
Abstract. With the advancement of modern genome
sequencing technology, thousands of genetic mutations have
been identified in human tumors. However, analysis of the
role of genetic mutations in tumor development is limited by
the need for prevalence information among multiple tumors
and by the lack of analytic capability to define the functional
contribution of genetic mutations in patients, individually
and collectively. To understand the genetic basis of human
endometrial cancer, the fourth most common cancer in women,
transcriptome sequencing was performed on an endometrial
tumor paired with normal cervical tissue. Twenty-six non-
synonymous somatic mutations were validated in the tumor
genome. A phylogenetic tree illustrating the mutational time-
line was developed based upon the distribution of 26 mutations
in 30 randomly-selected laser-captured single cells from the
tumor sections. Five ubiquitous mutations were identified
that are presumed to occur in the cancer founder cell of the
tumor, and may collectively play critical roles in endometrial
oncogenesis. However, further testing in 10 additional endo-
metrial tumors failed to show overlapping mutations in the
cancer founder cells, indicating the lack of a single common
oncogenic pathway for these endometrial tumors. The effects
of individual mutations in cancer cell proliferation were
calculated based on descendant cell number and time span
since acquiring each mutation. We have developed a phylo-
genetic approach to characterize individual genetic mutations
in cancer cell proliferation in a single resected patient
tumor. This approach provides the capability to study the
tumor-specific role of genetic mutations, without relying on
prevalence information from other patients.

Introduction

Tremendous progress has been made in cancer genetics in the
past several decades. A seminal model was proposed in
colorectal carcinoma involving sequential occurrence of
mutations in several genes critical for cellular functions as
the causal events for oncogenesis (1,2). Subsequently, it has
become widely accepted that most tumors are monoclonal in
origin (3-5), and that the transformation of the cancer founder
cell (CFC) requires multiple genetic changes (6). Recent
advances in DNA sequencing technologies have identified
thousands of genetic mutations in tumors (7-13). Additionally,
the relative roles of these numerous mutations in oncogenesis
have been increasingly recognized as etiologically complex (8).
The first comprehensive study of cancer exon sequencing,
reported by Sjoblom et al, found an average of 67 somatic
mutations per breast tumor and 52 per colorectal tumor (7).
This pioneering study and subsequent similar studies in
pancreatic cancer and glioblastoma represent innovative
efforts to substantiate the mutational and monoclonal model
of oncogenesis proposed 20 years ago (2).

Endometrial cancer is the fourth most common cancer in
women (14) whose development is believed to follow an
oncogenic pathway similar to the paradigm established in
colorectal cancer. Analysis of the role of a genetic mutation
in a patient tumor often relies on the mutation prevalence in
other patients and on investigation of its cellular function
from in vitro and/or animal studies. To our knowledge, there
is no analytical approach that will allow a direct analysis of
the function of individual genetic mutations on cancer cell
proliferation in human endometrial tumors. We hypothesize
that results from a specific mathematical analysis of genetic
mutations among sampled cells in individual endometrial
tumors characterizes genetic aspects of oncogenesis and
tumor progression. A phylogenetic tree model was developed
to guide the mathematical analysis of massively parallel
sequencing data that nominates candidate driver mutations
in the cancer cells. Furthermore, an attempt was made to
calculate a mutation's tumor-specific contribution to cancer
cell proliferation based on the size of offspring produced
by an ancestor cell and time span since acquiring the
mutation.
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Material and methods

DNA and RNA preparation. Tissue samples were obtained
from anonymous, adult females using guidelines approved by
HRRC at the University of New Mexico. The endometrial
tumor and normal cervix were collected fresh after surgery
and cut into many 5-mm pieces for snap-freezing in liquid
nitrogen. mRNA was extracted using RNeasy Mini kit from
Qiagen, Valencia, CA. Genomic DNA was extracted for vali-
dation of variants from genome sequencing. Frozen sections
were cut at 7 μm. Single cancer cells were acquired using
Arcturus PixCell IIe with guidance of hematoxylin and eosin
staining of adjacent sections. Generally, we acquired 2-3 cells/
section and 3-5 sections/tumor piece. Genomic DNA from
single cells was amplified separately using GenomePlex Single
Cell Whole Genome Amplification kit (Sigma, St. Louis, MO).
PCR was completed usually with 30-35 cycles using TC-3000
Thermal Cycler (Barloworld Scientific Ltd., Burlington, NJ).
Sanger sequencing was accomplished by ABI PRISM 3100
Genetic Analyzer (Applied Biosystems, Foster City, CA).

Transcriptome sequencing. Short-insert, paired-read libraries
were generated from mRNA as described (15). Singleton 36
nucleotide reads were generated using Illumina GAII instru-

ments as described (15). Sequences were used in analyses if
average quality (Q) scores were >20, respectively. Sequences
were aligned to the NCBI human reference, version 36.2, with
GSNAP (16). SNVs were identified using optimized filters
with the Alpheus software system (11,15,17). Putative SNVs
were validated by targeted Sanger PCR and cycle sequencing.
Statistical analysis was performed using JMP-Genomics (SAS
Institute, Cary, NC).

Construction of the phylogenetic tree. Genetic trees are
constructed according to a divisive hierarchical clustering
method and verified as one of the trees generated by the
maximum-parsimony method (16,18,19) using pars from the
PHYLIP software package (Felsenstein, Department of
Genetics, University of Washington, Seattle, Version 3.68).
The clustering method is based on the effects of the ability of
mutations to increase growth rates or confer selective
advantage, which are evident when single cells are randomly
sampled from a tumor and any reproductive advantage from
a mutation is represented by the number of cells from the
sample that contains the mutation. The clustering method
recursively chooses the most frequent mutation among a
cluster of cells and divides the cluster into sub-clusters of
cells with and without that mutation.
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Figure 1. Schematic illustration of a tree model with imputed timeline of tumor development. The cancer founder cell (CFC) was transformed by multiple
mutations. The horizontally striped cells represent a dominant clone in the primary tumor with their most recent common ancestor (MRCA-1) carrying many
more mutations than the CFC, and most of these mutations are not involved in oncogenesis due to their later occurrence. Sampling of a small piece of tumor
tissue (vertically striped cells) could mistake an MRCA (MRCA-2) of a small subpopulation for the CFC, resulting in reporting of many more passenger
mutations as the founder mutations, as well as missing those mutations (m) important for the emergence of a dominant subclone.
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Results

A phylogenetic model is developed to describe intra-tumor
mutational heterogeneity. The model (Fig. 1) is a schematic
reconstruction of the classical monoclonal, step-wise
mutational model of tumor progression, as originally developed
for colorectal oncogenesis (1,2), assuming a central role for
genetic mutations in tumor development. In the simplest
form, we assume the cancer founder cell (CFC) at generation
zero has acquired, for example, 5 mutations. We further
assume a net constant proliferation rate for every cancer cell
with acquisition of one new mutation every generation, based
on the estimated net somatic mutation rate of 4.6x10-10/bp/
generation (6). Therefore the presumed cell count at the n-th
generation of tumor development will be 2n with total
mutations of 2n+1 +3. Thirty generations of tumor development,
for example, equates to over 1x109 cells (~1 g of weight) and
confers >30 billion mutations. Typically, however, the sensi-
tivity to detect these mutations is ~25% of a population of
cells for Sanger sequencing (6), unambiguously detecting
only 1 mutant copy in the presence of 3 normal copies. Thus,
Sanger sequencing using DNA from tumor homogenate
can only reliably detect mutations that occurred in the CFC
(5 mutations) and in the first and second generations (2 and
4 mutations, respectively). Any mutation occurring beyond
the third generation will be present at <10% of the cell
population and will be extremely difficult to detect by Sanger
sequencing of DNA homogenates. Again, this is the simplest

model assuming constant proliferation and mutation rate
without considering cell death during tumor development. It
should serve as a basic description before incorporating varying
proliferation and mutation rates, cell death and interaction
with the microenvironment.

Deep transcript sequencing identifies the mutations uniquely
derived from the cancer founder cell. To overcome the limi-
tations of Sanger sequencing, we used massively parallel
transcriptome sequencing (mRNA-seq) as part of a cell-
ontology-based analysis strategy, cancer genetic timeline
analysis (CGTA, Fig. 2) with the intent of using deep
sequencing to both detect and enumerate the frequency of
expressed mutations, including those present in minority
subpopulations of a tumor. RNA from matched normal and
tumor specimens from an endometrial cancer patient was
sequenced by mRNA-seq, yielding approximately 1 billion
nucleotides of 36 bp singleton reads from each (15). Using
the Alpheus pipeline, ~80% of reads aligned to the NCBI
human genome reference and are available at http://citrine.
ncgr.org/ (11,15,17). Bioinformatic filtering identified 246
non-synonymous single nucleotide variants (nsSNVs) in the
tumor transcriptome that were not called in mRNA from
coisogenic, normal tissue (11,15). These variants were re-
sequenced in genomic DNA from coisogenic normal speci-
mens and multiple tumor specimens from the same patient,
and 26 were validated to be somatic mutations in the tumor
genome. Next, thirty single cancer cells were acquired through
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Figure 2. Schematic of cancer genetic timeline analysis. The boxes and arrows on the left indicate the discovery test in normal and tumor transcriptomes; the
boxes and arrows in the middle indicate the validation test in normal and tumor genomes; and the boxes and arrows on the right indicate the distribution test in
single cell genomes.
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laser-captured micro-dissection from disparate frozen sections
of the tumor. The genomic DNA of each cell was extracted
and amplified separately. The 26 mutated genes were re-
sequenced and 5 mutations were found to be present in all
30 single cells from the tumor (Fig. 3, Table I). By virtue of
ubiquity, these 5 mutations were considered to occur at the
CFC of the tumor and to be responsible for early events in
oncogenesis. The following arguments infer the existence
of the cancer founder cell: i) the occurrence of 5 mutations
in a single normal cell (i.e., passenger mutations) has an
extremely low probability; ii) the likelihood of any two
cancer cells acquiring the same mutation de novo is minimal;
iii) 5 ubiquitous mutations in a specimen are strong evidence
for clonality (the existence of a sole progenitor cell of the
tumor); and iv) the cancer progenitor cell is likely to have
had a transformed phenotype and resultant mitotic advantage
caused by the 5 mutations. We suggest these 5 mutations, the
set of mutations imputed to exist in the CFC, as the oncogenic
pathway for the tumor. Some of these 5 mutations have been
implicated in oncogenesis of other cancers (Table I). This

conclusion has to rely on the assumptions that transcriptome
sequencing detects all potential mutations.

Construction of the tumor's phylogenetic tree establishes the
timeline of mutational events. We used data from CGTA to
reconstruct a phylogenetic tree for the tumor based on the
distribution of 26 genetic mutations in 30 single cancer cells
in order to determine their temporal occurrence. Based upon
the arguments that genetic mutations are inheritable and the
likelihood of any two cancer cells acquiring the same mutation
de novo is negligible, we established the temporal order of
the 26 genetic mutations in clusters (Fig. 3). For instance, the
occurrence of mutations in Cell 13 will be as such: the earliest
mutations are at C10orf26, GMPPA, CREBL1, PPP2R2D,
SLCO2A1, followed sequentially by DDEF1, LOC728069➝

MYST1➝PDZD8➝POLE4, SDC2➝TOR3A➝LOC645634.
Based on the distribution of 26 mutations, these 30 cells were
grouped into 8 clusters from A through H, each of which
has a distinct phylogeny of genetic mutations with their
respective imputed most recent common ancestors (MRCAs,
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Figure 3. The phylogenetic tree of an endometrial tumor. The tree was constructed based on the distribution of mutations among individual cancer cells. See
Materials and methods for details of tree construction. The mutated genes common to descendants are listed along the tree branches following the tree knots
(dots, designated a through n) representing the most recent common ancestors (MRCAs) imputed to acquire these mutations at the time of their birth. The
numbers at the bottom are the cell numbers we assigned when these single cancer cells were captured by LCM. Genetic generation was defined to substitute
for chronological time to determine the relationship between occurrence of new mutations and descendant cell numbers.
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the branch dots designated a through n). The mutation at
LOC645634 is expected to occur in Cell 13, >6 generations
after the CFC. A significant increase in the depth of sequencing
and the number of single cells for analysis may produce a
more detailed phylogenetic tree.

Individual endometrial tumors have distinct oncogenic
pathways. To investigate whether an oncogenic pathway is
shared between endometrial tumors, we re-sequenced these
five mutated genes from the CFC in genomic DNA from 10
additional endometrial tumors (7 endometrioid carcinoma
and 3 uterine papillary serous carcinoma). No more than two
of the five mutations occurred in the cancer founder cells in
any of the 10 tumors, suggesting that oncogenic pathways are
distinct among individual endometrial tumors. Our finding is
consistent with the reports in colorectal, breast, pancreatic
cancer and glioblastoma (7-10), which collectively provide
strong evidence against the notion of a single oncogenic
pathway for human cancers, even of a single histologic type.
Thus, it remains possible that multiple oncogenic pathways
may exist in endometrial cancer, and CGTA could be used as
a method to identify oncogenic pathways even if they are
distinct in every individual tumor.

Mathematical analysis may characterize the role of genetic
mutations in tumor development. In addition to identification
of the oncogenic pathway of a tumor, CGTA can utilize deep-
sequencing genomic data to determine early mutations using
the constructed phylogenetic tree. According to the phylo-
genetic tree presented in Fig. 3, CGTA infers the existence of

‘genetic generations’ (GG). For Cluster A, 6 GGs have passed
when a cell (m) was borne with newly acquired mutations at
LOC645634. More specifically, mutations at DDEF1 and
LOC728069 occur when a cell (b) was borne one GG after
the CFC. Likewise, mutations at MYST1, PDZD8, POLE4
and SDC2, and TOR3A occur in cells borne 2, 3, 4 and 5 GGs
after the CFC, respectively. In our case, the GGs beyond
the 6th GG cannot be documented due to the limitation in
sensitivity of genome sequencing. One genetic generation is
defined as the shortest temporal interval from a parent to a
descendant cell containing at least one unique mutation not
present in the parent. Thus the value of GG can be converted
into an estimate of the true physical time interval if mutation
rate is known. The number of genetic generations and the
number of mitotic generations (divisions) are equivalent if
one or more mutations occur before each cell division, but
otherwise the number of mitotic generations is greater than
the number of genetic generations. We calculate the number
of net mitotic generations to be an average of 30 based
upon the tumor size of 1 g, which is approximately equal to
230 (~109) cells. Again, this calculation is a backward recon-
struction (from a resected tumor to the CFC) and will treat
dead cells during tumor evolution as non-existent since they
cannot be postulated from the surviving cancer cells in the
resected tumor. The estimated mutation rate of 4.6x10-10 per
base pair per generation (6) indicates at least one mutation
per mitotic division for a genome size of 3x109 base pairs,
and so the total number of GG is estimated to be 30 (equal to
the number of mitotic generations). While the total number
of cells in a tumor can be estimated according to the tumor
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Table I. List of the somatic mutations in the cancer founder cell.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Zygosity mRNA
Nucleotide AA change expression: Association

Gene Chroma change change in tumor tumor/normalb Function with cancer
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
SLCO2A1 3q21 c1269t P➝S Het➝Hom 0.62 i) Transports PGE2 and i) Decreased in

estrone 3-sulphate; ii) colon cancer;
regulates decidualization ii) PGE2 promotes
of endometrial stroma cancer progression

OPAL1 10q24 t1164c S➝P Het➝Hom 0.69 Not known Prognostic factor
(C10orf26) in ALL

PPP2R2D 10q26 g1216a G➝S Het➝Hom 1.33 Modulator of TGF-ß/
activin/nodal signalling

GMPPA 2q35 g525a G➝S WT➝Het 0.87 Converts mannose-1-
phosphate to GDP-mannose
during production of
N-linked oligosaccharides

ATF6B 6p21 g1320c K➝N WT➝Het 1.76 Transcription factor in
(CREBL1) unfolded protein response

pathway during ER stress
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
aChrom, chromosome. bDigital gene expression ratio derived from mRNA-seq.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
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weight, the number of offspring cells from an ancestor cell
cannot be directly determined in practice. In our case, the
number of single cancer cells acquired through laser-captured
microdissection is used as a representation of cancer cell sub-
population.

Specific mutations in an ancestor cell resulting in a
indirectly measurable subpopulation over a defined period
of time suggests one method for attributing increased or
decreased proliferation to the mutations introduced in the
ancestor cell. The discrete first derivative with respect to
time of the logarithm of the subpopulation size serves as a
metric of the proliferation potential (PP) of an ancestor cell
dividing mitotically at regular intervals. For the time period
from the birth of the ancestor cell to the end-point (time of
tumor excision), an average of the PP is given by the ratio of
cell number logarithm to time period. However, since the
actual chronological time t cannot be determined, we substi-
tute t with GG and provide an expression of proliferation
index (Pi):

Pi = (log2N)/g

where Pi is the value of Pi, and g is the number of GG from
the birth of a cell to the end-point. Since the g value of a cell
cannot be measured directly through experimentation due to
limitations of detection of mutations in later generations
(present only in small populations), the value of g of a cancer

cell (from the birth of the cell to the end-point) can be
expressed as the difference between the value of GG for the
entire tumor (from the birth of the CFC to the end-point),
which is 30 in our case, and the number of GG from the birth
of the CFC to the birth of the cell, which can be calculated
using the phylogenetic tree. The Pi values associated with
imputed MRCAs with newly acquired mutations are given in
Table II as an example of this method of quantification of
proliferation potential.

Since proliferation potential is determined by intrinsic
genetic alterations and a cell's interaction with the external
environment, the contribution of a newly acquired genetic
mutation to cell proliferation should be the difference in cell
proliferation potentials between the cell and its immediate
progenitor. Therefore, as shown in Table II, the 5 mutations
at the CFC produced substantial acceleration of cell proli-
feration with an increase of 1 in Pi value (the Pi value for the
normal progenitor cell is assumed to be 0). Other mutations,
such as those at DDEF1 and LOC728069, MYST1, as well as
POLE4 and SDC2, conferred about 0.025 increase of Pi value
over the previous generation, and thus can be seen to have a
positive growth effect. In this model, our calculation predicts
the existence of passenger mutations, which do not contribute
significantly to cancer cell proliferation (without a significant
increase in Pi value), and of mutations which negatively affect
cancer cell proliferation. For instance, mutations at GORASP2,

ZHANG et al:  PHYLOGENETIC TREE MODEL FOR PATIENT TUMORS1452

Table II. Proliferation index, offspring size and genetic generations of cancer cells carrying newly acquired mutations.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Genetic Offspring size
MRCAs Mutant genes generations (million cells) Proliferation index Difference
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

a C10orf26, GMPPA, 30 1000 1 1
CREBL1, PPP2R2D,
SLCO2A1

b DDEF1, LOC728069 29 833 1.022 0.025
c LDLRAP1, PLEC1 29 167 0.942 -0.055
d MYST1 28 667 1.047 0.025
e GORASP2, ILKAP, 28 100 0.949 -0.073

LOC729423
f INCENP, ME2 28 67 0.929 -0.094
g PDZD8 27 400 1.058 0.011
h AP1G2 27 267 1.037 -0.010
i POLE4, SDC2 26 300 1.083 0.025
j PIF1, XYL2 26 100 1.022 -0.036
k TOR3A 25 167 1.093 0.010
l LOC642934 25 133 1.080 -0.004
n CCDC50, CIZ1 24 67 1.083 -0.010
m LOC645634 24 100 1.107 0.014

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Values of proliferation index were presented for imputed cancer cells (MRCAs, the first column) carrying newly acquired mutations (listed
in the second column). The values of genetic generations for the imputed MRCAs are defined as the number of genetic generations from the
birth of an MRCA to the end-point (tumor excision). In practice, the value for an MRCA is expressed as the difference between the value of
GG for the CFC and the number of GG from the birth of the CFC to the birth of the MRCA. The descendant size was the product of total
cell number of the tumor, which is ~1 billion, and the percentage of descendant single cells among the total of 30 single cells. The calculation
of proliferation index and difference of proliferation indices between two immediate MRCAs are described in detail in the text.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
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ILKAP and LOC729423 induce a change of Pi value at Cell e
by -0.073 (Fig. 3, Table II). Similarly, mutations at INCENP
and ME2 induce change of Pi value by -0.094 at Cell f. These
data suggest that mutations at these five genes may either cause
partial cell death or reduced proliferation, which is consistent
with views that mutations could be deleterious or advantageous
to a cancer cell while most of them are essentially neutral (20).

Discussion

CGTA, using deep transcriptome sequencing and cell ontology
analysis to determine cancer founder cell mutations, represents
an alternate strategy to identify oncogenic pathways in
individual tumors that is complementary to approaches that
rely on gene prevalence information from multiple tumors.
However, two major hurdles remain before realization of the
full potential of CGTA. The first hurdle is the need for a
rational tumor tissue collection procedure. In practice, selection
of a piece of tumor for sequencing is often neither compre-
hensive nor random. If we assume that cancer cells do not
move significantly at the primary location during tumor
development, selection of a small piece of tumor represents
isolation of a subclone of the cancer population. In some
advanced tumors, such as endometrial and ovarian carcinoma,
the entire tumor could weigh more than hundreds of grams
and could be scattered in many places. Thus, a small portion
of tumor could constitute a small percentage of the total
cancer cell population. As illustrated in Fig. 1, such biased
sampling would result in mistaking a most recent common
ancestor (MRCA-2) of the small sample as the CFC of the
entire tumor. We would recommend multiple biopsies of many
parts of a tumor as an important and necessary first step for
biospecimen banking and for application of the CGTA method,
which was also recommended as a procedure to document
intra-tumor heterogeneity by Merlo et al (20).

The second hurdle for CGTA is to achieve sufficient depth
of sequencing for reconstruction of a comprehensive tree,
with a resolution much higher than 6 generations presented in
Fig. 3. Whole genome sequencing (13) will presumably detect
all potential mutations, and will become financially feasible for
many single cells as it becomes more affordable. Alternatively,
direct whole genome sequencing of multiple single cells could
serve the same purpose (20) although the quality of single
genome remains a challenge.

Using CGTA, we have illustrated how a phylogenetic tree
of a tumor can reconstruct the tumor's genetic progression
and mutational distribution. However, a robust mathematical
approach is needed to determine the role of individual genetic
mutations in patients. We developed a criterion, proliferation
potential (PP), to describe the effect of a genetic mutation on
a cell's potential to produce offspring. A simple mathematical
expression for PP is defined using cell number and time,
and applies both to the entire tumor and to its subclones.
Theoretically, cell number is well-defined and measurable,
but in practice, the total cell number of a tumor or a piece of
tumor can only be approximated by the tumor weight, and
the relative cell number of various subclones can only be
approximated by acquisition of single cells through laser-
captured microdissection. The biggest challenge, however, is
the accurate measurement of the other variable, chrono-

logical time, to calculate PP for a cell. In most cases, the
tumor excision end-point is the only time-point available
from a patient and will not help to determine the birth time
(starting time) of various subclones. Thus, a surrogate or
approximation has to be developed to determine the relative
lifespan of cancer cell subclones, and for this reason we
introduced the concept of genetic generation (GG). CGTA
allows construction of a phylogenetic tree, and thus provides
an objective measurement of GG. The drawback of such an
approach is the limited capability to define the role of single
mutations. For instance, as shown in Fig. 3, there are several
branches where a genetic generation includes multiple
mutations as a set. Our phylogenetic tree cannot determine
whether these mutations occur during one cell division or in
multiple divisions, since cell death or limited single-cell
sequencing will result in the collapse of multiple GG into one
GG. Thus, molecular tumor clocks are needed to translate
genetic markers, such as genetic mutations and epigenetic
alterations, into chronological ages (21,22). Accurate docu-
mentation of time (chronological time) will create another
fundamental and objective measurement to study tumor
evolution. In our case, GG is developed as a surrogate for
chronological time and is expected to be useful in the deter-
mination of proliferation index (Pi), defined as the relationship
between the temporal occurrence of mutations and resultant
number of descendant cells. While our description of this
model has obviously overemphasized the role of genetic
mutations in cancer cell proliferation, other factors can be
represented as well since Pi calculation can be used to estimate
the net effect of the influence of multiple intrinsic and extrinsic
factors. Overall, this approach provides an important and
basic mathematical analysis for identification of mutations
with substantial effect on cancer cell proliferation.

We have developed a phylogenetic approach to establish
the timeline of mutational occurrence and characterize
individual genetic mutations in cancer cell proliferation in
resected patient tumor. This approach provides the capability
to study the tumor-specific role of genetic mutations in cancer
cell proliferation, without relying on prevalence information
from other patients and functional study in cancer cell lines.
Most important of all, it may have potential to study gene
function in a living cancer patient.
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