
Abstract. Sulforaphane (SFN), a naturally occurring
isothiocyanate, is an attractive agent due to its potent
anticancer effects. SFN suppresses the proliferation of various
cancer cells in vitro and in vivo. In this study, we report that
SFN inhibited the proliferation of cultured murine osteo-
sarcoma LM8 cells. Twenty micromolar SFN completely
inhibited the growth of LM8 cells and caused G2/M-phase
arrest. SFN induced the expression of p21WAF1/CIP1 protein
causing the cell cycle arrest in a dose-dependent manner. SFN
induced apoptosis which was characterized by the appearance
of cells with sub-G1 DNA content and the cleavage and acti-
vation of caspase-3. We showed that SFN induced the growth
arrest and up-regulated the expression of p21WAF1/CIP1 protein
in a p53-independent manner in human osteosarcoma MG63
cells. We found that intraperitoneal administration of SFN
(1 or 2 mg, 5 times/week) significantly inhibited the growth
of LM8 xenografts to <30% of the controls in a preclinical
animal model without causing any toxicity. In osteosarcoma
cells, our findings provide in vivo evidence for the efficacy of
SFN against the advanced growth of tumor. We showed that
SFN induces cell cycle arrest and apoptosis in osteosarcoma
cells and inhibits tumor xenograft growth. Furthermore, SFN
is a potent inducer of p21WAF1/CIP1 in osteosarcoma cells. These

results raise the possibility that SFN may be a promising
candidate for molecular-targeting chemotherapy against
osteosarcoma.

Introduction

Osteosarcoma is a high-grade malignant bone tumor that
mainly occurs in juvenile patients. Although the prognosis of
these patients have improved substantially through the
development of effective adjuvant or neoadjuvant regimens of
chemotherapy (1-4), >20% of patients still die as a result of
tumor metastasis and unresectable tumor (5-10). One of the
most serious causes of therapeutic failure is the resistance of
the tumor cells to chemotherapeutic agents (11,12). To
overcome the drug resistance, identification of novel anti-
tumor agents or chemicals and the development of new
anti-tumor therapeutic approaches are urgently required.

One of the causes of cancer is uncontrolled proliferation
due to the loss of the checkpoint control associated with the
activation of cyclin-dependent kinases (CDKs) responsible for
cell cycle progression (13). CDKs, cyclins and CDK inhibitors
(CDKIs) are key molecules that play important roles in cell
cycle progression (14). p21WAF1/CIP1 is a member of the CDKI
family and induces G1- and G2/M-phase cell cycle arrest
(15-18). p21WAF1/CIP1 induces differentiation of both normal and
transformed cells and suppresses the growth of malignant cells
in vitro and in vivo (19,20). Therefore, p21WAF1/CIP1 is an
attractive molecular target which suppresses cell growth in
malignant tumor cells and p21WAF1/CIP1-inducing agents may be
effective for the chemotherapy of poor prognostic osteo-
sarcoma.

Furthermore, cancer cells acquire alternations for
enhanced survival and become apoptosis-resistant to
anticancer therapies (21). Therefore, the induction of the cell
cycle arrest and apoptosis by chemotherapeutic agents can be
an effective approach to inhibiting uncontrolled cell
proliferation and survival in malignant tumor cells.

Sulforaphane (SFN), a naturally occurring member of the
isothiocyanate family, is produced from cruciferous vegetables,
such as broccoli (22). SFN is an effective agent in the
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chemoprevention of chemically-induced breast (23,24), colon
(25) and stomach (26) cancers in rats. In a chemotherapeutic
study, SFN drastically inhibited the growth of xenografts of
human prostate cancer by oral administration (27) and breast
cancer by intravenous injection (28). SFN suppresses the
growth of cancer cells in vitro by inhibiting cell cycle prog-
ression (28-32) and/or causing apoptosis (27,29,30) in T-cell
leukemia, colon, breast and prostate cancer cells. In addition,
it was reported that SFN induces p21WAF1/CIP1 and G1- and
G2/M-phase cell cycle arrest in human colon cancer cells. We
previously reported that SFN up-regulates DR5 expression and
the combined treatment with SFN and TRAIL-induced
apoptosis in human osteosarcoma cells (33). However, in
osteosarcoma cells, the anti-tumor effects of SFN were not
reported in vivo.

In this study, we confirmed that SFN causes cell cycle
arrest and apoptosis in vitro. Furthermore, we investigated the
anti-tumor activity of SFN against osteosarcoma cells in vivo.

Materials and methods

Reagents. Sulforaphane (SFN) was purchased from LKT (St.
Paul, MN). SFN was dissolved in DMSO. Equivalent
amounts of DMSO were used as controls. The maximum
volume (%) of DMSO in the assays was 0.1%.

Cell culture. We used a human osteosarcoma cell line (MG63)
and a murine osteosarcoma cell line (LM8), which was
established from the murine Dunn osteosarcoma cell line and
has high metastatic potential to the lungs (34). LM8 cells and
human osteosarcoma MG63 cells were cultured in Dulbecco's
modified Eagle's medium (DMEM) containing 10% fetal
bovine serum and incubated at 37˚C in a humidified
atmosphere of 5% CO2.

Cell growth study. For the cell growth study, LM8 cells and
MG63 cells were seeded at a density of 1x104 cells in a 12-well
plate. Twenty-four hours after the seeding, SFN was added at
various concentrations. From 24 to 48 h after the treatment, the
number of viable cells were counted using a trypan blue dye
exclusion test. The data are presented as the mean ± SD of at
least three independent experiments.

Analysis of cell cycle progression. Unsynchronized cells were
exposed to SFN for 24 h and harvested from culture dishes.
After washing with PBS, the cells were suspended in PBS
containing 0.1% Triton X-100, treated with RNase A and the
nuclei were stained with propidium iodide (PI). DNA content
was measured using a FACSCalibur flow cytometer with Cell
Quest software (Becton Dickinson, Franklin Lakes, NJ). For all
assays, 10,000 events were counted. The ModFit LT V2.0
software package (Verity Software, Topsham, ME) was used
to analyse the data.

Western blot analysis. A protein extraction and Western blot
analysis was performed as previously described (35), using a
rabbit polyclonal anti-p21WAF1/CIP1 antibody (1:500; Santa Cruz
Biotechnology, Santa Cruz, CA), a mouse monoclonal anti-
GAPDH (1:1000) antibody (Immunotech, Marseille, France)
and a mouse monoclonal anti-pro-caspase-3 (1:10) antibody

(Immunotech, Marseille, France). Enhanced chemi-
luminescence (GE Science, Piscataway, NJ) was used for
detection.

Detection of apoptosis. To analyse apoptosis, hypodiploid
DNA (Sub-G1) populations were assayed using a
FACSCalibur flow cytometer with Cell Quest software
(Becton Dickinson) as previously described (36). For all
assays, 10,000 events were counted and carried out in
triplicate. The data were analysed using the Student's t-test.
Differences were considered to be statistically significant from
the controls for p<0.05.

For the observation of nuclear morphology, cells grown in
six-well plates were incubated with DMSO or SFN at 20 μM
for 48 h. The cells were then fixed in methanol, incubated with
4'-diamino-2-phenylindole (DAPI) solution for 30 min in the
dark and then analysed using a fluorescence microscope
(Olympus, Tokyo, Japan) at 420 nm.

Xenograft assay. Male Balb/C mice (Oriental Bio Service,
Kyoto, Japan) were maintained according to the Institutional
Animal Care Use Committee guidelines. LM8 cells were
mixed in PBS and a suspension containing 107 LM8 cells was
administered to the right flank of mice via an s.c. injection.
Mice were randomized into three groups of 5 mice/group.
Twenty-four hours later, intraperitoneal injections of SFN (1 or
2 mg in 0.1 ml PBS) were performed 5 times/week. Control
mice received an equal volume of the vehicle. Tumor volume
was determined as previously described (37). Statistically
significant differences in tumor volume between the control
and the treated mice were assessed by the Student's t-test.

Results

SFN inhibited the growth of murine osteosarcoma LM8 cells.
We investigated the effects of SFN on the growth of murine
osteosarcoma LM8 cells. Fig. 1 shows the growth of LM8
cells in the presence of various concentrations of SFN. A dose-
dependent inhibition of cell growth was observed at concen-
trations of 5 μM or more. Forty-eight hours after the addition
of SFN, the growth of LM8 cells was inhibited to 71.3, 18.4
and 4.4% of the control level by 5, 10 and 20 μM SFN,
respectively (Fig. 1).

SFN arrested LM8 cells at the G2/M phase in the cell cycle
progression and up-regulated p21WAF1/CIP1 expression. To elu-
cidate the effect of SFN on the cell cycle progression of LM8
cells, the DNA content of nuclei of LM8 cells was measured
by flow cytometric analysis. As shown in Fig. 2A, the FACS
analysis revealed that a 24 h exposure to SFN increased the
population of G2/M phase cells in a dose-dependent manner.
LM8 cells at the G2/M phase increased from 13.3% in medium
alone to 33.0% by treatment with 20 μM SFN.

We examined the expression of the p21WAF1/CIP1 protein
after SFN treatment. In LM8 cells, as shown in Fig. 2B, we
found that SFN increased the p21WAF1/CIP1 protein expression
in a dose-dependent manner using Western blotting.

SFN effectively induced apoptosis in LM8 cells. We investi-
gated that SFN induces apoptosis in LM8 cells. Treatment
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with 20 μM SFN for 24 h weakly induced apoptosis in LM8
cells. However, treatment with 20 μM SFN for 48 h
effectively induced apoptosis in LM8 cells (Fig. 3A).

Fig. 3B shows the morphological features of LM8 cells that
exhibited the characteristic features of apoptosis including
chromatin condensation.

To confirm the effect of SFN on the activation of caspases,
we carried out a Western blot analysis. As shown in Fig. 3C,
SFN caused the cleavage and activation of caspase-3. These
results indicate that the SFN-mediated cell death occurred in a
caspase-dependent manner. 

SFN induced a G2/M phase cell cycle arrest and up-regulated
p21WAF1/CIP1 expression in human osteosarcoma MG63 cells in
a p53-independent manner. We investigated the effects of
SFN on the growth and the cell cycle of human osteosarcoma
MG63 cells. Fig. 4A shows that a dose-dependent inhibition of
the cell growth was observed at concentrations of 5 μM or
more. FACS analysis revealed that a 24 h exposure to SFN
increased the population of G2/M phase cells in a dose-
dependent manner (Fig. 4B). We examined the expression of
the p21WAF1/CIP1 protein after SFN treatment and found that the
SFN increased the p21WAF1/CIP1 protein expression in human
osteosarcoma MG63 cells in a dose-dependent manner using
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Figure 1. Effect of SFN on the growth of LM8. Twenty-four hours after
seeding of LM8 cells, SFN at 5 (∫), 10 (Δ), or 20 (‡) μM was added and
the cell number was compared with a control culture with equivalent DMSO
(◊) by counting the cells using a trypan blue dye exclusion test. The values
shown are means (bars, SD) (n=3).

Figure 2. The effect of SFN on the cell cycle progression and up-regulation
of p21WAF1/CIP1 expression by SFN in LM8 cells. (A) LM8 cells were treated
with or without 20 μM SFN at the indicated concentrations for 24 h. The
DNA content of propidium iodide-stained nuclei was analysed by
FACSCalibur flow cytometry as described in Materials and methods. The
experiments were repeated to confirm the results. The percentage of cells in
phases G1 (black), S (gray) and G2/M (white) was determined. (B) SFN up-
regulated the p21WAF1/CIP1 protein expression. LM8 cells were treated with
SFN at the indicated concentrations for 24 h. Western blotting was then
performed as described in Materials and methods. An anti-GAPDH antibody
was used to confirm equal gel loading.

Figure 3. SFN induced apoptosis in LM8 cells. (A) LM8 cells were treated
with or without 20 μM SFN for the indicated periods. Apoptosis (Sub-G1)
was determined by FACS analysis of the DNA content of propidium iodide-
stained nuclei as described in Materials and methods. Data are shown as means
(bars, SD) (n=3).*p<0.05. (B) DAPI staining of LM8 cells. LM8 cells were
treated with or without 20 μM SFN for 48 h and then nuclear morphology
was visualized using DAPI staining using a fluorescence microscope. (C)
Caspase-3 was activated by SFN. LM8 cells were treated with SFN, at the
indicated concentrations for 48 h. Caspase-3 was then assessed by Western
blotting. An anti-GAPDH antibody was used to confirm equal gel loading.
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Western blotting (Fig. 4C). These findings showed that SFN
induced a p21WAF1/CIP1 protein expression through a p53-
independent pathway because p53 is inactivated in MG63 cells.

Intraperitoneal administration of SFN inhibits growth of LM8
xenografts in vivo. Prior to clinical trials, it is important that
the in vivo efficacy of potential anticancer agents is determined
in an animal model. Therefore, we performed an in vivo study
to determine whether SFN administration inhibits the growth
of LM8 xenografts in nude mice. As shown in Fig. 5, SFN
treatment caused a significant inhibition of LM8 xenograft
growth. Four weeks after starting therapy, LM8 xenografts of
BALB/C mice injected i.p. with SFN (5 mg/week) were
smaller (73.8% less in mass) than vehicle-treated controls
(Fig. 5). Similarly, the average tumor volumes in SFN (10 mg
week) -treated mice were 75.8% lower than those of control
mice. No remarkable signs of toxicity were observed following
SFN administration.

Discussion

Previous studies revealed that SFN is a potent inhibitor of
chemically-induced cancer in animals (23-26). Some studies
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Figure 4. p21WAF1/CIP1 induction by SFN in a p53-independent manner in
human osteosarcoma MG63 cells. (A) Twenty-four hours after seeding of
MG63 cells, SFN at 5 (∫), 10 (Δ), 20 (‡) μM was added and the cell number
was compared with a control culture with equivalent DMSO (◊) by counting
the cells using a trypan blue dye exclusion test. The values shown are means
(bars, SD) (n=3). (B) MG63 cells were treated with or without 20 μM SFN for
24 h. The DNA content of propidium iodide-stained nuclei was analysed by
FACSCalibur flow cytometry as described in Materials and methods. The
experiments were repeated to confirm the results. The cell percentage in
phases G1 (black), S (gray) and G2/M (white) was determined. (B) SFN up-
regulated p21WAF1/CIP1 protein expression in a p53-independent manner.
MG63 cells were treated with SFN at the indicated concentrations for 24 h.
Western blotting was then performed as described in Materials and methods.
An anti-GAPDH antibody was used to confirm equal gel loading.

Figure 5. Intraperitoneal administration of SFN inhibits LM8 tumor xenograft
growth in syngeneic Balb/C mice. Each mouse was implanted with ten million
LM8 cells mixed in PBS on the right flank via a subcutaneous injection. After
24 h, mice were treated with intraperitoneal injections of saline (control
group) or SFN (1 or 2 mg in 0.1 ml PBS) for 5 days/week for 4 weeks.
Mean tumor volume/mouse (mm3) was significantly reduced in SFN-treated
mice, as compared with controls. Statistical significance of different tumor
volume or body weight between the control and the treated mice was assessed
by the Student's t-test.
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reported that SFN effectively suppressed cancer xenografts in
mice (27,28). These reports indicated that SFN may be an
attractive compound for molecular-targeting chemotherapy or
chemoprevention for malignant tumors. The main objective of
the present study was to evaluate anti-tumor efficacy and the
mechanisms of SFN in osteosarcoma cells in the culture and
to translate the in vitro findings in to an in vivo preclinical
osteosarcoma model.

Our study revealed that SFN induces cell growth inhibition
via cell cycle arrest specifically at the G2/M phase in murine
osteosarcoma LM8 cells in culture studies. SFN was reported
to induce either a G1 arrest or a G2/M arrest in various cancer
cell lines. Some studies reported that SFN induces G1- and
G2/M-phase cell cycle arrest through the induction of the
p21WAF1/CIP1 expression (31,38). In this study, we confirmed that
SFN induced the p21WAF1/CIP1 expression and G2/M-phase cell
cycle arrest in osteosarcoma cells.

We also found that SFN induces cell cycle arrest in human
osteosarcoma MG63 cells through the p53-independent
activation of p21WAF1/CIP1. Recent studies reported that
conventional anti-osteosarcoma agents such as doxorubicin,
cisplatin and etoposide have anti-tumor effects mainly in a
p53-dependent manner (39,40). Therefore, the p53-
independent pathway of the p21WAF1/CIP1 induction by SFN
may be effective for the chemotherapy of osteosarcoma with
resistance to conventional agents due to the inactivated p53.

Several studies reported that SFN induces apoptosis
through the mitochondrial apoptotic pathway, via the up- or
down-regulation of Bax, Bak, XIAP and Bcl-2 expression
(27-30,41). In addition, recent reports revealed the death
receptor pathway of SFN (33,42). In these reports, caspase-3
was activated by the mitochondrial and death receptor
apoptotic pathways. In this study, SFN-induced cell death
was apoptotic and accompanied by caspase-3 activation in
LM8 cells. We reported that SFN up-regulates DR5
expression and sensitizes TRAIL-induced apoptosis in human
osteosarcoma cells (33). Therefore, rather than as a single
agent, the combined treatment using SFN with TRAIL and/or
other anti-tumor agents may be more effective for chemo-
therapy against osteosarcoma. 

Based on the encouraging in vitro anti-tumor efficacy of
SFN against osteosarcoma, we found that the intraperitoneal
administration of SFN (5 and 10 mg/week) significantly
retarded the growth of LM8 xenografts to <30% controls in a
preclinical animal model without causing any toxicity. Singh
et al reported that oral administration of SFN (5.6 μmol, 3
times/week) significantly inhibited the growth of xenografts
of human prostate cancer to ~50% of the mass of vehicle-
treated controls (27). Jackson and Singletary reported that
daily intravenous injection of SFN (15 nmol/day for 13 days)
significantly affected smaller xenografts of human breast
cancer to ~40% of the mass of vehicle-treated controls (28). In
osteosarcoma cells, our findings in this study provide in vivo
evidence for the efficacy of SFN against the advanced
growth of tumors.

SFN is a food factor contained in vegetables. Ye et al
reported the human plasma concentrations to reach only 2 μM
after consuming SFN-rich broccoli sprouts (43). However,
Hu et al reported that plasma concentrations reached 20 μM
after oral administration of SFN in rats (44). After the

administration of purified SFN, the murine plasma concen-
trations in this in vivo study may reach a concentration used
in our in vitro study. In the clinic, we will use purified SFN as
an anti-tumor agent for osteosarcoma cells.

Recently, a histone deacetylase (HDAC) inhibitory activity
of SFN was reported (45,46). Our previous study showed that
histone deacetylase inhibitors (HDACIs) such as trichostatin A
(TSA), sodium butyrate and suberoylanilide hydoxamic acid
(SAHA) induce the p21WAF1/CIP1 protein in malignant tumor
cells. Though we examined an HDAC inhibitory activity of
SFN by the detection of acetylated histone H4 using Western
blot analysis in MG63 cells, we did not detect an increase of
acetylated histone H4 after treatment with SFN (data not
shown). This result suggests that SFN may induce the
p21WAF1/CIP1 expression through a mechanism different from the
function of HDACIs in osteosarcoma MG63 cells. 

In conclusion, our results showed that SFN inhibits cell
growth and induces cell cycle arrest and apoptosis in murine
osteosarcoma cells. Furthermore, findings in xenograft studies
translate the anti-tumor effects in a preclinical osteosarcoma
model. These results raise the possibility that treatment with
SFN is promising for the chemotherapy of osteosarcoma.
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