
Abstract. Carcinogenesis is a multi-step process resulting from
the accumulation of genetic mutations and subsequently leading
to dysregulated genes, but the number and identity of differen-
tially expressed genes in cutaneous squamous cell carcinoma
(SCC) is unknown at present. In order to identify dys-
regulated genes, we examined the relative mRNA expression
present in cutaneous SCC and its precursor lesion actinic
keratosis (AK) by comparison to normal skin. Snap frozen
biopsies from 20 specimens of normal skin, 10 AK, and 10
cutaneous SCC were examined. Total-RNA was extracted,
reversely transcribed, and 14 genes were investigated using
gene-specific intron-flanking primers and quantitative real-time
reverse transcription PCR. Specificity was confirmed by
sequencing of the PCR amplicons. Ten of 14 genes were
significantly dysregulated in AK and/or cutaneous SCC by
comparison to normal skin. The genes CNN2, COX4I1,
COX5B, COX7C, CRLF3, CTSC, NDRG1, and LMNA showed
increased expression in skin cancer (p<0.02), while RPL15 and
LGTN were down-regulated (p<0.03). The genes differentially
expressed during skin carcinogenesis may prove useful in
order to understand the origin and progression of cutaneous
SCC and for diagnostic approaches.

Introduction

Non-melanoma skin cancer (NMSC) is the most common
tumor among populations of European origin. Actinic keratosis
(AK) is an early stage of cutaneous squamous cell carcinoma
(SCC), and approximately 10% of cases progress to SCC (1-3).
Several studies suggest cumulative lifetime exposure to ultra-
violet (UV-)radiation of the sun as the primary risk factor for
NMSC (4,5). The mechanism of UV-induced carcinogenesis
includes the mutation of the p53 tumor suppressor gene (6),
but the detailed molecular pathways remain to be determined.

The step-wise accumulation of mutations and hence dys-
regulation of genes are key factors for neoplastic development
(7). The identification of distinct genetic aberrations, which
may provide useful information on tumor classification,
prognosis of etiopathology and response to therapy is, therefore,
of prime importance in cancer research (8). Approximately
700 genes (1-1.5% of 30,000-50,000 different expressed genes
per cell) showed altered expression in breast cancer, and
comparable amounts of genes were affected in ovarian and
colon tumors (9,10). However, the number and identity of
genes that are differentially expressed in NMSC are largely
unknown at present.

In NMSC cell lines, genes from at least three functional
categories are dysregulated by comparison to cells from normal
skin (11), including apoptosis genes, DNA repair genes and
extracellular matrix proteases (12-14). Genes that are involved
in extracellular matrix production and apoptosis are already
altered in pre-neoplastic cells, while those involved in DNA
repair or epidermal growth are dysregulated in later stages of
tumorigenesis (15).

Despite the limited explanatory power of cancerous cell-
line investigation (16,17), studies on dysregulated genes investi-
gating NMSC biopsies are scare. Dooley and colleagues (18)
were the first to describe dysregulated genes for cutaneous
SCC in both in vitro and in vivo. In a cDNA microarray, 5
differentially expressed genes were frequently found in cell
lines and human tissues, namely FN1, ANAX5, G3P2, ZNF254,
and HAPIP.

In a previous approach, we have examined the mRNA
expression of genes from skin cancer biopsies (comprising
normal skin, AK, and SCC) by cDNA microarray analyses
and revealed up- or down-regulated genes, respectively (un-
published data). In this study, we investigated the expression
of 14 selected genes involved in different functional categories
(e.g., adhesion, communication, differentiation, metabolism,
proliferation, respiration) present in a larger cohort using
quantitative real-time reverse transcription PCR (qRT-PCR).
Ten of these genes were significantly dysregulated in normal
skin by comparison to both AK and cutaneous SCC, and
LMNA and NDGR1, as well as genes of the respiratory chain
are known to play essential parts in various types of cancer.

Materials and methods

Patients. Forty punch biopsies (diameter 4 mm) were collected
at the Charité, University Hospital (Berlin, Germany) from
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three diagnostic stages of tumorigenesis comprising 20 speci-
mens of normal skin (49-85 years, median 70 years), 10 AK
(55-77 years, median 61 years), and 10 SCC (46-94 years,
median 63 years). Half of the tissue was immersed in liquid
nitrogen within 2 min of resection and stored at -70˚C. The
other half of each biopsy (excluding normal skin specimens)
was fixed in formalin, embedded in paraffin, and sections were
stained with hematoxylin and eosin for histology. The study
was approved by the local ethics committee at the Charité,
University Hospital, Berlin, Germany (no. Si. 248).

RNA extraction. Total-RNA was isolated using a modified
RNeasy Micro Kit protocol (Qiagen, Hilden, Germany). The
modification included the homogenisation of the frozen tissue
in 300 μl of buffer RLT (Qiagen) with 20 ng glycogen (Roche,
Mannheim, Germany) using a rotor-stator homogeniser Ultra
Turrax T25 (Janke & Kunkel, Staufen, Germany). The homo-
genised tissue was digested using 0.1 mg proteinase K (Roth,
Karlsruhe, Germany) at 55˚C for 15 min. Subsequently, the
sample was digested with DNase I (Invitrogen, Karlsruhe,
Germany). Quantification of total-RNA was performed by
RiboGreen RNA Quantitation Kit (Molecular Probes, Leiden,
The Netherlands) according to the manufacturer's instructions.

Quantification using real-time RT-PCR. Reverse transcription
was performed with the Superscript First-Strand Synthesis-
System for qRT-PCR (Invitrogen) using oligo-dT as described
by the manufacturer. The concentration of cDNA was quanti-
fied with OliGreen ssDNA Quantification Kit (Molecular
Probes). Gene-specific intron-flanking primers were designed
for each of the 14 genes under investigation in order to avoid
genomic DNA contamination (Table I) using the software

Primer 3 (19). The primers were synthesised by Metabion
(Planegg-Martinsried, Germany).

qRT-PCR was conducted using LightCycler technology
with calibrated standard curves (Roche) and was performed
in duplicate for each sample. For specific primers, annealing
temperature and concentration of MgCl2 were optimised
(Table I). The amplification mix (20 μl) contained 20 ng of
cDNA, 500 nM of each primer, 2 μl LightCycler FastStart
Reaction Mix SYBR Green I (Roche), 3-5 mM MgCl2, and
double-distilled water. The qRT-PCR protocol included 10 min
initial denaturation at 95˚C and 40 cycles: 10 sec at 95˚C, 5 sec
at 60˚C, 10 sec at 72˚C. Specificity of PCR products
(comprising the genes CNN2, COX4I1, COX5B, COX7CP1,
CRLF3, CTSC, DNCLI2, EMP2, JTB, LGTN, LMNA,
NDRG1, RPL15, and TARDBP) was verified by melting
curve analysis. Furthermore, PCR products were sequenced on
the ABI PRISM 310 Genetic Analyser (Applied Biosystems,
Foster City, CA, USA) using gene specific primers (Table I)
and DNA sequencing kits (Applied Biosystems). Sequence
analysis confirmed the specificity of all 14 genes under
investigation.

The relative expression levels of 14 genes were quantified
in 3 diagnostic groups of cancerous tissues, including 20 normal
skins, 10 AK and 10 SCC. Expression levels were determined
as the ratio between the gene under investigation (as the mean
of the results of 2 independent qRT-PCR experiments) and
the reference gene RPS9 in order to correct for variation in
the mRNA levels. Ratios were then normalised such that the
mean ratio of all 20 normal skin samples equaled 1.00.

Statistical analysis. For analysis of the relative expression
rates of normal skin versus AK and normal skin versus
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Table I. Primer sequences and quantitative real-time RT-PCR conditions of 14 genes.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Gene Tann MgCl2 Forward (5'-3') Reverse (5'-3') Amplicon

(˚C) (mM) (bp)
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
CNN2 55 3 AAC CGC TCC ATG CAG AAC CCC ACT CTC AAA CAG GTC GT 120
COX4I1 60 3 CTA GTT GGC AAG CGA GCA AT TCA CGC CGA TCC ATA TAA GC 104
COX5B 55 3 ACT GGG TTG GAG AGG GAG AT TCT TCC CTG GTG CCT GAA 95
COX7CP1 60 3 GCA TTT GCT ACA CCC TTC CT CAC TTC CAG AGG CTG CAC 117
CTSC 60 5 TTA CTG CAA CGA GAC AAT GAC TG AGG TGT GCT GTG TTG ACA TAC 120
CRLF3 60 4 AAA CCT GGA GGC ATC ATT GT GCG CAG ACT CTG AAC TGG TA 182
DNCLI2 60 3 CCA GTG TGC CTA GCT CCT C CTG ACT TCT TGG CTG TGC TCT 177
EMP2 55 3 ACC AAC AAC ACG AAT TGC AC GAA GAT GAA GAA GGC GAT GC 120
JTB 60 3 GTG GTC CCA CAG GAT ATG TAG A CGT TGT TCC ATC AAA GCT GA 91
LGTN 60 4 CTT GTG GCG GTC TGG AAA CA AGG GTC ATG TGC CTC ATG TCT 135
LMNA 55 3 CCG ATA AGG AAG GTC AGC AT TGC CCG AAA TAC TCT CTC AAA 236
NDRG1 60 3 GCT GAA ATG CTT CCT GGA GT CTC CAC CAT CTC AGG GTT GT 120
RPL15 60 3 GTT CTG GCC AAA CAA CCC TA CAA AGT GGG TGC ACA AGT GA 71
TARDBP 60 4 TGC TTC GGT GTC CCT GTC GGG CTC ATC GTT CTC ATC TT 100
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Tann, annealing temperature; bp, base pairs.

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
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SCC (Table II, Fig. 1) the U-test by Wilcoxon, Mann, and
Whitney was applied. A p-value of <0.05 was considered
significant.

Results

The mRNA expression levels of 14 genes have been quanti-
fied in 3 diagnostic groups of cancerous tissues, including 20

specimens from normal skin, 10 AK and 10 SCC (Table II).
Significant differential expression was observed for 10 of 14
genes. Seven genes (CNN2, COX5B, COX7C, CRLF3, CTSC,
LMNA, and NDRG1) were significantly upregulated in both
stages AK (p=0.019 through p<0.001) and cutaneous SCC
(p=0.019 through p<0.001) by comparison to normal skin
(Table II, Fig. 1). An increase of gene expression concurring
with the severity of the lesion was observed for 4 upregulated
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Figure 1. Ten genes with significant dysregulated RNA expression in AK and SCC. Quantitative real-time RT-PCR was used to investigate the expression of
10 genes in 20 normal skin (N) versus 10 actinic keratoses (AK) versus 10 squamous cell carcinoma (SCC), respectively. Gene expression was equalised to
SPR9, and the ratios were subsequently normalised to the mean value of the total normal skin samples, as described in Materials and methods. The p-values
are summarised in Table II. The relative expression rates of each gene are shown at the vertical axis. Shaded diagrams indicate upregulated genes, while
down-regulated genes have a white background. Horizontal line in box, median; box, lower and upper quantiles; horizontal line at end of whisker, 2.5 and
97.5% values; individual plots, values outside the range of the whiskers.
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Table II. List of 14 selected genes used for expression analysis in normal skin, AK and SCC.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Gene Description Function Chromosome GeneBank Change fold (median 

localisation accession AK or SCC divided by
no. median normal skin)

(p-value of N versus
AK or SCC)

AK SCC
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Adhesion
CNN2 Calponin 2 Organisation of actin cyto- 21q11.1 NM_004368 2.33 2.93

skeleton, widely distributed (p=0.011) (p=0.003)

LGTN Ligatin Receptor participating in 1q31-q32 NM_006893 0.32 0.27
intercellular adhesion and (p<0.001) (p=0.031)
specific metabolic processes
in neurons

LMNA Lamin A/C Structural organization of 1q21.2-q21.3 NM_005572 3.51 2.24
nucleus and chromatin, (p<0.001) (p=0.003)
ubiquitous distributed in
differentiated cells

Communication
CRLF3 Cytokine receptor- ATP/GTP binding, precise 17q11.2 NM_015986 1.87 2.27

like factor 3 distribution unknown (p=0.019) (p=0.008)

NDRG1 N-myc downstream Stress and hormone 8q24 NM_006096 5.87 7.07
regulated gene 1 response, cell growth and (p<0.001) (p<0.001)

differentiation in epithelial
cells

Differentiation
EMP2 Epithelial Endometrial protein 16p13.2 NM_001424 1.10 0.74

membrane necessary for blastocyst (ns) (ns)
protein 2 implantation, high

expression in eye, lung,
heart, thyroid, uterus

Metabolism
CTSC Cathepsin C Protein degrading, pro- 11q14.1-q14.3 NM_001814 5.46 6.11

enzyme activating, highly (p=0.001) (p<0.001)
expressed in lung, kidney,
placenta, immune cells

DNCLI2 Dynein, cytoplasmic, Involved in retrograde 16q22.1 NM_006141 0.86 0.96
light intermediate organelle transport, ATP/ (ns) (ns)
polypeptide 2 nucleotide binding

Proliferation
JTB Jumping Fusing with telomeric 1q21 NM_006694 0.89 1.17

translocation repeats of acceptor (ns) (ns)
break-point telomeres at jumping

translocation, ubiquitous
distribution

RPL15 Ribosomal Structural constituent of 3p24.2 NM_002948 0.70 0.86
protein L15 ribosomes, ubiquitous (p=0.005) (ns)

distribution

TARDBP TAR DNA binding Binding to bulge regions 1p36.2 NM_007375 0.90 1.50
protein of TAR RNA, activating (ns) (ns)

HIV-1 long terminal repeat
(LTR), ubiquitous
distribution
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genes, with the exception of LMNA and the 3 COX genes
exhibiting higher expression in AK than in SCC. Two genes
(LGTN and RPL15) showed a lower expression level in each
sample of both AK and SCC compared to normal skin.
Significant down-regulation from normal skin to skin cancer
was observed for LGTN in AK (p<0.001) and SCC
(p=0.031) and for RPL15 exclusively in AK (p=0.005),
respectively. RPL15 and COX4I1 were the only genes
showing significant dysregulation exclusively in AK,
whereas the other 8 genes were significantly dysregulated
both in AK and in SCC by comparison to normal skin.

The increase of significant gene expression ranged from
1.24 (AK of COX4I1) through 7.07 (SCC of NDRG1) and the
decrease from 0.70 (AK of RPL15) through 0.27 (SCC of
LGTN), respectively (Table II). The highest differences of
expression in normal skin versus AK and SCC were observed
for the up-regulated genes NDRG1 (5.87 and 7.07) and CTSC
(5.46 and 6.11) and the lowest for the down-regulated gene
RPL15 (0.70). Using qRT-PCR, 4 of 14 genes (DNCLI2,
EMP2, JTB, and TARDBP) were not significantly dys-
regulated in AK and/or SCC by comparison to normal skin.

Discussion

We investigated the mRNA expression of 14 selected genes
in specimens from normal skin, AK, and cutaneous SCC. Ten
of these genes (CNN2, COX4I1, COX5B, COX7C, CRLF3,
CTSC , LGTN , LMNA , NDRG1 , and RPL15) showed
significantly differential expression in NMSC by comparison
to normal skin. Predominantly, they are known to exhibit
primary functions within the cytoplasm or are associated with

the nucleus, a noteworthy concordance to insights in the
cellular biology of autoimmune diseases (20,21). Aberrant
expression levels were frequent already in the early cancerous
stage AK suggesting that the dysregulation of these genes are
crucial early steps in the pathogenesis of skin cancer. The genes
of the respiratory chain, lamins (LMNA), and NDRG1 were
already in previous studies considered to play important roles
in various types of cancer including skin carcinoma. However,
this is the first report of CRLF3 and RPL15 to be involved in
carcinogenesis of cutaneous SCC and that CNN2, CTCS, and
LGTN are integral parts of the malignant disease.

Altered communication of cells in their micro- and macro-
environment is essential for tumor development. NDRG1
encodes a 394-amino acid protein with a molecular mass of
43 kDa and is upregulated in response to cellular stress such
as hypoxia and DNA damage (22,23) contributing to cellular
differentiation (24-26). The gene has been frequently
associated with neoplastic developments, but its role in tumori-
genesis is controversial. NDRG1 (or its protein) is expressed
at lower levels in colon, breast and prostate cancers than in
normal tissue of human biopsies using Northern blots (27) or
based on both Western blot analysis and immunohisto-
chemistry (28). To the contrary, NDRG1 (or its protein) was
upregulated in mouse skin carcinoma as inferred from Northern
blots (24), human oral SCC using both qRT-PCR and Western
blots (26), and additionally in a variety of human cancer
biopsies, including brain, liver, lung, and renal tumors based
on immunohistochemistry (23). In our study, NDRG1 showed
the highest increase of expression in the genes under
investigation in cancer specimens by comparison to those of
normal skin. NDRG1 may thus prove useful as biomarker for
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Table II. Continued.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Gene Description Function Chromosome GeneBank Change fold (median 

localisation accession AK or SCC divided by
no. median normal skin)

(p-value of N versus
AK or SCC)

AK SCC
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Respiration
COX4I1 Cytochrome-c Catalysing electron transfer 16q22-qter NM_001861 1.24 1.20

oxidase subunit IV from reduced cytochrome c (p=0.011) (ns)
isoform 1 to oxygen, ubiquitous 

distribution

COX5B Cytochrome-c Catalysing electron transfer 2cen-q13 NM_001862 2.39 1.87
oxidase subunit Vb from reduced cytochrome c

to oxygen, ubiquitous (p<0.001) (p=0.010)
distribution

COX7C Cytochrome-c Catalysing electron transfer 5q14 NM_001867 2.43 2.39
oxidase subunit VIIc from reduced cytochrome c (p=0.006) (p=0.019)

to oxygen, ubiquitous 
distribution

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Significantly dysregulated genes that have been identified using quantitative real-time RT-PCR are indicated in bold. AK, actinic keratosis;
SCC, squamous cell carcinoma; N, normal skin; ns, not significant.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
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early stages of cutaneous SCC, and the overexpression in
dysplastic cells may reflect stress response to dysfunction of
entire cells.

Cell adhesion proteins play important roles in cell migration
and invasion, and knowledge upon their function and regulation
is therefore crucial in cancer research. LMNA encodes A-type
lamins by alternate splicing such as lamin A (664 amino acids,
74 kDa) and lamin C (572 amino acids, 65 kDa), which exhibit
important functions during various steps of post-mitotic nuclear
reassembly including cross-linking of chromatides and nuclear
lamina assembly (29). Mutations occurring in this gene lead
to diseases such as muscular dystrophy, conduction-system
disease, cardiomyopathy and partial lipodystrophy (30). A-
type lamins have been extensively studied and are considered
to interfere intensely in cell functions during tumorigenesis.
They were reduced or absent in proliferating cells of human
biopsies on the mRNA or protein level, including various types
of cancer such as leukaemia and lymphomas (31), ovarian
cancer (32) and gastrointestinal neoplasms (33). Conflicting
results on lamin expression were reported in NMSC by
immunohistochemistry showing either a lower (34,35) or a
higher expression in dysplastic cells by comparison to normal
skin (36). We observed increased mRNA expression of LMNA
in cutaneous SCC, and the highest mRNA levels were detected
in AK. This suggests an involvement of LMNA in early stages
of NMSC supporting the results of Tilli and colleagues (36).
The importance of increased LMNA expression in skin cancer
remains to be elucidated by further studies, but may indicate
that such neoplasms arise by amplified cell survival and
resistance to apoptosis rather than by hyperproliferation.

Mitochondria play essential roles in cellular energy
metabolism, free radical generation, and apoptosis, and mtDNA
is particularly susceptible to damage and oxidative stress.
Thus, alterations in respiratory activity and genetic aber-
rations of mitochondria are considered as inherent to a wide
range of cancers (37). Durham and colleagues (38) investigated
the genetic deletion spectrum of mtDNA in NMSC by
comparison to normal skin, but it remains unclear at present
if mtDNA damage has a direct impact on skin cancer.
COX7C is a 63-amino acid respiratory protein with a
molecular mass of 7 kDa and was significantly upregulated
in NMSC by comparison to normal skin in our study.
Whether its increase in cancerous tissue simply responds to
degradation of entire cells has to be elucidated in future
studies.

CNN2 encodes a 309-amino acid protein with a molecular
mass of 36 kDa and may be involved in the structural organi-
sation of actin cytoskeleton (39,40). Initially, CNN2 was
detected in various cell types of the human heart (39), but
was additionally found in osteoblasts (41) and at the cyto-
plasmic region of cell-to-cell junctions in cultured keratino-
cytes and human skin tissue (42). Furthermore, it may play
an important role in migration of endothelial cells, and the
expression is critical for proper vascular development (43).
In our study, CNN2 was upregulated both in AK and in SCC,
but its precise function during tumorigenesis is elusive at
present.

The translation of LGTN yields a 584-amino acid membrane
protein with a molecular mass of 65 kDa occuring during
embryonic development and in early differentiated stages. It

is a trafficking receptor for the attachment of phosphoglyco-
proteins within endosomes and at the cell periphery, where it
participates in metabolism and intercellular adhesion (44).
We observed a lower mRNA expression of LGTN both in
AK and in cutaneous SCC. Histologically, LGTN is largely
restricted to the cell body region of rat hippocampal neurons
with little or no dendritic and axonal expression (45), but the
correlation to human carcinogenesis of the skin remains to be
determined.

The translation of CTSC results in a lysosomal 463-amino
acid protease with a molecular mass of 200 kDa, and its main
functions are considered to be protein degradation and pro-
enzyme activation (46). Defects cause the Papillon-Lefevre
syndrome, a rare autosomal recessive disorder that is
characterised by hyperkeratotic skin lesions and early-onset
periodontitis (47,48). In our study, CTSC mRNA levels were
significantly increased in NMSC by comparison to normal
skin. The constitution of the immune system has a strong
influence on the development of NMSC (49), and this may
be reflected by the significant upregulation of CTSC in AK
and cutaneous SCC.

The present study identified 10 genes that were signifi-
cantly differentially expressed during various stages of
cutaneous SCC using qRT-PCR. Respiratory chain genes,
lamins and NDGR1 are well-known with respect to the origin
and progress of various kinds of cancer, but this is the first
report of CRLF3 and RPL15 to be involved in cutaneous
SCC and of CNN2, CTCS, and LGTN to play integral roles in
tumorigenesis. The dysregulation of genes in both AK and
SCC compared to normal skin suggest involvement in the
development of skin cancer. These genes may prove useful
for diagnostic approaches, and studies analysing their precise
function are warranted.
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