
Abstract. RC-RNase exerts anti-cancer effects on many
tumors. However, the mechanisms by which RC-RNase
induces cytotoxicity in different tumor cells are unclear.
Currently, estrogen receptor (ER)-positive and negative breast
tumors are treated with RC-RNase. Our data demonstrate that
RC-RNase induces cell death on ER-positive but not on ER-
negative breast tumors. This study also shows that down-
regulation of ER and Bcl-2 is found on RC-RNase-treated
ER-positive breast tumors. Additionally, Bcl-2 ovexpression
can prevent ER-positive breast tumors from cell death treated
with RC-RNase. In summary, this study demonstrates that

RC-RNase-induced cell death of ER-positive breast tumors is
through regulation of ER and Bcl-2.

Introduction

The anti-cancer effects of RNases have been demonstrated in
several studies (1-3). Onconase, derived from Rana pipiens
and RC-RNase from Rana catesbeiana both belong to the
RNase family exerting anti-cancer activities (4-7). Presently,
onconase has been used in the treatment of tumors in some
clinical trails done in the USA and Europe (8-10). RC-RNase,
with about 50% of its amino acid sequences homologous to
that of onconase, exerts similar anti-cancer activities (5,7,11).
Many studies have demonstrated that onconase and RC-
RNase can induce cell death on many tumor cells (5,7,11-13).
However, the mechanisms of RNase-induced cytotoxicity
and therapeutic target have remained unclear.

Our previous study has demonstrated that RC-RNases can
induce different cytotoxicity on different tumor cells in
humans and showed that RC-RNase induces cell death on
breast tumors, hepatic tumors and leukemia through different
caspase pathways (11). Additionally, many studies have also
demonstrated that the degree of cytotoxicity induced by
RC-RNase correlates with the stages of differentiation of
tumor cells (6,14,15). These studies indicated that RC-RNase
strongly exerts its anti-cancer activity on poorly-differentiated
tumors, however, exerts a much lower activity on those
tumors that are well-differentiated. However, the site where
the RC-RNase will target the tumor cells to exert its cyto-
toxic effect is still unclear.

In this study, our primary data showed that RC-RNase
can induce cytotoxicity on MCF-7 and ZR-75-1 breast
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tumors but cytotoxicity was not inducted on MDA-MB-231
and ZR-75-30 containing tumors. This result indicated that
RC-RNase can induce different cytotoxicity on breast tumors
depending on its receptors. Therefore, MCF-7, MDA-MB-
231, ZR-75-1 and ZR-75-30 containing breast tumors are
widely used to study the target sites of RC-RNase activity on
breast tumors.

Many reports have shown that ER-positive breast tumors
have MCF-7 and ZR-75-1 (16-19) while ER-negative tumors
have MDA-MB-231 and ZR-75-30 (20-22). Primarily, data
presented in this report show that RC-RNase induces cell
death on MCF-7 and ZR-75-1 tumors, but not on MDA-MB-
231 and ZR-75-30 tumors. That is, RC-RNase only induces
cell death on ER-positive breast tumors. We further study
estrogen receptor level on RC-RNase-treated ER-positive
breast tumors. Our data showed that RC-RNase can induce
down-regulation of ER. Therefore, ER is an important target
of RC-RNase-induced cytotoxicity on ER-positive breast
tumors. In addition, our data showed that down-regulation of
Bcl-2 was found on RC-RNase-treated ER-positive breast
tumors. Previous studies indicated that Bcl-2 and Bcl-XL
belong to Bcl-2 family and demonstrated that overexpression
of Bcl-2 or Bcl-XL has anti-apoptosis effects (23-26).
However, our previous study demonstrated that over-
expression of Bcl-XL can not inhibit RC-RNase-induced
cytotoxicity on ER-positive breast tumors (5). We
investigated whether Bcl-2 can inhibit RC-RNase-induced
cytotoxicity. Our study showed that overexpression of Bcl-2
can inhibit RC-RNase-inudced cytotoxicity on ER-positive
breast tumors. Overall, we firstly demonstrated that RC-RNase
induces cytotoxicity on ER-positive breast tumors, but not
on ER-negative breast tumors through ER and Bcl-2 down-
regulation.

Materials and methods

Reagents and cell culture. RC-RNase was purified with the
modified methods described in previous studies (5,6,11).
Ac-DEVD-pNA (Acetyl-Asp-Glu-Val-Asp-p-nitroanilide)
was purchased from Anaspec (San Jose, CA). XTT assay kit
was procured from Roche (Mannheim, Germany). Bcl-2 anti-
body was purchased from Upstate. ER and actin antibodies
were commissioned from Pharmingen Laboratories (San
Diego, CA), and Chemicon Laboratories (Temecula, CA),
respectively. Dr Shun-Yuan Jiang (Tzu Chi General Hospital)
provided the human breast carcinoma cells with MCF-7,
MDA-MB-231, ZR-75-1 and ZR-75-30 and cultures were
made using Dulbecco's Modified Eagle Medium (Gibco
BRL) supple-mented with 10%-heat-inactivated-fetal-bovine
serum (Hyclone® Laboratories, Inc., Logan, UT), 2 mM L-
glutamine (Gibco BRL), 100 IU/ml penicillin G sodium
(Gibco BRL), 100 μg/ml streptomycin sulfate (Gibco BRL),
1 mM sodium pyruvate (Sigma Chemical Co., St. Louis,
MO) and 0.1 mM non-essential amino acids (Gibco BRL).

Survival rate assay. Cell survival rate was determined using
XTT {sodium 3'-[1-(phenylamino-carbonyl)-3,4-tetrazolium]-
bis(4-methoxy-6-nitro) benzene sulfonic acid hydrate} kit
which analyzes the activity of mitochondrial dehydrogenase.
Briefly, 2x103-cells were grown in each well of 96-well-

containing cell culture plates overnight. The following day,
these cells were treated with RC-RNase. XTT assays were
carefully performed every 24 h following instructions from
the manufacturer. Absorbance was determined at 492 nm
using a multi-well ELISA reader (Molecular Devices,
Sunnyvale, CA).

Caspase activity assay. Cells were treated with the lytic
buffer (50 mM Tris-HCl, 120 mM NaCl, 1 mM EDTA, 1%
NP-40, pH 7.5) supplemented with protease inhibitors. Cell
pellets were removed via centrifugation at 15000 x g for 20 min
at 4˚C. The caspase activity assay was determined in a reaction
solution containing 40 μl cell lysates (80 μg total protein),
158 μl of reaction buffer (20% glycerol, 0.5 mM EDTA,
5 mM dithiothreitol, 100 mM HEPES, pH 7.5) and 2 μl of
fluorogenic Ac-DEVD-pNA and was incubated at 37˚C for
6 h. The fluorogenic substrate cleavage readout was the p-
nitroanilide release as detected at 405 nm in an ultra-microplate
reader (Bio-Tek instruments).

Western blot analysis. Cells were collected using cell scrapers
and lysed in RIPA buffer (10 mM Tris-base, pH 7.4, 150 mM
NaCl, 1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS)
containing protease inhibitors (Calbiochem, La Jolla, CA).
Equal amounts of the total proteins were loaded into a 13.3%
SDS-polyacrylamide gel and underwent electrophoresis.
They were then transferred to a polyvinyldene difluoride
membrane (Amersham Pharmacia Biotech). The membranes
were blocked with 5% skim milk and 1% NP-40 in TBS-T
(0.8% NaCl, 0.02% KCl, 25 mM Tris-HCl, 0.05% Tween-20,
at pH 7.4) for 1 h, incubated with the primary antibody
(1:500 dilution in the blocking buffer) at 4˚C overnight, and
subsequent incubation was done with biotinylated anti-mouse
or anti-rabbit IgG (1:1000 or 1:10000 dilution in the blocking
buffer) and streptavidin-horseradish peroxidase conjugates
(1:2000 dilution in PBS). The membranes were developed
using the Super Signal™ chemiluminescent-HRP substrate
system (Pierce, Rockford, IL).

Establishment of transfectants overexpressing Bcl-2 and
Bcl-XL. Human Bcl-2/PCR 3.1 and Bcl-XL/PCR 3.1 plasmids
were constructed employing methods as mentioned previously
(5). MCF-7 cells were transfected with Bcl-2/PCR 3.1 or
Bcl-XL/PCR 3.1 plasmids using lipofectamine (Gibco) and
selected by 400 μg/ml geneticin (Gibco). These transfectants
were cultured in the 96-well plates to make a single cell per
well. After a single cell became confluent, they were trans-
ferred to 25-T flasks and cultured with complete medium
using 400 μg/ml geneticin. Transfectants overexpressing
Bcl-2 and Bcl-XL were determined using the Western blot
method.

Results

RC-RNase induces cytotoxicity and caspase-3-like activity on
MCF-7 and ZR-75-1 breast tumors. The following obser-
vations were made and recorded in the course of this study.
The survival rate of MCF-7 and ZR-75-1 breast tumor cells
was below 50%, noted on day 3 after treatment with RC-
RNase while >80% of MDA-MB-231 and ZR-75-30 breast
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tumor cells survived after treatment with RC-RNase (Fig.
1A). The data indicated that RC-RNase induces cytotoxicity
on MCF-7 and ZR-75-1 breast tumor cells. However, RC-
RNase induces lesser cytotoxicity on MDA-MB-231 and ZR-
75-30 tumor cells. Caspase-3 like activity was also tested in
this study. The result showed that RC-RNase induces
caspase-3-like activity on MCF-7 and ZR-75-1 breast tumor
cells with no activity observed on MDA-MB-231 and ZR-
75-30 tumor cells (Fig. 1B). These observations are highly
suggestive of RC-RNase ability to induce cytotoxicity on
MCF-7 and ZR-75-1 breast tumor cells through the caspase
pathway.

Down-regulation of estrogen receptor and Bcl-2 on ER-
positive breast tumors with RC-RNase treatment. MCF-7 and
ZR-75-1 cells are ER-positive breast tumor cells. They
cannot survive without estrogen. However, MDA-MB-231
and ZR-75-30 cells are ER-negative breast tumor cells and
can survive without estrogen. As shown in Fig. 1A, RC-RNase
induce cytotoxicity and caspase-3 like activity on MCF-7 and
ZR-75-1 breast tumor cells but not on MDA-MB-231 and

ZR-75-30 breast tumor cells. That is, RC-RNase has a stronger
cytotoxicity on ER-positive breast tumor cells than ER-
negative breast tumor cells. This result indicates that ER may
be one of targets on RC-RNase-treated ER-positive breast
tumors. To demonstrate this idea, ER was determined by
Western blotting. Our result showed that degradation of ER
can be found on RC-RNase-treated ER-positive breast tumor
cells in a dose-dependent manner (Fig. 2). Additionally,
degradation of Bcl-2 was found on RC-RNase-treated ER-
positive breast tumor cells (Fig. 2). Based on the observations
and results in this study, it is highly suggestive that RC-
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Figure 1. Survival rate and caspase-3-like activity. The survival rates of the
4 indicated breast tumor cells were treated with 20 μg/ml for 4 days (A).
The caspase-3 like activities of the indicated cells were treated with 20 μg/ml at
day 3 (B). Data were obtained from three independent triplicate experiments
and presented as the mean ± SD.

Figure 2. Down-regulation of estrogen receptor (ER) and Bcl-2 was
analyzed by Western blot analysis on MCF-7 breast tumor cells. Cells were
treated with 0 μg/ml (lane 1), 5 μg/ml (lane 2), 10 μg/ml (lane 3), 20 μg/ml
(lane 4) and 40 μg/ml RC-RNase (lane 5) for 3 days.

Figure 3. Transfectants and the survival rates. Transfectants (MCF-7, lane 1;
MCF-7/Bcl-2, lane 2; MCF-7/Bcl-XL, lane 3; MCF-7/PCR 3.1, lane 4) with
related-overexpresion proteins were checked by Western blot analysis (A).
The survival rates of these cells with RC-RNase treatments for 5 days (B).
Data were obtained from three independent triplicate experiments and
presented as the mean ± SD.
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RNase induces cytotoxicity on ER-positive breast tumor cells
through down-regulation of ER and Bcl-2.

Overexpression of Bcl-2 inhibits RC-RNase-induced cyto-
toxicity on ER-positive breast tumors. Transfectants over-
expressing Bcl-2 and Bcl-XL was selected successfully in
this study. As shown in Fig. 3A, MCF-7/Bcl-2 transfectants
can express Bcl-2 and MCF-7/Bcl-XL transfectants can
express Bcl-XL. MCF-7 cells and MCF-7/PCR 3.1 trans-
fectants were used as a negative control. The survival rates of
MCF-7, MCF-7/Bcl-2, MCF-7/Bcl-XL and MCF-7/PCR 3.1
with RC-RNase treatment showed that only MCF-7/Bcl-2
transfectants inhibited RC-RNase-induced cytotoxicity
(Fig. 3B) while MCF-7/Bcl-XL transfectants did not (Fig.
3B). We can deduce from our study that only Bcl-2 can
inhibit RC-RNase-induced cytotoxicity on MCF-7 cells
despite Bcl-2 and Bcl-XL both belonging to the anti-
apoptosis protein family.

Overexpression of Bcl-2 inhibits down-regulation of Bcl-2.
We further determined the expression of ER and Bcl-2 on
RC-RNase-treated MCF-7/Bcl-2 transfectants. The result is
shown in Fig. 4. Comparing with Fig. 2, down-regulation of
Bcl-2 is clearer on RC-RNase-treated MCF-7 cells than RC-
RNase-treated MCF-7/Bcl-2 transfectants. Furthermore, our
data indicate that down-regulation of ER was observed
clearly on RC-RNase-treated MCF-7/Bcl-2 transfectants at
day 3. This result is similar to that of ER down-regulation on
RC-RNase-treated MCF-7 cells (Fig. 2).

Discussion

Data from previous literature demonstrated that RC-RNase
can induce cytotoxicity on breast tumors (MCF-7 cells)
through caspase-7 activation (5,11). However, the target sites
where RC-RNase will induce cytotoxicity on breast tumors
are still unclear. In this study, our data showed that RC-
RNase induces cytotoxicity on ER-positive breast tumors
(MCF-7 and ZR-75-1) but fails to induce cytotoxicity on ER-
negative breast tumors (MDA-MB-231 and ZR-75-30). In
other words, RC-RNase has an anti-cancer effect only on
ER-positive breast tumors. Additionally, our study
demonstrates that RC-RNase can induce down-regulation of
ER on ER-positive breast tumors. ER-positive breast tumor
treatments have demonstrated that cell proliferation can be
inhibited on ER-positive breast tumors by blocking the ER
signal pathway (27-30). Based on these studies and our

results, we suggest that ER is an important target of RC-
RNase-induced cytotoxity on ER-positive breast tumors.

Bcl-2 with anti-apoptotic functions and survival effects
have also been demonstrated in some studies (31-33). These
studies indicated that various cell types cannot survive when
Bcl-2 level decreased. Our study shows that down-regulation
of Bcl-2 is expressed on ER-positive breast tumors treated
with RC-RNase. Many studies have demonstrated that down-
regulation of Bcl-2 can induce cell death on ER-positive
breast tumors (34-36). These results are similar to our study.
We therefore consider that Bcl-2 is also a target site of action
for RC-RNase to induce cytotoxity on ER-positive breast
tumors. Our study demonstrates that RC-RNase can down-
regulate ER and Bcl-2 levels resulting in cell death on ER-
positive breast tumors.

Various reports have indicated that Bcl-2 and Bcl-XL are
anti-apoptotic factors (23-26). These reports suggested that
overexpression of Bcl-2 and Bcl-XL can inhibit cell death and
the down-regulation of Bcl-2 and Bcl-XL can induce cell
death. However, previous studies demonstrated that Bcl-2
overexpression cannot prevent hyperoxia-induced cell death
on epithelial cells (37) and Bcl-XL overexpression cannot
inhibit apoptosis on hepatocytes (38). Additionally, it has
been reported that Bcl-2 and Bcl-XL inhibit cell death in a
different manner (39). These studies indicated that anti-
apoptotic effects between Bcl-2 and Bcl-XL on different
cells vary depending on the target site of action and cellular
function (37-40). In this study, our results demonstrate that
Bcl-XL overexpression can not inhibit RC-RNase-induced
cytotoxicity on MCF-7 cells. This result is similar with our
previous study (5). Furthermore, our study shows that Bcl-2
overexpression can inhibit RC-RNase-induced cytotoxicity
on ER-positive breast tumors indicating that the anti-
apoptotic effect on RC-RNase-treated ER-positive breast
tumors is dependent on Bcl-2 functions but not on Bcl-XL
functions.

In summary, this study is able to demonstrate that RC-
RNase induces cell death on ER-positive breast tumors but
not on ER-negative breast tumors through down-regulation
of ER and Bcl-2. In addition, the anti-cancer effect on RC-
RNase-treated ER-positive breast tumors is related to Bcl-2
overexpression, but not to Bcl-XL overexpression.
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