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Abstract. Matrix metalloproteinases (MMPs) play an 
important role in cancer metastasis, cell migration and 
invasion. Herein, we investigated the effects of silibinin on 
12-O-tetradecanoylphorbol-13-acetate (TPA)-induced cell 
migration and MMP-9 expression in thyroid and breast cancer 
cells. Our results revealed that the levels of MMP-9 mRNA 
and protein expression were significantly increased by TPA 
but not MMP-2 in TPC-1 and MCF7 cells. To verify the 
regulatory mechanism of TPA-induced MMP-9 expression, 
we treated TPC-1 and MCF7 cells with the MEK1/2 inhibitor, 
UO126, and TPA-induced MMP-9 expression was significantly 
decreased. We also found that TPA-induced cell migration and 
MMP-9 expression was significantly decreased by silibinin. 
In addition, TPA-induced phosphorylation of MEK and ERK 
was also inhibited by silibinin. Taken together, we suggest that 
silibinin suppresses TPA-induced cell migration and MMP-9 
expression through the MEK/ERK-dependent pathway in 
thyroid and breast cancer cells.

Introduction

Silibinin is the main component of the silymarin complex and 
is isolated from the seeds of Silybum marianum, also known 
as milk thistle (1). Silibinin has a wide range of pharmacologic 
effects including the induction of apoptosis, and the inhibi-
tion of cell proliferation, cell invasion and angiogenesis (2,3). 
Recently, Kim et al reported that silibinin triggers cell cycle 
arrest through the downregulation of cyclin B1 and cdc2 and 

upregulation of p21 expression in triple-negative breast cancer 
cells (4). In addition, silibinin was found to effectively delay the 
development of spontaneous mammary tumors and decrease 
the tumor mass in Her2/neu transgenic mice (5).

Migration of cells is a dynamic process that occurs in 
tissue remodeling, inflammation and wound repair and is 
regulated by a variety of extracellular factors, including extra-
cellular matrix (ECM) proteins (6,7). Tumor cell migration is 
associated with the early stages of metastasis (8). Metastasis 
is considered responsible for more than 90% of cancer-related 
deaths (9). During metastasis, cancer cells are involved in 
numerous interactions with various factors such as the ECM, 
growth factors, cytokines and basement membranes  (8). 
Consequently, cancer cells acquire motility and local invasive 
capability. In addition, cancer cell-mediated tissue remodeling 
is observed to have a strong positive correlation with matrix 
metalloproteinase (MMP) levels (10).

MMPs are major critical molecules that assist tumor 
cells during metastasis (11). They play an important role in 
ECM degradation and cancer cell invasion. Overexpression 
of MMPs contributes to tumorigenesis and tumor progres-
sion through multiple pathways (12). MMP-9 is one of two 
gelatinases and is able to degrade type IV collagen, which is 
abundant in basement membranes (13). High serum levels of 
MMP-9 are associated with a higher tumor grade, poor overall 
survival and secondary metastasis in melanoma and breast 
cancer tissue (10,14).

In the present study, we investigated the relationship between 
silibinin and cell migration in thyroid and breast cancer cells. 
Here, our results revealed that 12-O-tetradecanoylphorbol-13-
acetate (TPA)-induced MMP-9 expression and cell migration 
were suppressed by silibinin in both thyroid and breast cancer 
cells.

Materials and methods

Reagents and cell cultures. Dulbecco's modified Eagle's 
medium (DMEM), antibiotics and 10% zymogram gel were 
purchased from Life Technologies (Rockville, MD, USA). Fetal 
bovine serum (FBS) was purchased from Hyclone (Logan, 
UT, USA). Silibinin was purchased from Sigma (St. Louis, 
MO, USA). Mouse recombinant MMP-9 was purchased from 
R&D Systems (Minneapolis, MN, USA). TPA was purchased 
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from Tocris (Ellisville, MO, USA). The secondary peroxidase-
conjugated antibodies and ECL Prime reagents were purchased 
from Amersham (Buckinghamshire, UK).

Papillary thyroid cancer TPC-1 and breast cancer MCF7 
cells were grown in a humidified atmosphere of 95% air and 
5% CO2 at 37˚C in DMEM supplemented with 10% FBS, 
2 mM glutamine, 100 IU/ml penicillin and 100 µg/ml strep-
tomycin. Each cell line was maintained in culture medium 
supplemented without FBS for 24 h.

Drug treatment. Cells were maintained in culture medium 
without FBS for 24  h, and then the culture medium was 
replaced with fresh medium without FBS, and the cells were 
further incubated with the indicated concentrations of silibinin 
for 24 h. In the experiments involving silibinin, the cells were 
pretreated with 50 µM silibinin for 60 min prior to treatment 
with 20 nM TPA for 24 h.

Zymography. Zymography was performed on 10% poly-
acrylamide gels that had been cast in the presence of gelatin 
as previously described (15). Briefly, samples (100 µl) were 
resuspended in a loading buffer and run on a 10% SDS-PAGE 
gel containing 0.5 mg/ml gelatin without prior denaturation. 
After electrophoresis, the gels were washed to remove SDS 
and incubated for 30  min at room temperature (RT) in a 
renaturing buffer (50 mM Tris, 5 mM CaCl2, 0.02% NaN3 and 
1% Triton X-100). Next, the gels were incubated for 48 h at 
37˚C in a developing buffer [50 mM Tris-HCl (pH 7.8), 5 mM 
CaCl2, 0.15 M NaCl and 1% Triton X-100]. The gels were 
subsequently stained with Coomassie Brilliant Blue G-250, 
destained in 30% methanol, and flooded with 10% acetic acid 
to detect gelatinase secretion.

cDNA synthesis and real-time PCR. Total RNA was extracted 
from cells using the TRIzol reagent (Invitrogen, Carlsbad, CA, 
USA), according to the manufacturer's protocol. Isolated RNA 
samples were then used for RT-PCR. Samples (total RNA, 
1 µg) were reverse-transcribed into cDNA in 20-µl reaction 
volumes using a first-strand cDNA synthesis kit for RT-PCR, 
according to the manufacturer's instructions (MBI Fermentas, 
Hanover, MD, USA).

Gene expression was quantified by real-time PCR using the 
SensiMix SYBR kit (Bioline Ltd., London, UK) and 100 ng of 
cDNA per reaction. The sequences of the primer sets used for 
this analysis were: human MMP-9 (forward, 5'-CCC GGA 
CCA AGG ATA CAG-3'; reverse, 5'-GGC TTT CTC TCG 
GTA CTG-3'), MMP-2 (forward, 5'-GGC CTC TCC TGA CAT 
TGA CCT T-3'; reverse, 5'-GGC CTC GTA TAC CGC ATC 
AAT C-3'), and β-actin as an internal control (forward, 5'-AAA 
CTG GAA CGG TGA AGG TG-3'; reverse, 5'-CTC AAG TTG 
GGG GAC AAA AA-3'). An annealing temperature of 60˚C 
was used for all of the primers. PCRs were performed in a 
standard 384-well plate format with an ABI 7900HT real-time 
PCR detection system. For data analysis, the raw threshold 
cycle (CT) value was first normalized to the housekeeping gene 
for each sample to obtain ∆CT. The normalized ∆CT was then 
calibrated to control cell samples to obtain ∆∆CT.

Cell viability. Total cell numbers following treatment with 
silibinin were evaluated by Quick Cell Proliferation Assay 

Kit  II (Biovision, Mountain View, CA, USA) according to 
the manufacturer's protocol. Briefly, TPC-1 human papillary 
thyroid cancer cells (5x104/well) were grown in a 96-well plate 
in 100 µl/well of culture media in the absence or presence 
of the indicated concentrations of silibinin. After incubating 
the cells for 24 h, 10 µl WST reagent was added to each well. 
Viable cells were quantified photometrically at 480 nm.

Wound healing assay. TPC-1 thyroid cancer cells were seeded 
in 6-well plates and were cultured for 24 h. A monolayer 
of cells was scratched with a 200-µl pipette tip to create a 
wound, and then this was washed twice in PBS to remove 
any suspended cells. The cells were pretreated with silibinin 
(50 µM) for 60 min prior to treatment with TPA; the monolayer 
of cells was then treated with 20 nM TPA for 24 h in serum-
free media. The cells migrating from the leading edge were 
photographed at 0 and 24 h using a CK40 inverted microscope 
(Olympus, Tokyo, Japan).

Statistical analysis. Statistical significance was determined 
using the Student's t-test. The results are presented as the 
means ± SEM. All p-values were two-tailed and significance 
was set at a p-value <0.05.

Results

Expression of MMP-9 and MMP-2 in thyroid and breast 
cancer cells following TPA treatment. The levels of MMP-9 
and MMP-2 mRNA and protein expression in the TPC-1 
and MCF7 cells were determined following treatment with 
TPA at the indicated concentrations for 24 h. We analyzed 
the levels of MMP-9 and MMP-2 mRNA (in cell lysates) 
and protein (in culture media) expression using real-time 
PCR and zymography, respectively. Our results revealed that 
the levels of MMP-9 protein expression were significantly 
increased in the TPC-1 thyroid (Fig. 1A) and MCF7 breast 
(Fig. 1C) cancer cells. However, MMP-2 protein expression 
was not altered following TPA treatment in the TPC-1 cells 
(Fig. 1A), although MMP-2 expression was not detected in the 
MCF7 cells following TPA treatment (Fig. 1C). In addition, 
the levels of MMP-9 mRNA were also increased following 
TPA treatment (Fig. 1B and D). MMP-9 mRNA expression 
was increased by 28.8±6.6- and 30.6±2.5‑fold in the TPC-1 
thyroid (Fig. 1B) and MCF7 (Fig. 1D) breast cancer cells, 
respectively, following treatment with 20 nM TPA when 
compared with the control level.

TPA-induced MMP-9 expression is inhibited by the MEK1/2 
inhibitor, UO126. To verify the regulatory mechanism of 
TPA-induced MMP-9 expression, we examined the effect 
of the MEK1/2 inhibitor, UO126, on TPA-induced MMP-9 
expression. After pretreatment of TPC-1 and MCF7 cells with 
10 µM UO126 for 30 min, we treated the cells with 20 nM TPA 
for 24 h. The levels of TPA-induced MMP-9 protein expres-
sion were significantly decreased by UO126 in the TPC-1 
thyroid (Fig. 2A) and MCF7 breast cancer cells (Fig. 2C). In 
addition, TPA-induced MMP-9 mRNA expression was also 
decreased following pretreatment with UO126 (Fig. 2B and 
D). MMP-9 mRNA expression was increased by 29.4±2.4- and 
41.8±0.6-fold, respectively, in the TPC-1 thyroid (Fig. 2B) and 
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Figure 1. Expression of MMP-9 and MMP-2 in TPC-1 thyroid and MCF7 breast cancer cells following TPA treatment. After serum starvation for 24 h, TPC-1 
(A and B) and MCF7 (C and D) cells were treated with the indicated concentrations of TPA for 24 h. The cell culture media and cell lysates were harvested for 
detection of MMP-9 and MMP-2 protein (A and C) and mRNA (B and D), respectively. Expression of MMP-9 and MMP-2 protein (cell culture media) and 
mRNA (cell lysates) was analyzed by zymography (A and C) and real-time PCR (B and D), respectively. The results are representative of three independent 
experiments. The values shown are the means ± SEM. *P<0.05 vs. control. Con, control.

Figure 2. TPA-induced MMP-9 expression is suppressed by UO126 in TPC-1 thyroid and MCF7 breast cancer cells. After serum starvation for 24 h, TPC-1 (A 
and B) and MCF7 (C and D) cells were pretreated with UO126 for 30 min prior to further incubation with 20 nM TPA for 24 h. The cell culture media and cell 
lysates were harvested for detection of MMP-9 protein (A and C) and mRNA (B and D), respectively. Expression of MMP-9 and MMP-2 protein (cell culture 
media) and mRNA (cell lysates) was analyzed by zymography (A and C) and real-time PCR (B and D), respectively. (E) After serum starvation for 24 h, TPC-1 
cells were pretreated with UO126 for 30 min prior to further incubation with 20 nM TPA for the indicated times. The phosphorylation of MEK and ERK was 
analyzed by western blotting in total cell lysates. The results are representative of three independent experiments. The values shown are the means ± SEM. 
*P<0.05 vs. control, †P<0.05 vs. TPA-treated cells. Con, control.
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MCF7 (Fig. 2D) breast cancer cells, following treatment with 
20 nM TPA when compared with control levels. In contrast, 
TPA-induced MMP-9 expression was significantly decreased 
by 7.5±1.9 and 4.5±1.3-fold in the TPC-1 thyroid (Fig. 2B) and 
MCF7 (Fig. 2D) breast cancer cells, respectively, following 
treatment with 10 µM UO126 when compared with the control 
levels.

Next, we confirmed the effect of UO126 on TPA-induced 
phosphorylation of MEK and ERK in TPC-1 thyroid cancer 
cells. As expected, the phosphorylation of MEK and ERK 
was increased following TPA treatment (Fig. 2E). In contrast, 
TPA-induced phosphorylation of MEK and ERK was signifi-
cantly decreased by UO126 (Fig. 2E).

TPA-induced MMP-9 expression is completely suppressed by 
silibinin. The chemical structure of silibinin is represented in 

Fig. 3A. Our results revealed that the cell viability was signifi-
cantly (50% of the control level) decreased following treatment 
with 100 µM silibinin (Fig. 3B). Therefore, we treated cells 
with 50 µM silibinin in the subsequent studies.

To investigate the effect of silibinin on TPA-induced 
MMP-9 expression, we pretreated cells with 50 µM silibinin 
for 60 min prior to treatment with 20 nM TPA. We found that 
TPA-induced MMP-9 protein expression was significantly 
decreased by silibinin treatment (Fig. 4A and C). In addition, 
the levels of expression of MMP-9 mRNA increased signifi-
cantly (29.0±2.6- and 39.1±2.5-fold) in the TPC-1 thyroid 
(Fig. 4B) and MCF7 breast (Fig. 4D) cancer cells, respectively, 
following treatment with a concentration of 20 nM TPA when 
compared to control levels. In contrast, TPA-induced MMP-9 
mRNA expression was decreased to 5.7±0.6-fold in TPC-1 
thyroid cancer cells by 50 µM silibinin (Fig. 4B). MCF7 breast 

Figure 3. Effect of silibinin on cell viability. (A) The chemical structure of silibinin. (B) After serum starvation for 24 h, TPC-1 cells were treated with silibinin 
at the indicated concentrations for 24 h. These results are representative of three independent experiments. The values shown are the means ± SEM. *P<0.05 
vs. control. Con, control.

Figure 4. TPA-induced MMP-9 expression is decreased by silibinin. After serum starvation for 24 h, TPC-1 (A and B) and MCF7 (C and D) cells were 
pretreated with 50 µM silibinin for 60 min prior to further incubation with 20 nM TPA for 24 h. The cell culture media and cell lysates were harvested for 
detection of MMP-9 and MMP-2 protein (A and C) and mRNA (B and D), respectively. Expression of MMP-9 protein (cell culture media) and mRNA (cell 
lysates) was analyzed by zymography (A and C) and real-time PCR (B and D), respectively. The results are representative of three independent experiments. 
The values shown are the means ± SEM. *P<0.05 vs. control, †P<0.05 vs. TPA-treated cells. Con, control.
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cancer cells also showed similar results (Fig. 4D) following 
treatment with 50  µM silibinin when compared with the 
control level.

TPA-induced cell migration is completely suppressed by 
silibinin. In the next experiment, we examined the effect of 
silibinin on TPA-induced cell migration in TPC-1 thyroid 
cancer cells. As shown in Fig. 5A, TPA-induced cell migration 
was completely blocked by 50 µM silibinin treatment.

Next, we investigated the effect of silibinin on TPA-induced 
phosphorylation of MEK and ERK in TPC-1 thyroid cancer 
cells. As expected, the phosphorylation of MEK and ERK 
was increased following TPA treatment (Fig. 5B). In contrast, 
TPA-induced phosphorylation of MEK and ERK was 
decreased by silibinin (Fig. 5B). Therefore, we demonstrated 
that silibinin suppressed TPA-induced cell migration as well 
as inhibited MMP-9 expression.

Discussion

Phorbol esters, such as TPA, are natural molecules that are 
recognized as potent tumor promoters and can potently trigger 
multiple cellular events such as protein kinase C (16,17). TPA 
was found to significantly enhance cell migration abilities of 
human cancer cells including hepatoma and breast cancer 
cells (18,19). In addition, TPA-induced migration and invasion 
of glioblastoma cells were prevented by blocking PKCα-
dependent pathways (20). Consistent with these reports, we 
found that TPA increased cell migration in thyroid and breast 
cancer cells. Herein, we investigated the inhibitory effect of 
silibinin on TPA-induced cancer cell migration.

MMPs are positively associated with tumor progression 
including tumor differentiation, metastasis and poor prog-
nosis (21,22). In addition, inhibition of MMPs decreases cell 
invasion while the activation of MMPs yields increased tumor 
cell invasion (23). MMP-9 is one of the gelatinases and is 
expressed in a large number of cell types, including epithelial 
and inflammatory cells (24). MMP-9 has been associated with 
the development and extent of metastases in lymph nodes (25). 
Although we did not present the data, TPA-induced cell 

migration was significantly suppressed by a broad-spectrum 
MMP inhibitor, PD166793, in both TPC-1 and MCF7 cells. 
Therefore, we demonstrated that a broad-spectrum MMP 
inhibitor, PD166793, directly or indirectly affects TPA-induced 
cell migration through the regulation of MMP activity.

The region of the MMP-9 promoter contains cis-acting 
regulatory elements for transcription factors, including two 
AP-1 sites and an NF-κB site (26,27). The DNA binding activity 
of a variety of transcription factors such as NF-kB and AP-1 
is regulated by ERK activity (26-28). Recently, we reported 
that TPA-induced transcriptional activity of AP-1 is mediated 
through the Raf/MEK/ERK-dependent pathway (3). In addi-
tion, the transcriptional expression of MMP-9 was found to be 
directly regulated by AP-1 DNA binding activity (28) and was 
completely suppressed by the MEK1/2 inhibitor, UO126 (3). In 
accordance with these studies, TPA-induced MMP-9 expres-
sion was significantly decreased by silibinin. TPA-induced 
phosphorylation of MEK and ERK was also suppressed.

Conclusively, we found that silibinin suppresses the 
TPA-induced phosphorylation of MEK and ERK in thyroid 
cancer cells. In addition, cell migration and MMP-9 expres-
sion were completely inhibited by silibinin. Therefore, 
silibinin may be a promising drug for the treatment of thyroid 
and breast cancer.
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