
Abstract. It has been reported that granulocyte-colony
stimulating factor (G-CSF) and granulocyte-macrophage-
colony stimulating factor (GM-CSF) can mobilize endothelial
progenitor cells (EPCs) in bone marrow cells (BMCs) into
peripheral blood (PB) in vivo. Previously, we also reported
that macrophage-colony stimulating factor (M-CSF) can
mobilize EPCs into PB, which results in the rapid recovery of
blood flow in induced-ischemia limbs by augmenting the
number of intramuscular capillaries in vivo. In the present
study, we demonstrate that M-CSF and/or G-CSF can increase
EPCs from lineage (CD3, B220, Gr-1, Mac-1, CD11c, Ter119,
NK1.1 or CD31)-negative BMCs in vitro. Lineage-negative
BMCs were cultured with or without M-CSF and/or G-CSF.
Three days after culture with M-CSF and/or G-CSF, the
number of Flk-1+/CD45-, Sca-1+/CD45-, CD31+/CD45- or
CD146+/CD45- cells increased in comparison with no cyto-
kines. When the cultured BMCs with or without G-CSF
and/or M-CSF were intravenously injected into ischemia-
induced hindlimbs of mice, the number of intramuscular
capillaries in the ischemia-induced legs increased; BMCs
cultured with G-CSF and/or M-CSF were more effective than
those of cytokine non-treated BMCs. These results suggest
that M-CSF and/or G-CSF can induce the differentiation of
BMCs into EPCs, even in vitro. 

Introduction

It has been reported that BMCs can differentiate into
endothelial cells, and EPCs are present in the bone marrow
(BM) and PB of animals and humans (1-5). Kalka et al

reported that human peripheral blood mononuclear cell
(PBMNC)-derived EPCs rescued induced-ischemia legs of
nude mice from necrosis (4). Takeishi-Yuyama et al reported
that an injection of autologous BM mononuclear cells (BM-
MNCs) into the ischemic muscles of patients with arterio-
sclerosis induced the recovery of blood flow in their ischemic
legs (5). Thus, BMCs and EPCs in PB are clinically used for
the treatment of ischemic diseases of the limbs.

We previously reported that G-CSF and/or M-CSF can
mobilize EPCs from BM, and the mobilized EPCs migrate to
induced-ischemia muscles and differentiate into endothelial
cells in blood vessels, resulting in the augmentation of blood
flow in muscle (6). 

G-SCF is known to accelerate the differentiation of bone
marrow hematopoietic stem cells into granulocytes, and is
clinically used for patients after chemotherapy and bone
marrow transplantation (BMT) and also for patients with
aplastic anemia (7,8). In contrast, M-CSF is known to stimulate
the differentiation of hematopoietic stem cells into monocyte-
macrophage lineage cells and augment the functions of
monocyte-macrophage lineage cells (9,10). However, several
side effects of these cytokines have been reported: in G-CSF,
thrombocytopenia and the exacerbation of inflammation; and
in M-CSF, shock, fever and general fatigue (7). Therefore, if
we can utilize EPCs for the treatment of ischemic diseases
after their expansion in vitro, the side effects of the cytokines
could be reduced. 

In this study, we show that G-CSF and/or M-CSF can
augment the number of EPCs from lineage (Lin)-negative
BMCs in vitro, and these EPCs can differentiate into
endothelial cells in vivo, followed by the augmentation of
blood flow in the ischemia-induced leg.

Materials and methods

Animals. C57BL/6 (B6, H-2b) mice were purchased from
Japan SLC (Hamamatsu, Japan). B6 mice carrying the eGFP
transgene (eGFP B6 mice) were kindly donated by Dr Okabe
(Osaka University, Osaka, Japan). All mice were maintained
under specific pathogen-free conditions in our animal facility
until use. All mice were used at 8-12 weeks of age for this
experiment.

ONCOLOGY REPORTS  15:  1523-1527,  2006

G-CSF and/or M-CSF accelerate differentiation of bone marrow
cells into endothelial progenitor cells in vitro

YUMING ZHANG1,4,  YASUSHI ADACHI12,3,  MASAYOSHI IWASAKI1,  KEIZO MINAMINO1,

YASUHIRO SUZUKI1,  KEIJI NAKANO1,  YASUSHI KOIKE1,  HIROMI MUKAIDE1,

AKIO SHIGEMATSU1,  NAOKO KIRIYAMA1,  CHUNFU LI4 and SUSUMU IKEHARA1,2,3

1First Department of Pathology, 2Regeneration Research Center for Intractable Diseases, 3Center for Cancer Therapy,

Kansai Medical University, Moriguchi, Japan;  4Department of Pediatrics, Nanfang Hospital, Guangzhou, China

Received January 10, 2006;  Accepted February 27, 2006

_________________________________________

Correspondence to: Dr Susumu Ikehara, First Department of
Pathology, Kansai Medical University, 10-15 Fumizono-cho,
Moriguchi City 570-8506, Japan
E-mail: ikehara@takii.kmu.ac.jp

Key words: neovascularization, granulocyte-colony stimulating
factor, macrophage-colony stimulating factor, endothelial progenitor
cell

1523-1527  4/5/06  11:26  Page 1523



Antibodies. Biotin-conjugated rat anti-mouse monoclonal
antibodies (Abs) against CD3, B220, Gr-1, CD11b, Ter119,
CD31, NK1.1 and CD11c were purchased from PharMingen
(San Diego, CA, USA). Streptavidin-conjugated magnetic
beads (Dynabeads M-280 streptavidin) were from Dynal
(Oslo, Norway). Phycoerythrin (PE)-coupled anti-CD31,
anti-Flk1 and Sca-1 Abs were also from PharMingen, and PE
coupled anti-endothelial cell marker (CD146) Ab and Tricolor
(TC)-labeled anti-CD45 Ab were from Chemicon International
(Temecula, CA, USA). 

Cell preparation. BMCs were collected from the tibias and
femurs of B6 or eGFP B6 mice and then rinsed and suspended
in phosphate-buffered saline (PBS) containing 2% heat-
inactivated fetal calf serum (FCS) (PBS-FCS). After centri-
fugation, the cells were incubated with a mixture of biotin-
coupled mAbs against CD3, B220, TER119, CD11c, CD11b,
CD31, Gr-1 and NK1.1 for 30 min on ice, then washed twice
with PBS-FCS, followed by incubation with streptavidin-
conjugated magnetic-beads (Dynabeads) to negatively enrich
the Lin-BMCs. These cells were stained with PE-Cy5-labeled
avidin (Dako, Glostrup, Denmark) to detect the residual
lineage cells, and sorted using an Epics Altra™ cell sorter
(Beckman-Coulter, Fullerton, CA, USA), to purify Lin-BMCs.
These cells were cultured with or without M-CSF and/or
G-CSF. 

Culture of Lin-cells. The sorted cells were equally divided
into 4 groups and cultured in a Biocoat endothelial cell
growth environment (BD Biosciences, San Diego, CA, USA)

on a 30-mm collagen type I-coated dish (BD Biosciences)
supplemented with or without M-CSF (30 ng/ml) and/or
G-CSF (30 ng/ml). The four groups were as follows: i) culture
without cytokine; ii) culture with G-CSF; iii) culture with
M-CSF; and iv) culture with G-CSF and M-CSF. The
cultured cells were harvested after 3-day culture, then stained
with the indicated antibodies, and analyzed with a BD LSR
(BD Biosciences).

Preparation of hindlimb ischemia. On day 0, unilateral hind-
limb ischemia was induced by resecting the right femoral
arteries and veins of B6 mice, and the mice were then injected
with cultured Lin-BMCs from eGFP B6 mice. Three days
after surgery, the mice were sacrificed to study neovas-
cularization. The skeletal muscles (bilateral gastrocnemius
muscle) were isolated, embedded in OCT compound (Miles
Scientific, Elkhardt, IN), and snap-frozen in liquid nitrogen.

Histological analyses. Histological analyses were performed
as previously described (11,12). Briefly, 2-μm sections of
frozen muscle were stained with PE-labeled anti-CD31 Ab
(Caltag, Burlingame, CA) to detect blood vessels. They were
then observed using a confocal laser microscope (Olympus,
Tokyo, Japan).

Laser Doppler perfusion image. The hindlimbs of mice were
shaved using a razor. The mice were anesthetized with
160 mg/kg pentobarbital, then fixed supine on a cork plate.
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Figure 1. G-CSF and M-CSF augment the number of EPCs. Purified Lin-
bone marrow cells (BMCs) were cultured with or without G-CSF (30 ng/ml)
and/or M-CSF (30 ng/ml) for 3 days. The cells were harvested, counted, and
stained with Cy5.5-labeled anti-CD45 and PE-labeled anti-CD146, anti-Sca-1,
anti-CD31 or anti-Flk-1 Abs. The number of CD45-/Sac-1+ cells, CD45-/Flk-1+

cells and CD45-/CD31+ cells was calculated with harvested cell number and
percentages of indicated cells. The percentages of indicated cells to the
original Lin- cells were calculated with cell number of the indicated cells
and original cell numbers, using the following equation: (cell number of the
indicated cells) x100/(original cell number). F, freshly isolated Lin-BMCs;
G, Lin-BMCs cultured with G-CSF; M, Lin-BMCs cultured with M-CSF;
and G+M, Lin-BMCs cultured with G-CSF plus M-CSF.

Figure 2. Injection of Lin-BMCs cultured with G-CSF and/or M-CSF is
effective in improving the blood flow in ischemia-induced limbs. Purified
Lin-bone marrow cells (BMCs) were cultured with or without G-CSF
(30 ng/ml) and/or M-CSF (30 ng/ml) for 2 days, and injected into mice in
which hindlimb-ischemia had been induced. Three days after the injection,
the blood flow in the legs was examined by a laser Doppler perfusion image
analyzer.
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We next measured the blood flow in the limbs using a laser
Doppler perfusion image analyzer (Moor Instrument, Millwey,
Devon, UK) as described previously (13). 

Results

G-CSF and/or M-CSF augment the number of EPCs in vitro.
We previously demonstrated that G-CSF and/or M-CSF can
mobilize EPC into the PB from the BM, followed by the
augmentation of neovascularization in ischemia-induced
limbs in vivo (6). This encouraged us to analyze the effects of
G-CSF and/or M-CSF on the augmentation of the number of
EPCs in vitro. We cultured lineage-negative BMCs in a
Biocoat endothelial cell growth environment with or without
G-CSF and/or M-CSF. After 3-day culture, the cultured cells
were analyzed for the markers of EPCs or endothelial cells.
As shown in Fig. 1, either G-CSF or M-CSF augments the
number of CD45-/CD146+ cells, CD45-/CD31+ cells, CD45-/
Sca-1+ cells and CD45-/Flk-1+ cells. Moreover, G-CSF plus
M-CSF have synergistic effects on the increase in number of
these cells. 

EPCs after culture with G-CSF and/or M-CSF can induce
rapid recovery of blood flow in ischemia-induced legs. We
examined whether the EPCs induced from Lin-BMCs can
really differentiate into endothelial cells in blood vessels and
work functionally. Two-day cultured Lin-BMCs were injected
into the vein of ischemia-induced hindlimbs of mice. Three
days after injection, the blood flow of the ischemia-induced
legs was examined using a laser Doppler perfusion image
analyzer. As shown in Fig. 2, the mice that had been injected
with the BMCs cultured with G-CSF and/or M-CSF showed
a better recovery of blood flow than the mice injected with
BMCs cultured without cytokines. We also examined the
number of blood vessels in bilateral gastrocnemius muscles,
as shown in Figs. 3 and 4. In the ischemia-induced muscle of
mice injected with BMCs cultured with G-CSF and/or M-CSF,
the number of blood vessels increased in comparison with
that of mice injected with BMCs cultured without cytokines.
Moreover, the cultured BMC-derived endothelial cells were
detected in the ischemia-induced muscle in mice injected with
cultured BMCs. The number of blood vessels induced from
injected BMCs in the ischemia-induced muscles increased
more in mice injected with BMCs cultured with G-CSF and/or
M-CSF than in mice injected with BMCs cultured without
G-CSF and M-CSF. However, there was no significant differ-
ence in the number of blood vessels between the mice injected
with BMCs cultured with G-CSF, M-CSF and G-CSF plus
M-CSF. 
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Figure 3. Injection of Lin-BMCs cultured with G-CSF and/or M-CSF
augments the number of blood vessels in ischemia-induced limbs. Purified
Lin-bone marrow cells (BMCs) were cultured with or without G-CSF
(30 ng/ml) and/or M-CSF (30 ng/ml) for 2 days and injected into the mice
in which hindlimb ischemia had been induced. Three days after injection,
the mice were sacrificed, and muscles from induced-ischemia legs and
contralateral control legs were obtained. Sections from the muscles were
stained with PE-labeled anti-CD31 Ab and observed using a confocal
microscopy.

Figure 4. Injection of Lin-BMCs cultured with G-CSF and/or M-CSF can
differentiate into endothelial cells in the blood vessels. Purified Lin-BMCs
were cultured with or without G-CSF (30 ng/ml) and/or M-CSF (30 ng/ml)
for 2 days and injected into the mice in which hindlimb-ischemia had been
induced. Three days after injection, the mice were sacrificed, and muscles
from induced-ischemia legs and contralateral control legs were obtained.
Sections from the muscles were stained with PE-labeled anti-CD31 Ab and
observed using a confocal microscopy. The number of blood vessels and
eGFP+blood vessels was then counted. The means and standard deviations
of vessel numbers in one field are shown.
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Discussion

In the present study, we demonstrated that G-CSF and/or
M-CSF can accelerate the differentiation of BMCs into EPCs
in vitro. G-CSF has been reported to be able to mobilize not
only hematopoietic stem cells (HSCs), but also EPCs from
the BM, and that EPCs contribute to the angiogenesis of
tumors (14). M-CSF has been reported to be crucial for the
differentiation of hematopoietic stem cells into monocytes
and macrophages (15,16). At present, these cytokines are
clinically used to enhance hematopoiesis. G-CSF is used for:
i) the mobilization of HSCs from donor BM into PB for the
purpose of peripheral blood stem cell transplantation (PBSCT)
(17-19); ii) the augmentation of WBC counts of patients
suffering from severe infection and aplastic anemia (20-23);
and iii) the acceleration of hematopoietic recovery after BMT
and chemotherapy (24,25). In contrast, M-CSF is clinically
used not only for the acceleration of hematopoietic recovery
after BMT but also for the augmentation of anti-fungal response
after BMT (26,27). Therefore, these cytokines can be expected
to be safely used even after in vitro expansion.

We previously reported that M-CSF can mobilize EPCs
and accelerate the neovascularization of ischemic limbs
in vivo (6). Even in humans, it has been reported that G-CSF
has some effects on neovascularization (28). Therefore, it is
expected that the injection of these cytokines would clinically
induce neovascularization of the ischemic tissues and organs.
There are several reports indicating that EPCs are induced
from embryonal stem (ES) cells and BMCs using several
cytokines in vitro. Nishikawa et al have shown that ES cells
can differentiate into both hematopoietic cells and endo-
thelial cells (29). Kalka et al have also shown that BMCs can
differentiate into EPCs, which can rescue the ischemia-induced
legs from necrosis (4). Therefore, if we can expand EPCs
from BMCs and transplant the EPCs into the ischemic organs,
we can reduce the various side effects of these cytokines.

In this study, we have shown that G-CSF and/or M-CSF
can augment the number of EPCs from BMCs in vitro. These
results suggest the possibility of using in vitro-expanded
EPCs by G-CSF and/or M-CSF in a clinical setting.
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