Abstract. Administration of the PPAR\(_{\gamma}\) agonist GW1929 (10 mg/kg body weight) results in amelioration of muscle loss in tumour-bearing mice experimental cachexia. The effect of the agonist, which seems to be specific for white muscle extensor digitorum longus (EDL), is accompanied by an increase in the levels of the transcription factor MyoD and also the GLUT-4 glucose transporter. In addition, the effects of GW1929 on skeletal muscle are direct since incubation of isolated rat skeletal muscles in its presence results in a decreased rate of protein degradation. Collectively, the results presented suggest a potential clinical application - possibly in combination with other anabolic strategies - of GW1929 in restoring muscle waste during cancer cachexia.

Introduction

Muscle wasting is a common feature in many pathological states including infection and cancer (1). Muscle wasting, the main trend of cachexia, is responsible for the death of at least 30% of cancer patients (2). The mechanisms involved in muscle wasting during cancer have previously been described by our group (3), and include an activation of skeletal muscle protein degradation (4,5) together with apoptosis (6) and activation of uncoupling proteins (UCPs) (7).

Peroxisome proliferator-activated receptors (PPARs) are transcription factors belonging to the superfamily of nuclear receptors. Three isoforms (\(\alpha\), \(\delta\) and \(\gamma\)) have been described (8). They act on DNA response elements as heterodimers with the nuclear retinoic acid receptor. Their natural activating ligands are fatty acids and lipid-derived substrates. PPAR-\(\gamma\) (PPAR\(_{\gamma}\)) is expressed in adipose tissue, lower intestine, cells involved in immunity and other tissues (9). Activation of PPAR\(_{\gamma}\) induces the differentiation of preadipocytes into adipocytes and stimulates triglyceride storage (10).

A limited amount of information is available on the effects of PPAR\(_{\gamma}\) in skeletal muscle. Recent data from our laboratory indicate that the expression of PPAR\(_{\gamma}\) in skeletal muscles of tumour-bearing rats is significantly increased, suggesting that this transcription factor may have a role in muscle wasting.

Bearing this in mind, the aim of the present investigation was to analyse the effects of GW1929 (an agonist of PPAR\(_{\gamma}\)) on skeletal muscle in tumour-bearing animals submitted to cachexia.

Materials and methods

Animals. Male C57BL6 mice (Interfauna, Barcelona, Spain), of 5 weeks of age, were used in the experiment. The animals were maintained at 22±2°C with a regular light-dark cycle (light on from 08:00 a.m. to 08:00 p.m.) and had free access to food and water. The food intake was measured daily. All animal manipulations were made in accordance with the European Community guidelines for the use of laboratory animals.

Tumour inoculation and treatment. Mice were divided into two groups, namely controls and tumour hosts. The latter received an intramuscular innoculum of 0.5x10^6 Lewis Lung carcinoma cells in the leg obtained from exponential tumours. Both tumour and non-tumour-bearing animals were subdivided into two groups according to treatment. The treated groups were injected intraperitoneally with a daily dose of GW1929 (10 mg/kg body weight) dissolved in PEG 400 (carrier) during 5 consecutive days. The non-treated groups received an equivalent injection of the carrier. On day 13 after tumour transplantation, the animals were weighed and anesthetized with an i.p. injection of ketamine/xylazine mixture (3:1) (Imalgene\textsuperscript{®} and Rompun\textsuperscript{®}, respectively). The tumour was harvested from the leg and its weight evaluated. Tissues were rapidly excised, weighed and frozen in liquid nitrogen.

Muscle preparations and incubations. The dissection, isolation and incubation of the extensor digitorum longus
Table I. Food intake, body, tumour and muscle weights in tumour-bearing mice.

<table>
<thead>
<tr>
<th></th>
<th>C (4)</th>
<th>C + GW1929 (4)</th>
<th>T (6)</th>
<th>T + GW1929 (6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FBW-IBW</td>
<td>1.8±0.5</td>
<td>1.9±0.5</td>
<td>-2.8±0.4</td>
<td>-2.2±0.3</td>
</tr>
<tr>
<td>Food intake</td>
<td>34.5±3</td>
<td>36.5±3</td>
<td>30±4</td>
<td>33±4</td>
</tr>
<tr>
<td>Muscle weights</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GSN</td>
<td>562±25</td>
<td>563±14</td>
<td>389±20</td>
<td>382±20</td>
</tr>
<tr>
<td>Soleus</td>
<td>23±1</td>
<td>30±5</td>
<td>19±2</td>
<td>21±2</td>
</tr>
<tr>
<td>EDL</td>
<td>32±3</td>
<td>33±4</td>
<td>22±2b</td>
<td>28±2c</td>
</tr>
<tr>
<td>Tibialis</td>
<td>178±12</td>
<td>181±6</td>
<td>118±6a</td>
<td>116±4b</td>
</tr>
<tr>
<td>Tumour weight</td>
<td></td>
<td></td>
<td>2.8±0.3</td>
<td>3.4±0.1</td>
</tr>
</tbody>
</table>

For further details, see Materials and methods section. The results are mean values ± SEM for the number of animals indicated in parentheses. Food intake (g) is referred to the ingestion for each rat during the period of the experiment prior to sacrifice (13 days). Tissue weights are expressed as mg/100 g of initial body weight. Tumour weight is expressed in grams (g). GW1929 was given for 5 days intraperitoneal (10 mg/kg body weight). C, control; GW1929, treated animals; T, tumour-bearing animals; IBW, initial body weight; FBW, final body weight without tumour; GSN, gastrocnemius; EDL, extensor digititorum longus. Values that are significantly different by the Student's t-test from the non-tumour-bearing animals groups are indicated by *p<0.001, **p<0.01. Values that are significantly different by the Student's t-test from the non-treated animals are indicated by °p<0.05.

(EDL) muscles was carried in rats out under ketamine/xylazine mixture anesthesia as previously described (11). The muscles were preincubated for 60 min: 30 min in Krebs-Henseleit buffer and 30 min in supplemented medium containing 10⁻⁴ M GW1929 (Sigma Chemical Co., St. Louis, MO, USA) or none, and then incubated for 120 min in fresh supplemented medium. Total protein degradation by the isolated muscles was calculated as the rate of tyrosine released in the last two hours of incubation into the medium in the presence of 0.5 mM cycloheximide in order to block the reincorporation of tyrosine into tissue protein. Tyrosine was measured fluorimetrically as previously described (12).

Western blotting. For Western blots, protein extracts from tissues were prepared in standard lysis buffer (50 mM Tris pH 7.4, 0.25 mM sucrose and 5 mM EDTA pH 8.0, and a cocktail of protease inhibitors). Protein concentration was assayed by the method of Bradford (13), using BSA as working standard. Total protein extract (10 μg) was loaded for each sample and analyzed using anti-MyoD (Santa Cruz Sc-760), anti-GLUT-4 (provided by Dr A. Zorzano) and anti-α-tubulin (Sigma T5168) antibodies. Total protein extract (10 μg) were loaded for each sample. Specific proteins were detected with horseradish peroxidase (HRP)-conjugated secondary antibodies and a chemiluminescence kit. The sizes of proteins were estimated by using protein molecular-mass standards. Protein bands were quantified by scanning densitometry (Phoretix 1D International Ltd., UK).

Biochemicals. They were all reagent grade and obtained either from Roche S.A. (Barcelona, Spain) or from Sigma Chemical Co.

Statistical analysis. Statistical analysis of the data was performed by means of the Student’s t-test.

Results and Discussion

Lewis lung carcinoma (LLC) implantation results in an important decrease in body weight (15%) (Table I). This effect is accompanied by a significant decrease in the weights of EDL (31%), tibialis (34%), GSN (34%) and soleus (17%). While treatment with GW1929 had not effects on body weight or muscle weights in control animals, it resulted in a significantly increase in EDL weight in tumour-bearing animals. This increase was not observed in the rest of the muscles studied neither was an effect on body weight observed. Administration of the PPARγ agonist had not effect on tumour weight, suggesting that the transcription factor PPARγ is not involved in either the proliferation rate or apoptosis in this experimental tumour model.

The effects of GW1929 on GLUT-4 protein content are pictured in Fig. 1. While no effect was observed in control muscles, a clear significant effect of the agonist was observed in EDL muscles (21%) in tumour-bearing mice. Interestingly this effect was not observed in the GSN muscle. It is well known that PPARγ is involved in glucose transport in skeletal muscle and that agonist of this transcription factor has been used for the treatment of hyperglycemia and diabetes (9), in general in pathological states where insulin resistance is observed. Insulin sensitivity is often decreased in cancer states (14); from this point of view, the results obtained are coherent and, surprisingly, only involve white skeletal muscle.

Fig. 2 shows the effects of the agonist on MyoD content in both EDL and GSN muscles. Again, no effect of the agonist...
was observed in control animals but treatment with GW1929 resulted in an increase of 21% of the MyoD content in EDL muscle in tumour-bearing mice. This observation is of high interest since MyoD is a key transcription factor in skeletal muscle differentiation (15) and muscle wasting associated with cancer is linked with a decrease in its content, at least, in experimental animals (16).

The fact that the effects of the PPARγ agonist are observed in EDL is striking and seems to be very specific. We have found no satisfactory explanation for this observation; however, previous studies carried out in our laboratory showed that the use of hypolipidemic agents (which in a way behave as PPARγ agonists) resulted in different effects in red and mixed fiber muscles (17).

Taking into consideration the fact that, as we have previously and amply reported during experimental cancer cachexia, the main mechanism that it is activated and that is related with wasting is, indeed, muscle proteolysis (4,5,18), we decided to investigate if the proteolytic rate was affected or not in the tumour-bearing rats. We incubated isolated skeletal muscles in an ex vivo set up as previously described (11) and examined the proteolytic rates in the presence or absence of the inhibitor. The results presented in Fig. 3 clearly show that the GW1929 agonist significantly reduces the proteolytic rate in incubated muscles (17%). These results

---

**Figure 1.** Effects of GW1929 on GLUT-4 protein content in skeletal muscle of tumour-bearing mice. For further details, see Materials and methods section. The data are expressed as a percentage of the control values. The results are mean values ± SEM for a four animals. C, control; GW1929, treated animals; T, tumour-bearing animals; EDL, extensor digitorum longus; GSN, gastrocnemius. 1, control; 2, GW1929-treated animals; 3, tumour-bearing animals; 4, tumour-bearing animals treated with GW1929. Values that are significantly different by the Student’s t-test from the non-tumour-bearing animals groups are indicated by **p<0.01.

**Figure 2.** Effects of GW1929 on MyoD protein content in skeletal muscle of tumour-bearing mice. For further details, see Materials and methods section. The data are expressed as a percentage of the control values. The results are mean values ± SEM for a four animals. C, control; GW1929, treated animals; T, tumour-bearing animals; EDL, extensor digitorum longus; GSN, gastrocnemius. 1, control; 2, GW1929-treated animals; 3, tumour-bearing animals; 4, tumour-bearing animals treated with GW1929. Values that are significantly different by the Student’s t-test from the non-tumour-bearing animals groups are indicated by **p<0.01. Values that are significantly different by the Student’s t-test from the non-treated animals are indicated by †p<0.05.

**Figure 3.** Effects of GW1929 on the proteolytic rate in EDL muscles. For further details, see Materials and methods section. The data are expressed as nmol tyrosine/g/2 h. The results are mean values ± SEM for a eight number of animals. C, control; GW1929, treated muscles; EDL, extensor digitorum longus. Values that are significantly different by the Student’s t-test from the non-treated muscles are indicated by *p<0.05.
seem to indicate that an activation of PPARγ may be involved in the proteolytic events that take place in skeletal muscle during cancer cachexia. Collectively, the results presented clearly indicate that the effects of the PPARγ agonist in muscle wasting deserves further investigation devoted to a better understanding of the role of PPARs in skeletal muscle metabolism since they may serve as the basis for the development of new strategies for treating cachexia in many types of diseases such as cancer or infection.

Acknowledgements

This study was supported by grants from the Instituto de Salud Carlos III (03/0100) of the Ministerio de Sanidad y Consumo, from la Dirección General de Investigación Científica y Técnica (SAF4744-2005) of the Ministerio de Educación y Ciencia, from the Generalitat de Catalunya (SGR/00108), from Ministerio de Ciencia y Tecnología (VIN03/021), and by grant SAF-2003-04223 from the Ministerio de Ciencia y Tecnología (MCyT).

References