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Abstract. Hepatocellular carcinoma (HCC) is one of the most 
common tumors in the world. At present, the details of the 
mechanism responsible for HCC formation and maintenance 
remain unclear. However, the cancer stem cell (CSC) theory 
suggests that liver cancer stem cells (LCSCs) may be respon-
sible for the biological characteristics of HCC. Dysregulation 
of signaling pathways, including transforming growth factor β 
(TGF-β), Wnt, Notch and Hedgehog pathways, has been found 
to be involved in the process of hepatocarcinogenesis and is 
considered the key determinant of LCSC function. Numerous 
LCSC biomarkers have been identified including CD133, 
epithelial cell adhesion molecule (EpCAM), ABCG2 and 
CD90, which would contribute to the isolation of LCSCs.
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1. Introduction

Liver cancer is one of the most common cancers worldwide 
and is a main cause of cancer-related death. There are many 
risk factors related to hepatocellular carcinoma (HCC), such 
as hepatitis B virus (HBV) infection, hepatitis C virus (HCV) 
infection, alcohol abuse, obesity-related fatty liver disease, 

aflatoxin and various carcinogens (1-5). Effective treatments 
for localized HCC include partial liver resection, liver trans-
plantation and local ablation, such as radiofrequency ablation 
(RFA), interstitial laser coagulation, percutaneous ethanol 
injection (PEI) and percutaneous acetic acid injection (PAI) 
(6-8). These treatments result in a cure for cancer only for 
early stage tumors. Systemic therapy is the conventional treat-
ment for advanced HCC, but the outcomes are not satisfactory. 
Therefore, the mechanisms involved in the formation and 
progression of HCC require further investigation to discover 
more effective therapies for liver cancer.

Currently, the theory of a ‘cancer stem cell’ may partially 
explain the process of HCC formation. According to the theory, 
there is a rare population of stem-like cells in tumor tissue, 
called liver cancer stem cells (LCSCs), which are responsible 
for the self-renewal, malignant transformation, metastasis and 
chemoresistance of HCC. Dysregulation of signaling pathways, 
including the transforming growth factor β (TGF-β), Wnt, 
Notch and Hedgehog pathways, has been found to be involved in 
the process of hepatocarcinogenesis. In order to isolate LCSCs 
from tumor tissue, biomarkers need to be defined. At present, 
several markers that identify LCSCs have been reported. These 
include CD133, epithelial cell adhesion molecule (EpCAM), 
ABCG2 and CD90.

2. Cancer stem cells

Currently, all of the cancer cells in a tumor are thought to be 
responsible for tumor growth. However, recently emerging 
evidence suggests that there is a rare population of stem-like 
cells in tumors that determine cancer characteristics. Reya 
et al (9) proposed a theory of cancer stem cells (CSCs). They 
stated that ‘tumors may often originate from the transforma-
tion of normal stem cells, similar signaling pathways may 
regulate self-renewal in stem cells and cancer cells, and cancer 
cells may include ‘cancer stem cells’ - rare cells with indefinite 
potential for self-renewal that drive tumorigenesis’.

Bonnet and Dick (10) first reported the existence of CSCs 
in acute myeloid leukemia (AML), and CSCs have been subse-
quently found in some solid tumors. Al-Hajj et al (11) first 
successfully isolated CSCs from breast tumors. Many studies 
also demonstrated the presence of CSCs in prostate (12,13), 
lung (14,15), colon (16,17), pancreatic (18,19) and brain tumors 
(20,21).
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At present, the mechanisms responsible for the formation 
and features of HCC are not clear, but the CSC theory suggests 
that LCSCs may be responsible for HCC. Sun et al (22) 
analyzed different expression patterns of stem-cell markers in 
HBV-associated cirrhotic livers and in HCC and demonstrated 
that the stem-like cells possessed tumorigenic capacity and 
that these cells might be LCSCs.

3. Liver stem/progenitor cells and liver cancer stem cells

Liver progenitor cells, a type of bipotential cell in human liver 
tissue, give rise to both hepatocytes and the biliary tree. There 
are two main potential sources of liver stem cells: adult liver 
stem/progenitor cells and extrahepatic stem cells. The adult 
stem cells reside in the mature liver and can be activated by 
certain factors. The oval cells, located in the canal of Hering, 
have the ability to differentiate into both hepatocytes and 
biliary epithelia and are now generally acknowledged to be 
liver stem/progenitor cells (23). In addition, liver stem cells 
may also be derived from other organs, such as bone marrow 
(24,25). Increasing evidence shows that bone marrow stem 
cells participate in liver regeneration (26,27) and that Thy1-
positive bone marrow stem cells might be the source of these 
liver stem cells (28).

The CSC theory suggests that LCSCs exist, but the origin 
of LCSCs is unclear. There are two main hypotheses to 
explain the origin of LCSCs: the dedifferentiation of mature 
hepatocytes and the maturation arrest of liver stem cells. Early 
studies in rat models mainly focused on premalignant foci 
and nodules, and the results supported the dedifferentiation 
hypothesis (29,30).

However, this hypothesis has been challenged by subse-
quent research. At present, it is commonly believed that liver 
stem/progenitor cells are the potential source of HCC, intra-
hepatic cholangiocarcinoma (ICC), combined hepatocellular 
cholangiocarcinoma (CHC) and cholangiolocellular carci-
noma (CLC), a subtype of cholangiocellular carcinoma (CC) 
(31-36). To study the effect of oval cells upon tumorigenesis, 

de Lima et al (37) established a rat model of non-alcoholic 
steatohepatitis (NASH), cirrhosis and HCC, showing that oval 
cells could proliferate in this model and that these cells may 
be the origin of malignancy. In another model (the Solt-Farber 
carcinogenic model), hepatic progenitor cells, identified by 
the expression of glypican-3 (GPC3), were shown to play an 
important role in hepatic carcinogenesis (38). A summary of 
the origin of LCSCs is presented in Fig. 1.

4. Signaling pathways and liver cancer stem cells

Dysregulation of signaling pathways has been observed in 
the process of hepatocarcinogenesis, and the TGF-β, Wnt, 
Notch and Hedgehog signaling pathways have been exten-
sively studied. The signaling pathways involved in LCSCs are 
presented in Fig. 2.

TGF-β signaling pathway. The TGF-β signaling pathway 
plays a crucial role in cell cycle regulation, the immune 
system and apoptosis. In HCC, TGF-β signaling inhibits 
oncogenesis at an early stage by inducing apoptosis (39). This 
physiological phenomenon is involved in TGF-β-induced 
TRAIL expression and in the ability of Smad 3 to repress 
Bcl-2 transcription and p53-dependent apoptosis, which 
is mediated by the TGF-β signaling pathway (40-42). In 
addition, a recent study demonstrated that TGF-β activates 
autophagy in certain HCCs to suppress tumor formation 
(43), and emerging evidence also suggests that dysregulation 
of TGF-β signaling is associated with hepatocarcinogenesis 
(44,45). In HCC cells, higher TGF-β1, Smad 7 and NF-κB 
expression and lower Tβ-RII, Tβ-RIII and Smad 4 expression 
have been observed (46,47).

Mechanism of escape from TGF-β growth inhibition in HCC 
cells. Recent studies have mainly focused on the HCC cell 
mechanism of escape from TGF-β growth inhibition since 
TGF-β promotes apoptosis in HCC cells and also activates 
survival signals, such as AKT (39). The AKT pathway is also 

Figure 1. The origin of LCSCs. There are two main hypotheses that explain the origin of LCSCs: the dedifferentiation of mature hepatocytes and the matura-
tion arrest of liver stem cells. Most studies currently support the latter one. There are two possible sources of liver stem cells, which are the reactivation of 
dormant stem cells in the mature liver by certain factors and the derivation of LCSCs from other organs, such as bone marrow. 
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involved in IL-4-transduced signaling pathways, which are 
able to protect HCC cells from TGF-β-induced apoptosis (48). 
Smad 3 plays a dual role in carcinogenesis, as it promotes apop-
tosis and is essential for TGF-β-mediated immune suppression 
(49). Smad 7, another member of the TGF-β signaling pathway, 
confers resistance to the antiproliferative effects of TGF-β 
on HCC cells by inhibiting the formation of the TGF-β-
induced functional Smad-DNA complex (50). Loss of ELF, 
an embryonic liver fodrin belonging to the type II β-spectrin 
adaptor proteins, is considered an early event in hepatocar-
cinogenesis and stimulation of angiogenesis in HCC tissue 
(51,52). TGF-β-induced apoptosis requires the participation of 
NADPH oxidase, NOX4, and thus, impairing NOX4 upregula-
tion inhibits TGF-β-induced cell death in HCC (53). Further 
exploration of the mechanism showed that NOX4 upregulation 
was impaired by the overactivation of the MEK/ERK pathway 
(54). Disabled p53, p21Cip1, or Rb genes may also be involved 
in the escape from TGF-β growth inhibition in HCC cells (55).

TGF-β signaling pathway and LCSCs. The cooperation between 
TGF-β and oncogenic RAS activates the nuclear β-catenin 
signaling pathway, which causes neoplastic hepatocyte dedif-
ferentiation to immature progenitor cells and facilitates HCC 
recurrence (56). This evidence not only supports the dediffer-
entiation theory for the source of LCSCs, but also shows the 
relationship between TGF-β signaling and LCSCs. Activation 
of IL-6/STAT3, a main signaling pathway in liver stem cells, 
can induce malignant transformation in liver stem cells along 
with inactivation of the TGF-β signaling pathway (57,58). 
In addition, downregulation of Socs1 induced activation of 
STAT3, and this process plays a crucial role in malignant 
transformation (59).

Wnt signaling pathway. The Wnt signaling pathway plays 
an important role in embryogenesis and tumor development. 
It consists of a large number of proteins that interact with 
each other to regulate the signaling pathway. β-catenin is a 
key component in the pathway and is inhibited by a protein 
complex that includes GSK-3, axin and APC (60,61). Binding 
of the Wnt proteins to the Frizzled receptors activates the 
Dishevelled (DSH) protein family (62). Subsequently, DSH 
inhibits the axin/GSK-3/APC complex, and β-catenin is able 
to enter the nucleus to interact with the TCF/LEF family of 
transcription factors to promote expression of specific genes, 
such as cyclin D1, Myc and TCF-1 (63-65).

Activation of the canonical Wnt signaling pathway drives 
tumor formation in liver stem cells (66,67). Recent studies 
have shown that the expression of β-catenin was higher in 
HCC than in non-tumor tissues (68), and inhibition of Wnt-1 
signaling caused antitumor effects (69). In addition, the nonca-
nonical Wnt signaling pathway plays an important role in 
HCC. Yuzugullu et al (70) reported that noncanonical Wnt5a 
represses noncanonical Wnt signaling. This study suggests 
that the Wnt pathway is selectively activated or repressed 
depending on the differentiation stages of HCC cells. Wnt 
signaling is activated in well-differentiated HCC cells and is 
repressed in poorly differentiated cell lines. In a subsequent 
study, Wnt11, a member of the noncanonical cascade, was also 
able to inhibit HCC cell proliferation and migration (71).

Polycomb-group gene products play a pivotal role in HCC 
formation and maintenance by modulating the Wnt pathway. 
Polycomb proteins can form two major complexes: polycomb 
repressive complex 1 and 2 (PRC1 and PRC2). BMI1, a subunit 
of PRC1, and EZH2, a subunit of PRC2, are expressed in large 
quantities within HCC tissues and enable in vitro HCC cell 

Figure 2. The LCSC signaling pathways. The TGF-β signaling pathway, the Wnt signaling pathway, the Notch signaling pathway and the Hedgehog signaling 
pathway. Abbreviations: Dhh, desert hedgehog; Hh, hedgehog; Ihh, Indian hedgehog; NICD, Notch intracellular domain; Ptch, patched homolog; Shh, sonic 
the hedgehog homolog; Smo, Smoothened; TGF-β, transforming growth factor β. 
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growth (72). In addition, a definite link between high levels of 
BMI1 or EZH2 expression and the maintenance of tumor-initi-
ating cells in HCC has been observed (73,74). Furthermore, 
the expression of EZH2 activates the Wnt/β-catenin signaling 
pathway by silencing the Wnt antagonists, thereby inducing 
HCC cell proliferation (75).

The Wnt signaling pathway also plays a crucial role 
in promoting liver growth and regulating liver stem cells 
(76,77). Yamashita et al (77) employed a novel prognostic 
HCC subtype cell line to identify the relationship between 
Wnt signaling and EpCAM, a hepatic stem cell marker. They 
concluded that EpCAM was a target gene of Wnt signaling, 
and that EpCAM(+) HCC cells have the ability to both self-
renew and differentiate, which suggests that EpCAM(+) HCC 
cells may be LCSCs (78).

Notch signaling pathway. The Notch signaling pathway 
involves multiple cell differentiation processes during embry-
onic development and throughout adulthood. It has also been 
demonstrated that Notch signaling plays an important role 
in many types of human cancers, including T-cell leukemia, 
lymphoma, medulloblastoma and colorectal, pancreatic, 
mammary, ovarian, lung, gastric, cervical and breast carcinoma 
(79-82). The involvement of Notch in cancer development is 
complex, since Notch can function as an oncogene or a tumor 
suppressor depending on the tissue.

Notch signaling was first highlighted in human T-cell 
leukemia. Dysregulated Notch signaling can promote tumori-
genesis, and direct Notch inhibition has been found to have 
antiproliferative effects on T-cell acute lymphoblastic leukemia 
(T-ALL) (83,84). Activated Notch signaling has been observed 
in a wide variety of breast carcinomas (85,86). High Notch1 
protein expression is an early event in breast cancer develop-
ment and is associated with the HER-2 molecular subtype 
(87); there is also a general increase in the Notch1, Notch2, 
Notch4, Jagged1, Jagged2 and Delta-like 4 protein expression 
in breast carcinoma (88). Emerging evidence suggests that the 
Notch signaling pathway may be a potential therapeutic target 
in breast carcinoma (89,90).

Low expression levels of Notch1/Jagged1 were frequently 
observed, and downregulation of Notch1/Jagged1 signaling 
may sustain tumor progression in HCC (68). Upregulation 
of Notch1 was also shown to retard hepatocarcinogenesis by 
arresting the cell cycle and inducing apoptosis (91). In addi-
tion, high Notch3 and low Notch4 expression levels may be 
associated with HCC (92).

In some solid tumors, dysregulation of the Notch signaling 
pathway is correlated with tumor initiation (93-95). These 
findings suggest that aberrant Notch expression may influence 
CSC regulation and induce tumorigenesis (96).

Hedgehog signaling pathway. The Hedgehog signaling 
pathway plays a key role in embryonic development and 
carcinogenesis. The main members of the Hedgehog signaling 
pathway include the polypeptide ligands Hh (Shh, Ihh, Dhh), 
cell-surface transmembrane receptors (PTCH and SMO) and 
a downstream transcription factor (Gli). A large number of 
experiments demonstrate that Hedgehog signaling activation 
is involved in HCC oncogenesis, proliferation and invasive-
ness (97,98). Blocking the Hedgehog signaling pathway could 

inhibit HCC formation by restraining proliferation, inducing 
apoptosis and repressing c-Myc and cyclin D expression (99).

Members of the Hedgehog signaling pathway perform 
differently in hepatocarcinogenesis. PTCH (PTCH1), the 
Hedgehog signaling receptor, is associated with the early stage 
of HCC formation (100). Smo is considered a prognostic factor 
for HCC formation and it plays a critical role in hepatocar-
cinogenesis by mediating c-myc overexpression (101). The 
basal expression of Gli2, which is regulated by p53, Notch and 
TGF-β signaling, could prime the Hedgehog signaling pathway 
and lead to HCC tumor formation (102). Activation of the 
Hedgehog signaling pathway may influence the Wnt signaling 
pathway by regulating the transcription of a secreted frizzled-
related protein (sFRP-1), which has the ability to suppress Wnt 
signaling (103). In addition, knockdown of Rab23, an essential 
negative regulator of the Hedgehog signaling pathway, is 
reported to suppress HCC cell growth (104).

It has been suggested that Hedgehog signaling pathway 
activation might be related to LCSCs. In normal liver tissue, 
the expression of Hh is low and mature hepatocytes are not 
Hh-responsive. Omenetti and Diehl (105) found that high levels 
of Hh were expressed after liver injury and that this favored 
the survival of Hh-responsive cells, such as myofibroblastic 
and progenitor cells. During subsequent differentiation, the 
original Hh-responsive population progeny proliferates and 
this may lead to hepatic fibrosis and neoplasia. Therefore, 
the progenitor cells that survived may initiate hepatocar-
cinogenesis. A recent report also demonstrated that HBV/
HCV infection induced high Hh ligand expression levels and 
Hh-responsive cell proliferation, promoting liver fibrosis and 
cancer (106). In addition, Hedgehog signaling pathway activa-
tion may cause malignant embryonal liver cell transformation 
in hepatoblastoma (107). In summary, the Hedgehog signaling 
pathway plays an important role in LCSC regulation.

5. Markers for liver cancer stem cells

In order to isolate LCSCs from HCC tissues, several biomarkers 
have been identified, including CD133, EpCAM and ABCG2. 
These biomarkers and others are discussed below.

CD133. CD133, which is expressed in hematopoietic and 
neuronal stem cells, has long been considered an important 
CSC marker in HCC. In normal liver tissues, CD133(+) cells 
are related to liver regeneration and may also serve as self-
renewing bipotent primitive hepatic cells (108). Further study 
showed that CD133(+)CD45(-) cells from chronic liver disease 
represented a bipotent liver stem cell population at the stage of 
primary carcinoma formation, which had CSC characteristics 
(109). Emerging evidence suggests that CD133 expression is 
a putative marker for LCSCs as follows: i) a small popula-
tion of CD133(+) cells was observed in HCC tissues (110); 
ii) CD133(+) HCC cells had a higher proliferative potential 
and a greater ability to form colonies (111); iii) CD133(+) 
HCC cells possess the characteristics of progenitor cells (111); 
iv) the high expression level of ‘stemness’ genes and the low 
expression level of the mature hepatocyte markers, glutamine 
synthetase and cytochrome P450 3A4 were observed in 
CD133(+) HCC cells as compared with CD133(-) HCC cells 
(111,112); v) after injection into SCID mice, CD133(+) cells 
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from HCC tissue formed tumors, while CD133(-) cells did not 
(112); vi) CD133 expression may contribute to HCC survival 
(113); and vii) knockdown of CD133 expression reduces the 
ability to form colonies and alter the cell cycle distribution 
in HCC (114). In addition, increased CD133 expression may 
indicate a poor prognosis and tumor recurrence in patients 
with HCC (115).

It has been demonstrated that co-expression of CD133 
and other cell surface markers could define CSCs. CD133(+)
ALDH(+) cells represent the CSC population in HCC tissue 
and there is a hierarchical organization in HCC bearing 
tumorigenic capacity in the following order: CD133(+)
ALDH(+) > CD133(+)ALDH(-) > CD133(-)ALDH(-) (116). 
Higher tumorigenic potential was also observed in CD133(+)
CD44(+) HCC cells compared to CD133(+)CD44(-). Therefore, 
the co-expression of CD133 and CD44 could be considered 
markers for LCSCs (117).

The relationship between CD133 expression and signaling 
pathways has been studied extensively. TGF-β1 induces CD133 
expression in HCC by inhibiting DNMT1 and DNMT3β 
expression and these CD133(+) cells subsequently initiate 
tumor formation (118). The Akt/PKB and Bcl-2 pathway is 
involved in CD133(+)-HCC cell chemoresistance and this 
pathway could represent a new target for HCC therapy (119).

A differential analysis between the microRNA expression 
profiles of CD133(+) and CD133(-) liver cancer cells showed 
a higher miR-130b expression level in CD133(+) cells (120). 
In addition, miR-130b plays a critical role in maintaining the 
stem-like characteristics of CD133(+) cancer cells by silencing 
tumor protein p53-inducible nuclear protein 1 (TP53INP1)  
(120).

However, the migratory properties do not differ between 
CD133(+) and CD133(-) HCC cells and the amount of CD133(+) 
cells is not related to the HCC clinical status (121). Therefore, 
it is still uncertain whether or not CD133 can serve as a marker 
for LCSCs.

EpCAM. EpCAM is expressed during early liver develop-
ment, but not in hepatocytes. EpCAM is also observed in 
hepatic stem cells and most hepatoblasts (122). Accumulating 
evidence suggests that EpCAM may be a potential biomarker 
for LCSCs, and is presented as follows: i) high levels of known 
hepatic stem cell markers are expressed in EpCAM(+) cells, 
whereas mature hepatocyte markers are increased signifi-
cantly in EpCAM(-) cells (78); ii) compared with EpCAM(-) 
cells, EpCAM(+) cells showed a greater colony formation rate 
(123); iii) EpCAM(+) cells contain a multipotent cell popula-
tion, and they can differentiate into both EpCAM(+) and 
EpCAM(-) cells (123); iv) after injection into NOD/SCID mice, 
EpCAM(+) cells efficiently initiated tumors, while EpCAM(-) 
cells could not (78); and v) in the HuH7 cell line, EpCAM(+) 
cells are much more invasive than EpCAM(-) cells (78). Taken 
together, this information suggests that EpCAM(+) HCC cells 
represent hepatic stem cells and that these cells may also serve 
as LCSCs.

EpCAM expression is regulated by the Wnt/β-catenin 
signaling pathway. Accumulation of β-catenin induces 
EpCAM expression in normal liver tissue and in HCC tissue, 
while degradation of β-catenin or inhibition of Tcf/β-catenin 

complex formation suppresses EpCAM expression (77). A 
novel regulatory relationship between miR-181 and EpCAM(+) 
HCC cells has been observed; inhibition of miR-181 reduced 
the amount of EpCAM(+) cells and their ability to initiate 
tumors (124). Therefore, miR-181 may serve as a potential 
therapeutic target for HCC. In addition, EpCAM, the target of 
β-catenin and miR-181, contributes to the regulation of several 
reprogramming genes, including c-MYC, OCT-4, NANOG, 
SOX2 and KLF4, thereby playing a critical role in the mainte-
nance of HCC cell ‘stemness’ (125,126).

ABCG2. Goodell et al (127) first described a type of primi-
tive stem cell, the side population (SP), in the bone marrow; 
these cells were distinguished by their ability to exclude 
Hoechst 33342 dye and they defined this characteristic as a side 
population phenotype. Recently, SP cells have been considered 
to be CSCs in many types of tumor tissues (128). In HCC, SP 
cells harbor CSC-like properties, and they may be related to 
tumorigenesis, metastasis and therapeutic resistance (129-131). 
In addition, a study of the HCC cell cycle distribution showed 
that G0 cells were present in the SP fraction and that they may 
play a crucial role in tumor pathogenesis (132,133).

ABCG2, an ATP binding cassette (ABC) half-transporter 
that is highly expressed on the SP plasma membrane, efficiently 
extrudes a wide variety of compounds such as anticancer 
agents across cell membranes, and is considered to be the 
determinant of the SP phenotype. Recent evidence suggests that 
ABCG2 serves as a CSC biomarker in many types of tumors, 
such as lung cancer, pancreatic cancer and retinoblastoma 
(133-136). In addition, Zen et al (137) compared ABCG2(+) 
with ABCG2(-) subpopulations from HCC tissues. The results 
showed that other progenitor cell markers, such as CK19 and 
AFP, were mainly located in ABCG2(+) subpopulations and 
that ABCG2(+) cells may play an important role in hepatocar-
cinogenesis through their ability to generate both ABCG2(+) 
and ABCG2(-) progenies. Our previous study also supported 
the potential for ABCG2 to be a LCSC marker (138). Further 
study explored the mechanism of ABCG2 expression in HCC, 
demonstrating that the Akt signaling pathways regulated the 
SP phenotype activity by altering the subcellular localization 
of ABCG2 and by suppressing Akt signaling that could help 
overcome ABCG2-induced chemotherapy resistance (128,139).

Other putative markers. CD90, also named Thy-1, is a 
conserved cell surface protein that can be used as a marker 
for a variety of stem cells. In precancerous liver tissues, CD90 
expression is observed in proliferating bile ductules and its 
co-expression with CD34 represents hepatic stem cells (140). 
Yang et al (141) compared CD90(+) cells with CD90(-) cells 
from HCC cell lines and demonstrated that CD45(-)CD90(+) 
cells were detected in all of the tumor specimens and in 90% 
of the blood samples from HCC patients. These researchers 
also demonstrated that CD90 expression increased during 
tumor formation and that CD90(+) cells formed tumor nodules 
in immunodeficient mice; CD90(+) cells generated tumor 
nodules after serial transplantation in a second and then in a 
third group of immunodeficient mice. Therefore, CD90 may 
be considered to be a marker for LCSCs.

Co-expression of CD90 and CD13 was found to play an 
important role in hepatocarcinogenesis, and combination of a 
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CD13 inhibitor and a CD90 inhibitor drastically reduced tumor 
volume compared with either agent alone. In addition, CD13(+) 
cells demonstrated CSC characteristics such as proliferation, 
formation of cellular clusters in cancer foci and the ability to 
survive during treatment (142). Given these results, CD13 is a 
potential marker for LCSCs.

Cytokeratin 19 (CK19), a member of the keratin family, 
is a stemness-related marker. CK19 is expressed in normal 
human liver bile duct cells and is also observed scattered in 
the parenchyma of cirrhotic livers and within HCCs (143,144). 
Compared with CK19(-) cells, CK19(+) early lesions and 
advanced HCCs contain genetic changes consistent with 
remodeling toward a differentiated phenotype, and they are 
an important predictive factor for prognosis, patient survival 
and tumor recurrence (145). The expression of epithelial-
mesenchymal transition (EMT)-related proteins, which play 
a pivotal role in the tumor-cell invasion process, is increased 
in CK19(+) HCC cells; therefore, CK19(+) HCC cells demon-
strate high invasive ability (146).

OV6, a hepatic progenitor cell marker, has recently been 
regarded as a putative marker for LCSCs. OV6(+) HCC cells 
demonstrate greater chemoresistance and a greater ability 
to form tumors in vivo compared to OV6(-) cells (147). 
Activation of the Wnt pathway tends to give rise to an increase 
in the proportion of OV6(+) cells, and inhibition of β-catenin 
signaling suppresses OV6 expression within HCC cells (147); 
therefore, the OV6 expression is regulated by the Wnt pathway.

In addition, the expression of other markers, such as CD44, 
DLK1, Oct4, Nanog, c-kit and Ezmin, may also be related to 
LCSCs (144,148-152). However, the exact pattern of LCSC 
marker expression is still unknown. Jabari et al (153) demon-
strated that different HCC cell lines express different stem cell 
markers. The classical cholangiocellular type (Huh-7, Huh-7 
pcDNA3.1, Hep3B) expressed CK7/19, β-catenin and CD34; a 
dedifferentiated mesenchymal-proliferative type (Huh-7 5-15) 
was characterized by CK19, vimentin and Ki-67; a dediffer-
entiated embryonic-development type (Hep3B implanted in 

Matrigel) expressed CK19, β-catenin and PTC; and a classical 
HCC type (HepG2) expressed CK18/19 and β-catenin. In 
addition, EpCAM(+) cells have a greater capacity to initiate 
tumors than do CD133(+) cells in the Huh1 cell line, while 
EpCAM(+) and CD133(+) cells showed similar tumorigenic 
ability in the Huh7 cell line (78). Therefore, determination of 
LCSC markers requires further research. A summary of puta-
tive LCSC markers is provided in Table I.

6. Discussion

Although the exact mechanism that controls hepatocarcino-
genesis remains unclear, the ‘cancer stem cell’ theory has been 
proposed as a potential explanation. LCSCs, a rare population 
in HCC cells with stem-like characteristics, are thought to be 
responsible for oncogenic cell transformation.

Dysregulation of signaling pathways such as TGF-β, Wnt, 
Notch and Hedgehog plays a crucial role in HCC formation 
and LCSC maintenance. Recent research has shown that addi-
tional factors also contribute to this progression, especially 
microRNAs. In addition to miR-130b and miR-181 mentioned 
above, other microRNAs, which participate in cancer cell 
‘stemness’, have also been identified. LIN28, a miRNA-binding 
protein, is expressed without restriction in embryonic stem 
cells and various human cancer cells. LIN28 was found to be 
one of the reprogramming factors, which are able to reprogram 
somatic cells to pluripotent stem cells (154). Under physiolog-
ical conditions, the miRNAs let-7, mir-125, mir-9 and mir-30 
negatively regulate LIN28 expression and the downregulation 
of these miRNAs may lead to LIN28 overexpression in tumors 
(155). In addition, high expression levels of LIN28 can promote 
tumor formation and malignant transformation by repressing 
the let-7 family miRNA expression (156). Let-7 is sufficient to 
negatively regulate LIN28 via a feedback loop (157). In tumor 
tissue, LIN28 upregulation is tightly linked to a high proportion 
of ALDH(+) cells, which are regarded as CSC representatives, 
and LIN28 plays a crucial role in the maintenance of ALDH(+) 

Table Ⅰ. Putative markers of LCSCs.

Surface Percentages of cells Minimum no. of cells Injection Strain Latency Ref.
markers expressing markersa for tumor formation site of mice

CD133(+)ALDH(+) 0.94-55.71%   500 s.c. SCID 82 days (116)
CD133(+) 0.1-2.0%    100 i.p. BNX 10 weeks (110)
CD133(+) 0.10-93.18%    100 s.c. NOD/SCID 3 months (117)
CD133(+)CD44(+) 0.09-1.88%    100 s.c. NOD/SCID 2 months (117)
EpCAM(+) 0.7-99.6%    100 s.c. NOG 6-7 weeks (123)
ABCG2 (SP cells) 0.25-0.80%  1000 s.c. NOD/SCID 16 weeks (129)
CD90(+) 0.04-2.34%    500 s.c. SCID/Beige 3 months (141)
CD90(+)CD44(+) 0.02-2.53%    500 s.c. SCID/Beige 3 months (141)

aThe numbers represent the percentages of cells expressing the markers in different cell lines. The cell lines used are as follows: CD133(+)ALDH(+) 
(HepG2, Huh7, PLC8024, Hep3B, H2M); CD133(+) in ref. 110 (SMMC-7721); CD133(+) in ref. 117 (Huh7, SMMC-7721, MHCC-LM3, 
MHCC-97L, HepG2, Hep3B); CD133(+)CD44(+) (Huh7, SMMC-7721, MHCC-LM3, MHCC-97L); EpCAM(+) (Hep3B, Huh7, HepG2, PLC/
PRF/5, Li7); ABCG2 (Huh7, PLC/PRF/5); CD90(+) (HepG2, Hep3B, PLC, Huh7, MHCC97L, MHCC97H); CD90(+)CD44(+) (HepG2, Hep3B, 
PLC, Huh7, MHCC97L, MHCC97H). LCSCs, liver cancer stem cells; s.c., subcutaneous; i.p., intraperitoneal; SCID, severe combined immuno-
deficient; BNX, beige/nude/XID; NOD/SCID, non-obese diabetic/severe combined immunodeficient; NOG, NOD⁄scid ⁄γcnull.
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cancer cells. Changes in the LIN28/let-7 regulatory loop induce 
the ‘reprogramming-like’ process in tumors, which may explain 
the formation of CSCs (157).

Numerous markers have been used to identify LCSCs, and 
these markers may be putative therapeutic targets in HCC. 
Immunotherapy may also be an effective way to treat HCC 
by targeting these biomarkers. CD133(+) HCC cells have long 
been regarded as potential LCSCs and an anti-CD133 antibody 
conjugated to a cytotoxic drug is reported to inhibit HCC cell 
proliferation in vitro (158); therefore, CD133(+) cancer cells 
may be considered a novel target for HCC therapy. An anti-
CD44 antibody-mediated liposomal nanoparticle, containing 
a triple fusion gene (herpes simplex virus truncated thymi-
dine kinase, renilla luciferase and red fluorescent protein), 
can be used in gene therapy and in the molecular imaging 
of HCC (159). CD13(+) HCC cells are able to resist regular 
ROS-inducing chemoradiation therapy as CD13 protects HCC 
cells from ROS-induced DNA damage. Therefore, a combina-
tion of a CD13 inhibitor and ROS-inducing chemoradiation 
therapy may enhance treatment effectiveness (142). A large 
amount of circulating CSCs, represented by CD45(+)CD90(+)
CD44(+) HCC cells, is tightly linked to an increased possi-
bility of HCC recurrence after hepatectomy, which means 
these CSCs may be a potential target for the prevention of 
HCC recurrence (160).
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