

The following approach was used to calculate the
weighting mask: i) scale the intensity values to the range
from 0 (black) to 1 (white) for each sub-image, and calculate
the mean image; ii) segment the mean using the procedure
described above; iii) calculate the signed distance
transformation map of the mean boundary; and iv) threshold
the transformation map so the most positive and negative
values become t and -t respectively (t=3 in our experiments).

Fig. 3 shows the mean nodule boundary and weighting
mask. Since the weighting mask captures a general nodule
shape, it was multiplied with each nodule image on a pixel-
by-pixel basis, then the segmentation described above was
performed. Clearly, this approach imposes structural
constraint on each individual nodule so its shape will not
deviate from a typical nodule shape. Using this strategy,
satisfactory results were obtained for all images. Fig. 4 shows
some examples (see stars).

Registration. After segmentation, the spatial characteristics
of a nodule are available at each time point. To build a
spatio-temporal nodule model, registration along the temporal
dimension needs to be completed. In other words, for each
pixel inside the nodule in the first slice, its corresponding
pixels need to be identified in all subsequent slices. A
landmark-based registration approach was developed to

include the automatic identification of landmarks in each slice
and thin-pline spline interpolation for image matching (5).

A landmark is a point of correspondence on each nodule
occurrence that matches between time frames. We developed
a procedure to automatically extract a set of landmarks in
each slice by performing principal component analysis
(PCA) (6) on each nodule represented by a binary image to
find its principal axes. These principal axes intersect the
nodule boundary at four points, which become our base
landmarks. More landmarks are then extracted by finding the
midpoint of the contour between two neighboring landmarks
and defining it as a new landmark. Besides these boundary
landmarks, the nodule centroid was included as an additional
landmark. In our experiments, we used 32 boundary
landmarks and 1 centroid landmark. Fig. 4 shows the PCA
axes and sample landmarks, which are labeled and consistent
across subjects.

Landmarks define the correspondence at the nodule
boundary and centroid. To create correspondence for the
interior part, thin-plate spline interpolation was employed
(5). A thin-plate spline ƒ(x,y) is a smooth function that
interpolates a surface, which is fixed at the landmark points
Pi at a specific height hi. This surface can be imagined as a
thin metal plate that will take on a shape in which it is least
bent, i.e. it minimizes the bending energy of ƒ(x,y):

In order to map one image to another using landmark
data, two of these spline surfaces are computed, one (ƒx) in
which the heights (hi) are loaded with the x-coordinate of the
landmarks (Pi) in the second image, and another (ƒy) for the
y-coordinate. The first of these functions supplies the
interpolated x-coordinate of the map we seek, and the second

ONCOLOGY REPORTS  15:  1085-1089,  2006 1087

Figure 3. Mean nodule image (left), mean nodule boundary (contour) and weighting mask (right). 

Figure 4. Principal axes and landmarks (consistent across subjects). Image intensity is scaled for better visualization.
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supplies the interpolated y-coordinate. The resulting map
[ƒx(P), ƒy(P)] is now a deformation of one image plane onto
the other that maps landmarks onto their homologues and has
the minimum bending energy of any such interpolant.

Fig. 5 shows sample results of applying thin-plate spline
interpolation to our data. Clearly, given any nodule pixel in
the first slice, the corresponding pixels in all other slices can
then be found.

Results

We demonstrated our spatio-temporal modeling technique
using a pMRI image sequence described above, which
comprised 84 lung perfusion, short-axis, MR images obtained
from a freely breathing patient. Identification, segmentation,
and registration algorithms were applied to these images, and
Figs. 1, 4 and 5 shows sample results at different stages.
After these steps, a spatio-temporal model was established for
the nodule of interest.

Using this model, a time-intensity profile can be created
for a region of interest (ROI) in the nodule, which can be
specified in the first slice. According to our model, the
corresponding ROI in all other slices can be easily extracted.
Thus, a time-intensity profile for the ROI could be
represented as a curve showing the change in mean intensity
(or intensity variance) over time.

This profile in relation to an upstream arterial profile defines
the point-spread function for blood delivery to the observed
loci, which is largely determined by the convolution effects

from small pathways (angiogenesis). In particular, if the blood
delivery pattern is consistent with increased microvascular
development, this implicates tumor angiogenesis, and timing
with respect to pulmonary vein enhancement can help
distinguish primary lung cancers from metastases.

Fig. 6 shows several ROIs and their profiles by plotting
the mean intensity versus time. These time-intensity profiles
can capture different types of angiogenic patterns of the
pulmonary nodule and have the potential to distinguish
cancer nodules from benign ones.

Discussion

We presented an integrated framework for spatio-temporal
modeling of pulmonary nodules in pMRI image sequences,
and demonstrated its application in creating time-intensity
profiles for any nodule regions of interest. This spatio-
temporal model can also lead to many other types of nodule
characterization, e.g. volume/shape change over time. One
future direction is to use this model to extract important
angiogenic patterns in the lung, which may effectively
discriminate between cancer and benign nodules and help to
accurately detect lung cancer in its early stages.
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Figure 5. Thin plate interpolation. The registration results are visualized by meshes, and image intensity is not scaled.

Figure 6. (a) Three ROIs. A single pixel (square), the whole nodule (bounded by stars), and a region (circles). (b) Time intensity profiles of these ROIs.
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