ONCOLOGY REPORTS 15: 983-996, 2006

Operational criteria for selecting a cDNA microarray
data normalization algorithm

C. ARGYROPOULOS!, A.A. CHATZIIOANNOU?, G. NIKIFORIDIS!,
A.MOUSTAKAS?, G. KOLLIAS? and V. AIDINIS?

1Laboratory of Medical Physics, Medical School, University of Patras, 26110 Patras; ’Institute of Immunology,

Biomedical Sciences Research Center ‘Alexander Fleming’, 16672 Athens, Greece;

3Ludwig Institute for Cancer Research, Biomedical Center, SE-75124 Uppsala, Sweden

Received September 6, 2005; Accepted October 3, 2005

Abstract. Microarray technology allows gene expression
profiling at a global level. Many algorithms for the
normalization of raw microarray data have been proposed,
but no attempt has yet been made to propose operationally
verifiable criteria for their comparative evaluation, which is
necessary for the selection of the most appropriate method
for a given dataset. This study develops a set of operational
criteria for assessing the impact of various normalization
algorithms in terms of accuracy (bias), precision (variance)
and over-fitting (information reduction). The use of these
criteria is illustrated by applying the three most widely used
algorithms (global median normalization, spiked-in based
normalization and lowess) on a specifically designed,
multiply-controlled dataset.

Introduction

c¢cDNA microarray technologies are hybridization-based
methods that enable the simultaneous profiling (quantification
of expression) of thousands of genes. Emerging and evolving
computational methods aim at a more precise analysis of
rapidly accumulating microarray data. A prerequisite to
any form of microarray analysis is the process of data
normalization, which is defined as a transformation of the
data that address the random and systemic signal variability,
and is intrinsic to every microarray experiment. This
variability stems from a number of sources, including chip-
to-chip manufacturing differences; unsteady laboratory
sample preparation, hybridization and washing protocols;
imprecise signal measurements coming from the scanner; and
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subtle gene-to-gene differences in hybridization efficiency
(1). Given the documented impact of normalization on
subsequent steps in analysis (2), the proliferation of research
on normalization methods (1,3-14), claiming superiority-
equivalency over alternative methods is more than justified.

Irrespective of the specific methodology employed, a
normalization method is essentially a tripartite process: first,
a subset of genes from the targets spotted is selected; second,
the expression ratios are fed into a mathematical functional
formalism (either parametric or non-parametric); and last, the
estimated functional is applied back to the raw data in order
to generate normalized measurements. The various proposed
formalisms differ in: a) selection process of the gene subset;
and b) the specific functional-estimation process employed.
However, it is interesting to note that comparisons (when
made) usually refer within and not across groups of possible
normalization strategies, and methods are normally compared
based on how ‘straight’ scatterplots appear after normalization.
Explicitly defined, criteria for comparisons have only recently
been utilized (2,8,9,15), but a comprehensive framework that
could be used to compare normalization algorithms and
practical repercussions of selecting one method over another
is still lacking.

In this context, we introduce two non-mutually exclusive
views of normalization, namely the calibration and quantitative
measurement method perspectives. These perspectives
suggest measures of accuracy and precision that can gauge
bias and variance reduction and thus derive operationally
definite criteria for the comparison of normalization strategies
by applying the same graphical and statistical tools used in
method agreement clinical research studies (16). Illustration
of the use of these criteria is exemplified by comparing the
three most widely used normalization strategies: global
median, spike-based control and lowess. We then examine
the issue of over-fitting, a neglected area in normalization
algorithm research, and propose the utilization of theoretic
measures to examine information reduction. The proposed
framework is operationally definite (and hence verifiable)
and could be used not only to compare novel normalization
algorithms, but also provide a checklist for the researcher
who has read the relevant literature and must choose an
algorithm to use for his or her dataset. It is anticipated that
the application of the described criteria to the normalization
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Figure 1. Normalization as measurement. A cDNA microarray is
conceptualized as a quantitative measurement method to compare gene
expression in two or more biological systems (cells are dyed with red and
green fluorescent dye, scanned, then subsequently overlapped and compared).
The raw data can be fed into a variety of existing or hypothesized normalization
algorithms (Ni, Nk and Nj), which in turn produce different estimations of
the unknown gene expression ratio.
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of a given microarray dataset would allow for the selection of
the most appropriate strategy.

Materials and methods

Arthritic mouse microarray dataset. Tg197 transgenic mice
overexpress the gene for the human tumor necrosis factor
(hTNF) cytokine and spontaneously develop a severe form of
rheumatic disease similar to human rheumatoid arthritis (RA)
within 3-4 weeks after birth (17). The arthritic mouse
microarray dataset (AMMD) was designed with the specific
objectives of: a) understanding global changes in gene profile
in the joints of the Tgl197 animals as they progress from the
normal to diseased phenotype; b) describing clinicopathological
and molecular correlates of the disease model; c) discovering
downstream targets of TNF signaling that could form the
basis of novel drugs against RA; and d) identifying specific
disease markers that could be utilized in everyday clinical
practice.

In addition and implicit to the AMMD data generation
and analysis process was the use of a rigorously controlled
experimental and statistical strategy that reflects the strengths
and limitations of a decade of microarray research. The
dataset incorporates multiple levels of controls: a) spiked-in
controls from exogenous, in vitro transcribed, bacterial genes
at known and varying concentrations (30, 150, 300 1500
and 3000 pg/ul, 5 spots per grid, and 324 spots per array
slide); b) empty spots (3 per grid) as negative controls and
estimation of background; ¢) a common reference RNA sample
consisting of equal amounts (1:1) of pooled RNA from all
diseased, transgenic animals and wild-type controls at
equimolar concentrations; d) triplicate hybridizations at every
experimental point; and e) three self-self reference sample
hybridizations. The MIAME compliant (18) dataset has been
submitted to ArrayExpress database (http://www .ebi.ac.uk/
arrayexpress/), reference ID pending, and will be publicly
released upon publication of the biological interpretation of
the results (data not shown). In the current study, only the
aspects relevant to comparative normalization algorithm
evaluation will be detailed.

Total RNA samples were isolated through disease
progression from the joints of arthritic transgenic mice at
2-week intervals (from 2 to 12 weeks) from healthy wild-
type littermate animals (a pool aged to the corresponding
weeks), and transgenic mice under the prophylactic or
therapeutic administration of a disease neutralizing antibody
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(a-TNF). Each RNA sample consisted of equimolar amounts
of total RNA isolated from two male and two female littermate
mice of the selected age. All samples were fluorescent-
labeled with direct incorporation of Cy3 (reference sample)
or Cy5 (experimental samples) and hybridized to Sanger
mouse 15K (Mverl.1.1) cDNA glass microarray slides (19)
essentially as described by Sanger (http://www .sanger.ac.uk/
Projects/Microarrays). Hybridized slides were scanned with the
confocal ScanArray Express scanner (Packard Biosciences)
utilizing ScanArray software and quantified with the
QuantArray software (both Packard Biosciences).

Assessing agreement between normalization methods. The
field of quantitative method comparisons offers a general
framework and tools for comparative normalization strategy
analysis (20). Normalization algorithms can be examined as
quantitative (measurement) methods, given the quantitative
nature of both the experimental and algorithmic parts of the
relation. The experiment measures the biological system in
question, and the normalization algorithm makes calculations
based on features present in the raw data in an attempt to
infer relations present in the biological system (Fig. 1).

Although correlation coefficients are usually quoted as a
measure of method agreement and repeatability, their use is
fraught with methodological problems (16,21). In particular:
i) correlation coefficients measure the strength of the relation
between two techniques, but not their agreement. Perfect
agreement (i.e. clustering of measurements along the 45° line
in a scatterplot) is not synonymous with perfect correlation
(i.e. tight clustering of repeat measurements along any line;
ii) change of scale influences agreement between the two
methods, but it does not affect the correlation; iii) correlation
depends on the range of the measurement scale with wider
ranges associated with higher correlation coefficients; and
iv) tests of significance applied to correlation coefficients
may show that the two methods are related, but do not indicate
agreement. High correlation coefficients can be associated
with poor agreement. This is most obvious when considering
the impact of normalization on microarray data (Fig. 1)
displaying how normalization results in the obvious improve-
ment in agreement of numeric measures of gene expression,
without any noticeable effect on the correlation coefficient
(22). Points 1-4 are graphically illustrated in Fig. 2 with a
simulation study corresponding to a hypothetical self-self
hybridization experiment. Uncorrected scale and location
bias (Fig. 2b and c) does not affect the correlation coefficient
compared to optimally normalized values (Fig. 2a), even
though the actual measurements are influenced considerably.
On the other hand, high- or low-pass filtering of optimally
normalized values (Fig. 2d and e) leads to a reduction of the
correlation coefficient even in the case of optimally normalized
experiments. Taken together, the figures demonstrate that it
will be futile to compare normalization methods, which in
general affect scale and location of the original data, on the
basis of correlations between coefficients.

Bland-Altman (MA) plots are better suited for this kind of
analysis since they are robust with respect to shifts in scale,
location and range. They can be utilized not only to assess
the limits of quantitative agreement between two methods,
i.e. microarrays and immunoassays, for tumor markers (23)
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Figure 2. Quantitative method comparison using the correlation coefficient is misleading. A total of 100 points from a normal distribution with mean y=10
and standard deviation 0=3 were independently drawn in order to simulate a two self-self hybridization experiment. Independently distributed noise in
the [-3,3] was added to each data point, and two datasets X and Y were thus generated. Correlation coefficient of X and Y is R=0.73 (a). The same correlation
coefficient is insensitive to location and scale bias (datasets Z and V) (b and c, respectively). Low- (d) and high- (e) pass filtering of the original datasets X

and Y reduce the coefficient correlation.

or even quality of life indices (24), but also derive relationships
of bias versus variance and provide necessary corrections by
regressing differences against averages. To use the MA plots,
the following steps are required: i) normalize the internal
validation data subset, upon which the performance of the
compared algorithms is tested, by using both algorithms;
ii) calculate normalized expression ratios log(R/G), ;, log(R/G);,
and average signals [log(R)+log(G)/2],, [log(R)+log(G)/2];,
for every probe 7, channel (R,G) and normalization method
1,2; iii) plot the average difference of normalized values
against the average normalized expression; iv) if no trend is
evident from the graph, find the 95% limits of agreement (25)
between the two techniques using confidence intervals based
on the familiar paired t-test formula:

v) if trends are present, then the analysis can proceed using
errors-in-variable regression using any of the currently
available formalisms (i.e. orthogonal least squares, method of
moments, and non-parametric methods) (21,25).

Within this article, the symbolism log stands for base 2
logarithms. Algorithms that are found to be in agreement
across the intensity range can be classified together, thus
aiding the researcher in making comparisons between
and within groups of algorithms. The MA plot analysis of
the hypothetical dataset of Fig. 2 is shown in Fig. 3.
Normalization methods that cannot correct for location
and scale bias are associated with scatterplots that cluster
away from the x axis (Fig. 3b and c). Range restriction of
an optimal normalization algorithm (Fig. 3a) to either high
or low values does not affect the MA plot (Fig. 3d and e),
thus avoiding the difficulties associated with correlation
coefficients.
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Figure 3. Assessing relative bias and variance with Bland-Altman (MA) plots. An MA plot demonstrates the difference of repeated measures versus their
average. The MA plot of an optimally normalized self-self hybridization experiment features points clustered around zero (a). Uncorrected location and scale
bias, dataset Z-X and V-Y (b and c, respectively) manifest as deviation from 0. Low- and high-pass versions of unbiased normalization algorithms (d and e,
respectively) are not penalized simply because they shrink the dynamic range. The same datasets from Fig. 2 were used.

Normalization as calibration. Calibration is fundamental to
achieving consistent measurements and usually involves
establishing a relationship between an instrument response
and one or more reference values. The calibration problem
consists of both estimating and validating the functional
relationship. If one foregoes the possibility of a priori
estimating the expression of tens of genes, then estimation
tools from the calibration theory are not applicable (26).
However, it is possible to post-hoc validate a proposed
normalization strategy if the design strategy has included a
number of experiments that can be used for internal
validation (27). In a microarray experiment, the internal
validation subset can be formed from commonly utilized
controls as exogenous spiked-in genes and self-self
hybridizations. Estimates of accuracy (i.e. proximity of
estimates of the method compared to the hypothesized true
values) and precision (i.e. reproducibility of results in
subsequent repetitions) can easily be computed from the

performance of the normalization method on these subsets.
The precision can be characterized by measures of dispersion
in the distribution of repetitive measures, and accuracy
demands the use of reference internal validation subsets.

Validation using spiked-in controls. Of all possible gene
expression measures, the channel ratio was selected and used
for the purpose of this study (28).

If we define the measurement as the channel log ratio:log
(R/G), and take the collection of spiked-in control genes as
a reference, then we can use the following definitions of
bias and variance as proxies for accuracy and precision,
respectively:

Bias, = \/,"_EJ Zk ﬁog(-g—)w,k —True Log Rati07

Variance, = "lﬁzj Ek Qog(-g-)wk —<log(§)}.)7
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Table I. Comparison of normalization strategies.

987

Gene Subset Method Functional Effect
All Global log(%), - log(g)’ -k, Center distribution of
Median k., = median (log( (_,g ), )alll expression ratio for all
genes around zero
Controls (spike — in, Median log(%)’_ - log(g.—),_ =K oniross Center distribution of
housekeeping) k.  =me dian(log( 2 ),- )f:ntrozs expression ratio for
control genes around
zero
All (within grid) Local log(%), > log(£) — f(4,) | Center distribution of M
weighted £(4) = lowess(MA), vs. A values around zero
regression throughout intensity
range

Global median normalization, which scales data to have a median expression ratio of 0 is the most common method employed thus far.
Another potential strategy is to scale data so a subset (usually spiked-in controls) of genes has a median expression ratio of 0. Lowess is a
non-parametric strategy that normalizes the genes located in a local neighborhood of a MA scatterplot to a mean log expression ratio of 0.

In these formulas, the subscript j represents all
hybridizations, k is all within-slide replicates, i is the
subscript for the ih control gene, n is the product of
hybridizations x within-slide replicates, < > is the expectation
(or averaging) operator, and true log ratio is equal to the ratio
of concentrations of spiked-in controls used in the labeling
reactions for the two channels.

Since spiked-in controls were introduced at the same
concentration in the hybridization reactions, the true log ratio
is equal to 0 and the formula for the bias reduces to the root
mean square error (RMSE):

Bias, = RMSE, = \/,‘1—2! Zk Qog(g)i,}ch }

If a number of controls are introduced (at varying
concentrations), then one could examine how bias and
variance change across the intensity range. A normalization
method A would be preferred over method B if, in addition
to small bias and variance, it was associated with a constant
performance throughout the mRNA concentration range. An
easily computed statistical measure of constancy is provided
by the coefficient of variation of replicate spiked-in spots,
which should remain constant across the range of mRNA
concentration for a preferred method.

Confidence intervals under the normal error model can
also be constructed to calculate the limits of agreement
between the two normalization techniques (25), using the

familiar t-test distribution by averaging all spiked-in controls,
hybridizations and array replicates.

Validation using self-self hybridizations. In the same spirit,
replicate self-self hybridizations could be performed and
provide additional evidence for or against a particular
normalization method. In essence, they allow for the
calibration of normalization methods by revealing
inconsistencies across the signal intensity range. Whereas
spiked-in controls spotted in known concentrations/ratios
allow such a comparison, the small number of included genes
limits its statistical power. Assuming that a signal is
monotonically dependent on mRNA concentration, self-self
hybridizations afford a broader view of the concentration-
response performance of the experiment-normalization
combination compared to spiked-in controls.

Avoiding over-fitting: normalization as data compression. It
is fairly obvious that any normalization method will lead to a
reduction of expression ratio variability compared to the
un-normalized values. The variability of the latter is not
only due to technical factors, but also the inherent biological
variability of the systems examined. An optimal algorithm
should at least partially correct for systematic errors (hence,
reducing technical variability), but at the same time not over-
normalize the gene expression values. If this happens,
potential biological differences are suppressed to the point
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Figure 4. The ChannelFlip algorithm. The algorithm randomly assigns a log expression ratio of O to (1-p)% of genes, flips p/2% of the raw expression ratio
data, while leaving the rest unchanged. Three transformations of the original dataset (h) are shown both as scatterplots (b, d and f) and MA plots (a, ¢ and e).
The graphs are color coded according to the value of p, which is shown in the scale (g). R, correlation coefficient; PDF, probability density function; R&G,

red and green ‘channels’; diff, R-G; mean, (R+G)/2.

that no conclusions about differential effects can be
reached.

A global view of technical variability reduction is afforded
by the internal validation subset of self-self hybridizations; in
this case, total variability is due to technical factors only.
Assessing the impact of normalization on biological variability
is accomplished by looking at the remainder of the dataset.
Reduction of variability can be quantified with theoretic

criteria. A less variable distribution of expression-ratio amounts
to data compression and hence entropy reduction of the
distribution. The entropy of a distribution over a partition X
of log-expression ratio range is given by:
H= —Zp,. xlog(p,)
ieX

The tendency of an algorithm to over-normalize will also

be reflected in the divergence of distributions of the two sets
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Figure 5. Evaluating normalization agreement using Bland-Altman (MA)
plots. The difference of the normalized log-expression ratio (ER) is plotted
against the average normalized ER for repeated measures (i.e. application of
two normalization algorithms on the self-self hybridization subset).

(self-self, non-self-self) after normalization. If the
algorithm tends to over-normalize, divergence measures
will decrease compared to the corresponding value before
normalization. The Kullback-Leibler (KL) I divergence (or
relative entropy) is a well-established measure of the
distance between two distributions P, Q and can be used to
provide a glimpse of the ‘over-normalization’ potential of
each method (29).

The relative entropy of self-self over non-self-self
hybridizations should decrease with the degree of over-
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normalization as differences between the data subsets are
eliminated. In essence, the divergence measures allow us to
quantify the reduction of variability beyond the component
attributable to technical factors; a normalization algorithm A
would be preferred over B if it maintains the divergence
between the two subsets more than B.

Algorithms. The employed normalization strategies are given
in Table I. These algorithms account for the majority of
experimental work with microarrays in the published
literature. The first method, global median normalization
(GMN) calibrates log-expression ratios to a median of 0, and
is the most commonly employed method. Alternatively, one
could normalize the log-expression ratio of spiked-in controls
(SBN) to a median of 0, and use this constant to normalize
all other values. The third method is based on the lowess
smoother (30), originally presented by Cleveland et al
(31,32). A lowess smoother performs locally weighted
polynomial and usually linear fittings, and is parameterized by
the size of the local neighborhood (as a percentage of the
dataset); between 20% and 50% of points are normally
included in the local neighborhood, allowing the smoother to
accommodate a wide variety of functional relationships
between the predictor and response variables. To examine the
dependency of lowess-based normalization on the size of the
neighborhood, we also compared realizations of lowess using
different values of the control parameter (32).

As a case study of over-normalization, we devised an
algorithm called ChannelFlip. To each gene, the algorithm
randomly: a) assigns a log-expression ratio of O (probability
1-p); b) reverses raw log-expression ratio with probability
p/2; or c¢) leaves it unchanged (p/2). ChannelFlip assumes
that the majority of genes should have an expression ratio
that clusters along the 45° line in the scatterplot of R vs. G
values, an assumption that is implicitly made in the ‘real-
world” strategies of Table I. The use of the algorithm is
illustrated in Fig. 4 with a simulation; in the series, a typical
dataset consisted of 400 points from a normal (10, 3)
distribution corresponding to a self-self hybridization
experiment. Subsequently, uniformly distributed noise in the
(-3, 3) interval was added independently to the two channels.
Finally, the ‘red’ channel was scaled and rotated relative to
the first (Fig. 4h). Using an ensemble of such datasets, a
researcher without access to the internal workings of the
algorithm found the ‘optimal’ value of the control parameter
p using maximization of the average intra-channel correlation
coefficient (estimated from the empiric distributions of R
values) as a criterion (Fig. 4g). Three normalizations of the
original dataset in Fig. 4h are shown both as scatterplots
(Fig. 4b, d and f) and as MA plots (Fig. 4a, c and e). The
graphs are color coded according to the value of p, which is
shown on the scale (Fig. 4g). It is evident that such an
algorithm will shrink the variance of the dataset considerably,
depending on the value of p (in the limit p=0, ChannelFlip
effectively normalizes all genes to an expression ratio of 1).
Due to its over-normalization nature, ChannelFlip is
insensitive to both location and scale measurement bias for a
wide range of the control parameter p. Such a method would
almost certainly give excellent results in terms of accuracy
and precision criteria, when assessed in situations where the
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Table II. Average log expression ratio of control genes.

Concentration 20% 25% 30% 35% 40% 45% 50% GMN SBN
30 pg/ul -0.128 -0.128 -0.125 -0.125 -0.126 -0.128 -0.127 0.555 0.105
150 pg/ul -0.106 -0.108 -0.111 -0.112 -0.114 -0.116 -0.118 0.365 0.189
300 pg/ul -0.066 -0.059 -0.053 -0.049 -0.045 -0.044 -0.044 0.167 0.004
1500 pg/ul -0.092 -0.083 -0.078 -0.076 -0.074 -0.073 -0.073 0.313 0.041
3000 pg/ul -0.118 -0.122 -0.125 -0.127 -0.128 -0.130 -0.132 0.527 0.206
Average -0.102 -0.100 -0.099 -0.098 -0.098 -0.098 -0.099 0.385 0.109

The average estimated log-expression ratio of control genes as a function of spiked mRNA concentration. Lowess proves to be the most
successful in estimating the true expression ratio of 0, and spiked-in based normalization ranked second. SBN, spiked-in based
normalization; GMN, global median normalization. A 20-50% lowess normalization with different choices of local neighborhood were used

with the smoother.

Table III. Root mean square error (RMSE) performance of normalization algorithms.

Concentration 20% 25% 30% 35% 40% 45% 50% GMN SBN
30 pg/ul 0.073 0.073 0.075 0.075 0.075 0.075 0.076 0.257 0.181
150 pg/ul 0.080 0.080 0.079 0.079 0.079 0.078 0.079 0.213 0.232
300 pg/ul 0.058 0.057 0.056 0.055 0.055 0.055 0.054 0.034 0.156
1500 pg/ul 0.060 0.060 0.058 0.057 0.057 0.056 0.055 0.115 0.161
3000 pg/ul 0.085 0.086 0.087 0.088 0.088 0.088 0.089 0.254 0.266
Average 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.175 0.199

RMSE is the square root of the average deviation and hence estimation bias of the true expression ratio, and spiked-in based normalization
ranked second. SBN, spiked-in based normalization; GMN, global median normalization. A 20-50% lowess normalization with different

choices of local neighborhood were used with the smoother.

majority of genes are not differentially expressed (i.e. dye
swap experiments, massive arrays, etc.), but would obviously
be of limited or no value in detecting differentially expressed
genes. Note that maximization of the correlation coefficient
is not a sensitive criterion of intra-channel bias removal
(worse and best cases shown in Fig. 4a and c, respectively,
differ by a magnitude of the control parameter p, whereas
the correlation coefficient R is only 0.25 higher in the
latter).

Implementation. All tested normalization algorithms were
developed as notebooks and packages in the Computer Algebra
system Mathematica (http://www.wri.com/). Standard vendor
supplied packages were used in the construction of the
lowess smoother, statistical analysis functions and graph
generation. Testing was done in Mathematica versions 4.0
and 4.2 for Windows 2000 Professional and XP, respectively,
running on single processor, Pentium IV machines. Since no
version-, operating system- and processor-specific libraries
were used, the scripts should be portable to any system
running Mathematica.

Results
Assessing limits of quantitative agreement. The first step in

evaluating normalization algorithms is to establish the
relation between normalized ratios obtained by any two

techniques in repeated measures i.e. replicates of the same
data subset using MA plots. If results obtained by the two
methods do not differ widely, then these two methods can be
used interchangeably or substituted one for the other in
subsequent analysis. For microarrays that generate a
multivariate measurement, the construction of an MA plot
can be performed in two steps. First, the same array is
normalized with both methods and the results of difference
vs. average expression ratio are graphed on a per array basis
(i.e. to understand dependencies on the array level).
Construction of the composite MA plot is a superposition
of graphs obtained in the first step. Fig. 5 represents the
method agreement analysis for the competing techniques of
Table I; spike-in based normalization (SBN) was considered
the ‘gold-standard’ technique for pair-wise comparisons, and
the analysis was carried out on the self-self hybridization
subset. The graphs suggest a linear shift-of-scale relationship
between normalized measurements obtained with global
median normalization (GMN) and SBN; the average difference
constant across the average log ratio range is -0.43 with a
95% agreement limit of -0.08 to -0.8 in log scale. This
translates to ratios obtained with one technique being from
57.5% to 94.6% compared to the other. The simple relationship
between the two methods confirms that both methods
essentially ‘estimate’ the same component of the (unknown)
microarray measurement error model, which is hardly
surprising given the global nature of both SBN and GMN.
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Table IV. Standard deviation of normalized log expression ratio of control genes.

Concentration 20% 25% 30% 35% 40% 45% 50% GMN SBN
30 pg/ul 0.594 0.595 0.595 0.596 0.597 0.598 0.599 0.865 0.628
150 pg/ul 0.585 0.586 0.587 0.587 0.588 0.589 0.590 0.765 0.701
300 pg/ul 0.537 0.535 0.534 0.532 0.530 0.529 0.528 0.497 0.570
1500 pg/ul 0.558 0.555 0.552 0.551 0.550 0.548 0.547 0.678 0.587
3000 pg/ul 0.596 0.599 0.602 0.602 0.604 0.605 0.607 0.852 0.719
Average 0.574 0.574 0.574 0.574 0.574 0.574 0.574 0.731 0.641

From all the methods employed, lowess is associated with the smallest standard deviation throughout the intensity range. Spiked-in and
global median normalization did much worse compared to the individual lowess realizations. SBN, spiked based normalization; GMN,
global median normalization. A 20-50% lowess normalization with different choices of local neighborhood were used with the smoother.

Table V. Coefficient of variation (CV) of normalized log expression ratio.

Concentration 20% 25% 30% 35% 40% 45% 50% GMN SBN
30 pg/ul 5.531 5.430 5.265 5.219 5.138 5.062 5.024 2.095 3.715
150 pg/ul 8.092 9.102 10.07 10.83 11.66 11.96 11.90 2974 136.3
300 pg/ul 6.091 6.676 7.055 7.237 7.386 7511 7.504 2.163 14.34
1500 pg/ul 4.466 4.668 4759 4773 4748 4.683 4731 1.559 6.009
3000 pg/ul 5.043 4925 4.799 4.760 4713 4.666 4.598 1.616 3.488
Average 5.845 6.160 6.390 6.563 6.729 6.776 6.750 2.082 32.784

The CV of the normalized log-expression ratio of control genes as a function of spiked mRNA concentration. Global median normalization
has the lowest CV, but also the highest measures of bias and variance, suggesting a linear relationship between the accuracy and precision of
the method throughout the intensity range. SBN, spiked based normalization; GMN, global median normalization. A 20-50% lowess

normalization with different choices of local neighborhood were used with the smoother.

Although the methods target the same variance component,
they can only be used interchangeably when the identification
of differentially expressed genes is based on statistical
methods and not on intensity thresholds (i.e. absence of
replicates).

No linear relation is evident between the results
normalized with lowess and SBN; the relation appears to be
non-linear, involving both a shift and change in scale. A
preliminary analysis suggested that this relationship could be
modeled with a 4th degree polynomial, and thus the limits of
agreement are established graphically. The fairly complicated
nature of this relationship is anticipated considering the
different nature of each normalization method. One measures
a global component of the underlying measurement error
model, whereas the other estimates a global and local
(intensity-dependent) component. In general, these two
methods cannot be used interchangeably, and in fact there is
no simple rule-of-thumb to predict the functional relation
between expression ratios estimated by one technique given
the results of the other.

It is not evident if changing the size of the local
neighborhood for the lowess smoother will produce results in
quantitative agreement for most intents and purposes. Fig. 5c
shows the method agreement evaluation for two different
values of the local neighborhood (i.e. 20% and 50%). The
95% limit of agreement between expression ratios is fairly

constant throughout the intensity range and relatively narrow
(-0.15 to 0.25 in log scale). This range corresponds to a 16%
change in expression ratio, which would have been observed
by switching the normalization strategy. Most criteria for
significant fold changes in gene expression would attribute a
16% variation to noise, and the two methods could therefore
be used interchangeably for such a purpose.

Bias-variance performance of normalization strategies. The
next step in the analysis of existing normalization strategies
referred to bias and variance assessment (Table I). Results
for the estimated expression ratio (i.e. normalized value),
RMSE, variance and coefficient of variation are summarized
in Tables II-V. To avoid an overly optimistic assessment of
SBN (by definition, the normalized expression ratios of the
spiked-in genes generated by this method are centered on 0),
we resorted to a holdout re-sampling strategy. Briefly, the
324 control spots present in every array were randomly
partitioned into a learning (n=216) and test (n=108) subset.
The normalizing constant was calculated from the learning
subset, but measures of accuracy and precision were
estimated from the test subset. Partitioning to learning and
test subsets and estimation of the normalization constant
were repeated 1000 times for each array, and the results for
all repetitions and arrays were used to construct Tables II-V.
The relative size of the learning and test subsets and the
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Table VI. Expression ratio entropies for raw and normalized
data.
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Table VII. Relative entropy (Kullback-Leibler divergence)
for raw and normalized data and over-fitting.

Hybridization entropy

Normalization

algorithm Self-self Non-self-self
Raw data 1.63 2.27
GMN 1.18 1.53
SBN 1.25 1.43
Lowess (50%) 1.04 1.09
Lowess (45%) 1.04 1.09
Lowess (40%) 1.04 1.09
Lowess (35%) 1.04 1.09
Lowess (30%) 1.04 1.08
Lowess (25%) 1.03 1.08
Lowess (20%) 1.03 1.08
ChannelFlip (p=0. 05) 0.61 0.66
ChannelFlip (p=0.02) 0.26 0.27
ChannelFlip (p=0.01) 0.13 0.15

Entropies of expression ratio distributions for raw data are
considerably higher compared to normalized data. Normalization
always resulted in a greater reduction of the self-self hybridization
expression ratio entropy, compared to the non-self-self subset.
The greatest reduction is seen with the over-fitting algorithm
ChannelFlip, as expected. Regarding lowess, there was no obvious
effect of the control parameter (size of neighborhood) on the entropies
of the two subsets. To calculate the entropies, the expression ratio
scale was partitioned into bins with a 0.5 length in the interval -5
to 5; two additional bins for values <-5 and >5 were also utilized.

number of repetitions were based on calculations of the
expected asymptotic bootstrap error for the first and second
moments of the empirical distribution of generated samples.
For the rest of the normalization methods, which do not use
the spiked-in subset to estimate the normalizing functional
no re-sampling strategy was employed (Table I).

Tabulated results demonstrate that the methods are
successful to a variable degree in estimating the true expression
ratio. Performance is substantially better for the lowess
family of normalization methods, followed by spiked-in
based normalization (SBN) (mean expression ratio of -0.100
vs. 0.109, true log-expression ratio of 0; Table II). On
average, global median normalization (GMN) is associated
with the largest bias (estimated mean expression rate of
0.385) in accordance with previous findings (8,30). RMSE
metrics of bias confirm the superiority of lowess to the other
two methods (Table III); compared to GMN and SBN, it
manifests an RMSE that is 2.4 and 2.8 times lower,
respectively. It is evident from the data that all currently
available methods are characterized by substantial variability
at the experimental level (i.e. taking into account all
hybridizations). The overall experimental standard deviation
(calculated from spiked-in genes present in all arrays) is 4-5
times the size of the mean expression ratio even for lowess-
normalized arrays (Table V). Turning our attention to the
various realizations of lowess, we find that the choice of
control parameter (i.e. size of local neighborhood used in the

Normalization algorithm Relative entropy

Raw data 0.3185
GMN 0.0545
SBN 0.1384
Lowess (50%) 0.0043
Lowess (45%) 0.0041
Lowess (40%) 0.0041
Lowess (35%) 0.0041
Lowess (30%) 0.0042
Lowess (25%) 0.0042
Lowess (20%) 0.0044
ChannelFlip (p=0.05) 0.0175
ChannelFlip (p=0.02) 0.0074
ChannelFlip (p=0.01) 0.0036

The relative entropy of the expression ratio of self-self vs. non-self-
self hybridizations was calculated for raw and normalized data. The
distance is higher for raw data, and decreases with normalization.
The greatest reduction is seen with the over-fitting algorithm
ChannelFlip as expected, whereas a spiked-based normalization
(SBN) strategy in the ‘real-world” normalization strategies was
associated with lesser reduction in the divergence. To calculate the
entropies, the expression ratio scale was partitioned into bins with a
0.5 length in the interval -5 to 5; two additional bins for values <-5
and >5 were also utilized.

local fitting) does not have a large impact on the performance
of the algorithm in terms of bias and variance. The average
bias varies from -0.102 to -0.099 as the size of the neighbor-
hood is increased from 20% to 50% (Table II). The average
RMSE, standard deviation and coefficient of variation are
essentially the same for all realizations of lowess (Tables III-
V). These findings essentially corroborate the method
agreement analysis of Fig. 3, which pointed out that the
actual size of the neighborhood will have little or no impact
on subsequent steps of analysis for the specific dataset. It
must be noted that the constant coefficient of variation of
global median normalization (Table V) should be interpreted
with caution in light of the low accuracy and precision of the
method, which decrease proportionally throughout the
mRNA concentration range.

Over-fitting quantification. To quantify the over-normalization
potential of existing strategies, we examined theoretic
measures (entropy and relative entropy) of the log-ratio
distributions before and after normalization. Tables VI and
VII summarize the effects of the various algorithms on the
entropies and relative entropies of the data subsets measured
in bits. To calculate the respective entropies, the expression
ratio values (-5, 5) were partitioned into groups (bins), each
with a length of 0.5 (log-expression scale). For the remaining
values belonging to the range (-inf, -5) and (5, inf), two
additional bins were provided. In each group, according to
the range of values it possessed, the respective expression
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Normalization algorithms

.

Assessment of method agreement

4

Evaluation of bias and variance

4

Assessment of over-normalization potential

Figure 6. Summary of operational criteria for normalization algorithm
comparison. The figure depicts a suggestive flow diagram for comparison
among normalization strategies, starting from an initial classification of
algorithms using quantitative method comparison criteria. Evaluation of
normalization algorithms for a given dataset is best accomplished by the
utilization of repeated bias and variance (or accuracy and precision)
measurements for typical microarray datasets. Subsequently, theoretic
measures can be applied to evaluate algorithms in terms of over-fitting. The
algorithm that combines the best overall performance in terms of accuracy and
precision and the least over-fitting is optimal for the task at hand.

ratios were assigned; according to the number of values
falling within the range of the bin, its relative frequency was
calculated to serve as a measure of probability of the group.
These values were used for the calculation of both the entropies
and relative entropies as described in the relevant paragraph. It
is evident that unnormalized data distributions are characterized
by the largest entropy measures, consistent with the highly
variable log-expression ratios. The self-self hybridization
subset has a lower entropy (1.63 vs. 2.27 or 0.64 bits less)
compared to the non-self-self subset (Table VI); the latter
consists of a number of hybridizations in different physiological
states, and hence the excess entropy is a semi-quantitative
measure of the magnitude of biological compared to technical
variability. The non-zero value of 0.3185 bits for the relative
entropy functional confirms the distance between the two
distributions in probability distribution (Table VII).
Normalization, which reduces variability, is associated with
entropy reduction of both self-self and non-self-self
hybridization subsets (Tables VI and VII; rows 2-12)
irrespective of the specific algorithm employed, even though
the value of the observed reduction varied considerably among
algorithms.

For the dataset employed, the greatest entropy reduction
is effected by the lowess group of algorithms, an effect that
appears not to depend on the specific value of the control
parameter (i.e. size of local neighborhood) used in the
smoother or specific subset (self-self vs. non-self-self).
Application of the lowess will result in the reduction of
entropies of the expression ratio to roughly 1 bit (Table VI),
whereas the GMN algorithm (the most commonly used
method in the reporting of microarray research findings)
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reduces variability to a smaller extent in accordance with
reported findings (13). SBN performance was intermediate
between GMN and the various realizations of lowess and
resulted in entropies of 1.25 and 1.43 for the two subsets. The
over-normalizing ChannelFlip resulted in an impressive
entropy loss, an effect monotonically decreasing with the value
of the control parameter. The limiting case (p=0) would lead
to degenerate expression distributions consisting of a single
point, yielding expected entropy (and relative entropy) metrics
of 0.

After normalization, the less variable self-self hybridization
subset still exhibits lower entropy metrics compared to the
non self-self subset, but the divergence between the two
different subsets is reduced to a variable degree for the
various algorithms. Of the competing strategies in Table I,
lowess exhibits the greatest reduction in relative entropy
(=0.04 bits; Table VII, rows 4-10). This reduction is of the
same magnitude as that imposed by the ChannelFlip algorithm,
a case-study of an over-normalization method. Even GMN
is not devoid of this ‘variance smoothing’ effect, although
it is of less magnitude; of the methods employed, spiked-in
based normalization best preserved the KL divergence, and
hence has the least ‘over-normalization’ potential for the
dataset employed.

Discussion

Microarray expression analysis offers an opportunity to
generate functional data on a genome-wide scale and should
consequently provide much needed data for the biological
interpretation of genes and their functions. Applications of
microarray technology to oncology have attempted to
identify molecular signatures that affect patient outcomes for
a variety of solid tumors, e.g. breast (33-36), colon (37,38),
hepatocellular (39-41), prostate (42-46), ovarian (22,47 ,48)
and gastric (49-51) cancer and hematologic malignancies,
such as ALL and lymphomas (22,52-54). Potential applications
of microarray expression profiling in oncology include the
identification of signal transduction and transcription factor
pathways involved in oncogenesis, optimization of treatment
for individual patients, prognostication in individual cases
and novel solution to diagnostic problems. Many investigators
have used microarray technology to dissect transcriptional
profiles that correlate with well-defined features of disease,
such as cytogenetic profiles, histological subtypes or
prognostically defined patient cohorts. An important, and one
of the first, microarray applications in oncology has been the
development of new therapeutic agents; in this context, the
deployment of microarray-based programs can have a
significant impact on all major steps inherent in the develop-
ment of pharmaceuticals, including but not limited to new
target identification, elucidation of the mechanism of action
and the establishment of in vitro and animal models (55-57).
The power of microarray analysis lies in its capability to
simultaneously distinguish and quantify thousands to tens-of-
thousands array elements (genes). In the near future, analysis
of the complete human transcriptome will likely be possible.
The capability for meaningful analysis is predicated on the
success of normalization procedures to transform raw
expression data into inferences about individual genes or
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Table VIII. Ranking of normalization methods tested on the specific dataset according to their performance with respect to the
criteria proposed in this study.

Normalization Average log expression ratio Bias (RMSE) Variance Relative entropy Total
GMN 3 3 3 2 3
SBN 2b 2 2 1 1
Lowess® 1 1 1 3 2

Summarizing view of the ranking of the normalization methods according to the results presented in Tables II-IV and VII. The ranking in
the last column presents the ranking of algorithms according to the combination of optimal criterion associated with the least over-
normalization potential, smaller bias (greater accuracy) and variance (greater precision). *As the choice of control parameter (i.e. size of
local neighborhood used in the local fitting) does not have a large impact on the performance of the lowess algorithm in terms of bias and
variance, we consider its various realizations as instances of the same method. Therefore, lowess is always ranked according to its best
performance. "Performance of the SBN method was only marginally inferior to that of lowess, yielding estimates of nearly the same range of

values.

groups thereof. Despite the importance of normalization,
there are no consensus adjustment procedures, thus leaving
the microarray experimentalist to ponder the practical
repercussions of selecting one normalization method-algorithm
over the other. He or she may wonder whether the results
generated from a particular form of analysis are sensitive to
the normalization step employed and, if so, the quantitative
nature of this dependency. Hence, there is a need for a
framework or procedure to aid in the comparative evaluation
of normalization procedures, which was the imperative for
the present study. The proposed framework is operationally
definite (and hence verifiable) and could be used to provide a
checklist for the researcher who has read the relevant
literature and must choose an algorithm to use for his or her
dataset. A stepwise approach (Fig. 6) is advocated. First,
establish the limits of agreement among the methods
employed (Fig. 5), and subsequently calculate measures of
accuracy and precision based on two internal validation
datasets using spiked-in controls and self-self hybridizations
(Tables II-V). Algorithms found to have the smallest
bias/variance are assessed in terms of over-normalization
potential (i.e. excessive entropy reduction in self-self vs. non-
self-self hybridization subsets) by comparing their performance
to that of an over-normalization algorithm such as ChannelFlip
(Tables VI and VII). The algorithm associated with the smallest
over-normalization potential, smaller bias (greater accuracy)
and variance (greater precision) is optimal for the dataset at
hand. The combination of these criteria with this hierarchy
provides a framework for the assessment of the overall
performance of normalization algorithms. Table VIII presents
a summarized ranking of the tested normalization methods,
both for each of the proposed criteria and their overall
performance.

Our tri-partite approach finds theoretical justification in
three different research areas, namely the fields of quantitative
method comparison, regression-calibration and information
theory. Application of existing mathematical and graphical
tools from these three areas requires the inclusion of internal
validation datasets (i.e. repeated measures in statistical
parlance), such as self-self hybridizations, spiked-in controls
and reference sample designs, which are becoming
increasingly common (58.,59).

The use of the tri-partite framework is illustrated in a
specially designed microarray dataset, normalized with three
different methods that together account for the majority of
published experimental microarray work. The first step, i.e.
method agreement, unsurprisingly revealed that the spiked-in
based normalization (SBN) is related to global-median
normalization, namely that the addition of a constant in log-
space defines a transformation from one method to the other.
However, this is a qualitative effect since results obtained
by the two techniques cannot be used interchangeably for
subsequent analysis (i.e. assessment of significant fold
change), whereas lowess normalization is non-linearly related
to any method. An interesting finding was the insensitivity of
lowess to the specific value of the control parameter. Although
we cannot rule out a dataset-specific effect (the common
reference sample used in this study precluded the observation
of widely varying expression ratios), it is noteworthy that
other researchers have made a similar observation (30,60). A
large number of such spots consisting of <1% of all spots
present on the array surface, and an explicit concentration-
dependent relation among spiked-in controls, a dense sampling
of technical variability factors including spatial effects, was
made possible; hence, the estimation of the normalizing
constant is not only feasible, but also gives normalized ratios
with a smaller bias and variance than what would have been
obtained otherwise. Information reduction metrics reveal that
the performance of lowess comes at a price: the relative
entropy of expression ratio distributions of the self-self and
non-self-self experiments is of the same magnitude as that
effected by a devised over-normalization method (ChannelFlip).
In other words, lowess has the potential to reduce the biological
variability component, and thus complicate forms of analysis
that depend on variability measures (i.e. variance ratio
comparisons).

Assessing the impact of different values of the control
parameter of lowess is best done by method agreement (i.e.
MA) plots and theoretic measures between the different
realizations of lowess. Such plots are also of value when
contemplating the use of other non-parametric normalization
strategies (5,6,8,11,13,22,61,62). The multivariate nature of
microarray measurements, and the complicated assumptions
of statistical models in which these methods rely, render the
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comparative evaluation of these methods, in principle, very
difficult if not impossible.

The multi-step nature of microarray technology imparts a
stochastic character to the quantitative behavior of the
measurement process, which coupled to the inherent
stochastisticity of the biological systems interrogated, call for
a case-based approach to comparative evaluation of microarray
normalization strategies using dataset-specific features. In
many situations, the researcher will find that there is no single
best normalization algorithm for all possible experiments;
rather, there are classes of equivalent normalization strategies,
each taking advantage of different characteristics of the dataset
in which they are deployed. In fact, recent gene expression
profiling research programs in malignant mesothelioma used
a combination of normalization strategies to identify and
experimentally validate differentially regulated control genes
(35). If no ‘one size fits all’ normalization algorithm exists,
then the experimentalist must select the ‘best’ algorithm for
the dataset at hand by evaluating alternatives based on their
strength/weakness profile. We feel that the selection process
is greatly facilitated by the tri-partite process (Fig. 6) proposed
in this study, since it relies on simple graphical/statistical
measures based on a sound theoretical background.
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