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Ginseng saponin metabolite 20(S)-protopanaxadiol inhibits
tumor growth by targeting multiple cancer signaling pathways
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Abstract. Plant-derived active constituents and their semi-
synthetic or synthetic analogs have served as major sources
of anticancer drugs. 20(S)-protopanaxadiol (PPD) is a
metabolite of ginseng saponin of both American ginseng
(Panax quinquefolius L.) and Asian ginseng (Panax ginseng
C.A. Meyer). We previously demonstrated that ginsenoside
Rg3, a glucoside precursor of PPD, exhibits anti-proliferative
effects on HCT116 cells and reduces tumor size in a xenograft
model. Our subsequent study indicated that PPD has more
potent antitumor activity than that of Rg3 in vitro although
the mechanism underlying the anticancer activity of PPD
remains to be defined. Here, we investigated the mechanism
underlying the anticancer activity of PPD in human cancer
cells in vitro and in vivo. PPD was shown to inhibit growth and
induce cell cycle arrest in HCT116 cells. The in vivo studies
indicate that PPD inhibits xenograft tumor growth in athymic
nude mice bearing HCT116 cells. The xenograft tumor size
was significantly reduced when the animals were treated with
PPD (30 mg/kg body weight) for 3 weeks. When the expres-
sion of previously identified Rg3 targets, A kinase (PRKA)
anchor protein 8 (AKAP8L) and phosphatidylinositol transfer
protein o (PITPNA), was analyzed, PPD was shown to inhibit
the expression of PITPNA while upregulating AKAPSL
expression in HCT116 cells. Pathway-specific reporter assays
indicated that PPD effectively suppressed the NF-kB, JNK
and MAPK/ERK signaling pathways. Taken together, our
results suggest that the anticancer activity of PPD in colon
cancer cells may be mediated through targeting NF-«B, INK
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and MAPK/ERK signaling pathways, although the detailed
mechanisms underlying the anticancer mode of PPD action
need to be fully elucidated.

Introduction

Plant-derived active constituents and their semi-synthetic or
synthetic analogs have served as one of the major sources of
anticancer drugs. An analysis of current chemotherapeutic
agents and their sources indicates that nearly 60% of approved
anticancer drugs are derived from natural products (1).
Ginseng, such as American ginseng (Panax quinquefolius L.)
and Asian ginseng (Panax ginseng C.A. Meyer), is the root of
different Panax species (Araliaceae) and is one of the most
commonly used traditional medicines. The saponins of ginseng
(also known as ginsenosides) are its major active components
and have been shown to possess anti-inflammatory, antitumor,
and neuroprotective activities (2,3). Two types of ginsenosides
in ginseng, protopanaxatriol (PTS) and protopanaxadiol
(PDS) (2,4) have been shown to exert anticancer proper-
ties (5-9). After oral administration of PDS ginsenosides (e.g.,
Rg3) to mice, PDS is metabolically converted to protopanaxa-
diol (PPD) and Compound K (CK) by intestinal bacteria (10,11).
Compound K can significantly inhibit the PMA-induced
MMP-9 secretion and protein expression via suppressing the
DNA-binding and transcriptional activities of AP-1, which
is the downstream factor of p38 MAPK, ERK and JNK (12).
Thus, it is of importance to understand the anticancer effects
and possible mechanisms associated with ginseng derivatives.

We previously investigated the cancer chemopreventive
activities of American ginseng root extracts (AGE and S-AGE),
fractions (S2h) and pure ginsenoside Rg3 on human colorectal
cancer cells (13). Ginsenoside Rg3 was shown to exert anti-
proliferative effects on HCT116 cells in vitro and to inhibit
tumor growth in a nude mouse xenograft tumor model (14).
Furthermore, we conducted a microarray expression profiling
analysis and found that the expression levels of 76 genes,
such as A kinase (PRKA) anchor protein 8 (AKAPSL) and
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phosphatidylinositol transfer protein a (PITPNA), were differ-
entially regulated after the treatment of HCT116 cells with S2h
(American ginseng extract) or ginsenoside Rg3 (13). As one
of the most important metabolites of the ginseng herb, PPD
and its derivates have therapeutic potential for inhibiting the
growth and invasiveness of tumors. However, the molecular
mechanisms underlying the anticancer activity of PPD remain
to be fully elucidated.

The present study investigated the anticancer effects of
PPD and its mode of action in human cancer cells. We found
that PPD inhibited growth and induced cell cycle arrest in
HCT116 cells. Furthermore, PPD inhibited the xenograft
tumor growth in athymic nude mice. The xenograft tumor
size was significantly reduced following treatment with PPD
for up to 3 weeks. Furthermore, PPD inhibited the expres-
sion of PITPNA while upregulating AKAPSL expression
in HCT116 cells. Pathway-specific reporter assays indicated
that PPD effectively inhibited the NF-xB, JNK and MAPK/
ERK signaling pathways. Thus, our results suggest that PPD
may exert its anticancer activity on colon cancer cells through
targeting major signaling pathways, such as NF-xB, JNK and
MAPK/ERK.

Materials and methods

Chemicals and drug preparations. PPD was kindly provided by
Professor Ping Li of China Pharmaceutical University (Nanjing,
China) with a purity >95% as confirmed by HPLC (4,15). PPD
was dissolved in dimethyl sulfoxide (DMSO) (15 mM stock
solution). For in vivo treatment, PPD was dissolved in PEG.
Unless otherwise indicated, all chemicals were obtained from
Fisher Scientific (Pittsburgh, PA, USA) or Sigma-Aldrich (St.
Louis, MO, USA).

Cell culture. Human colorectal cancer lines (HCTI116
and SW480), breast cancer cell lines (MDA-MB-468 and
MDA-MB-231), prostate cancer cell lines (PC3 and DU145),
osteosarcoma cell lines (MG63 and 143B) and HEK-293 cells
were purchased from the American Type Culture Collection
(ATCC, Manassas, VA, USA) and grown in Dulbecco's modi-
fied Eagle's medium (DMEM) (Invitrogen Life Technologies,
Carlsbad, CA, USA) supplemented with 10% fetal bovine
serum (FBS; HyClone Laboratories, Logan, UT, USA) and 50
units penicillin/streptomycin in 5% CO, at 37°C.

MTT proliferation assay. A modified MTT assay was used to
examine the cell growth inhibitory effect of ginsenosides on cell
proliferation as previously described (16). Cells were seeded in
96-well plates (1x10* cells/well, 50-70% density). Ginsenosides
were added to the cells at various concentrations and incuba-
tion was carried out for 48 h. Fifteen microliters of dye solution
was added to each well and incubated for an additional 4 h. One
hundred microliters/well solubilization/stop solution was added
to stop the reaction and to solubilize the formazan crystals in a
humidified atmosphere overnight. Absorbance at 570 nm was
determined using a 96-well microplate reader.

Crystal violet assay. HCT116 cells were treated with the
indicated concentrations of drugs. At the endpoints, the cell
culture medium was carefully removed. The wells were
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gently washed with phosphate-buffered saline (PBS) at room
temperature. The medium was aspirated and cells were stained
with 0.5% crystal violet formalin solution at room temperature
for 20-30 min. After staining, the cells were washed with tap
water and air-dried at room temperature (17,18).

Flow cytometry and cell cycle analysis. Flow cytometry
was carried out to quantitatively detect the cell cycle distri-
bution (19). Cells were plated into 6-well plates for drug
treatments. At 24, 48 and 72 h post treatment, cells were
harvested, washed with PBS, fixed in cold methanol overnight
at 4°C and stained with 50 ng/ml propidium iodide (PI) by
incubation at 4°C for 15 min. The stained cells were analyzed
by flow cytometry.

RNA isolation and semi-quantitative reverse transcription-
polymerase chain reaction (RT-PCR) analysis. Total RNA
was isolated using TRIzol reagents and used to generate cDNA
templates by RT reaction with hexamer and SuperScript® II
RT (both from Invitrogen Life Technologies). The first
strand cDNA products were further diluted 10-fold and used
as PCR templates. Semi-quantitative RT-PCR was carried
out as described (20). Briefly, PCR primers were designed
using the Primer3 program to amplify the human genes
of interest (product sizes 150-180 bp) as follows: GAPDH
forward, 5'-CAACGAATTTGGCTACAGCA-3 and reverse,
5-AGGGGAGATTCAGTGTGGTG-3'; PITPNA forward,
5'-CGTCCTACCCCCATGTTG-3' and reverse, 5-ACTGGG
CAGCGTCTGTTC-3"; and AKAPSL forward, 5'-GCAG
GCAGGCAAGAAGAG-3' and reverse, 5-TGGCCATCTCG
TCCTCAT-3". A touchdown cycling program was carried out
as follows: 94°C for 2 min for 1 cycle, 92°C for 20 sec, 68°C
for 30 sec, and 72°C for 12 cycles with a decrease of 18°C per
cycle and then at 92°C for 20 sec, 57°C for 30 sec, and 72°C
for 20 sec for 20 to 25 cycles depending on the abundance of
a given gene. The specificity of PCR products was confirmed
by resolving PCR products on 1.5% agarose gels. All samples
were normalized with the internal control GAPDH.

Xenograft tumor model and xenogen bioluminescence
imaging. The HCT116-Luc cell line, which stably expresses
firefly luciferase, was generated as previously described (19,21).
Animal use and care were carried out according to the protocol
guidelines approved by the Institutional Animal Care and Use
Committee. Athymic nude mice (female, 4-6 weeks old, ~20 g
body weight, n=5/group; Harlan SD, Indianapolis, IN, USA)
were used. HCT116-Luc cells were harvested and resuspended
in PBS to a final density of 2x107 cells/ml. Cells (1x10°) were
injected subcutaneously into the flanks of the mice. At 1 week
post injection, PPD was administered (30 mg/kg) through an
i.p. injection once every 2 days for 3 week.

For whole body bioluminescence imaging, animals were
anesthetized with isoflurane attached to a nose-cone mask
within the Xenogen IVIS 200 imaging system after implantion
for 1 week. Mice were injected (i.p.) with D-Luciferin sodium
salt (Gold BioTechnology, St. Louis, MO, USA) at 100 mg/kg
in 0.1 ml sterile PBS. The pseudo-images were obtained by
superimposing the emitted light over the grayscale images
of the animal. Quantitative analysis was carried out with
Xenogen's Living Image V2.50.1 software as described (13,19).
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Figure 1. Effect of protopanaxadiol (PPD) on the proliferation of human cancer cells. (A) MTT assay. HCT116 cells were seeded in 24-well plates and treated
with different concentrations of PPD and Rg3 for 48 h. Cells were fixed and subjected to MTT assay. Each treatment condition was carried out in triplicate.
(B) Crystal violet assay. HCT116 cells were treated with PPD at the indicated concentrations for 24, 48 and 72 h. Treated cells were subjected to crystal violet
staining, which was subsequently dissolved for quantitative readings. Each assay condition was carried out in triplicate. (C) Crystal violet assay in HCT116
and SW480 cell lines. HCT116 and SW480 cells were treated with PPD at the indicated concentrations for 72 h. The gross images (left panel) and quantitative
analysis (right panel) of crystal violet staining were obtained. Each assay condition was calculated in triplicate.

Animals were sacrificed after 3 weeks, and tumor samples
were retrieved for histologic examination.

Histologic evaluation and immunohistochemical staining.
Retrieved tumor tissues were fixed in 10% formalin and
embedded in paraffin. Serial sections of the embedded
specimens were stained with hematoxylin and eosin. Paraffin-
embedded sections were deparaffinized and then rehydrated
in a graduated manner. The deparaffinized samples were
subjected to antigen retrieval and fixation. Slides were
blocked and probed with an antiproliferating cell nuclear
antigen (PCNA) antibody (Santa Cruz Biotechnology, Inc.,
Santa Cruz, CA, USA), followed by incubation with the
anti-mouse IgG-biotin secondary antibody. Finally, sections
were incubated with HRP-streptavidin and visualized by
3,3'-diaminobenzidine staining (22).

Construction of pathway-specific Gaussia luciferase reporters,
establishment of HCT116-GLuc reporter lines, and Gaussia
luciferase assay. Promoters responsive to the following
signaling pathways, including MAPK/ERK, MAPK/INK,
Wht, Notch, cell cycle/pRb-E2F, NF-xB, Myc/Max, hypoxia
(namely Elk-1/SRF, AP-1, TCF/LEF, RBP-Jk, E2F/DP1,
NF-kB and hypoxia-inducible factor-1) were cloned into our
homemade pBGLuc retroviral vector. All subcloned promoter
fragments were verified by DNA sequencing.

Stable HCT116-GLuc reporter lines were established
using the retroviral transduction approach as previously
described (14,19,21). Gaussia luciferase activity was deter-
mined using the Gaussia luciferase assay kit (New England
Biolabs). Briefly, HCT116-GLuc cell lines were seeded in
24-well culture plates and treated with O or 10 uM PPD. After
24 h, cell culture medium was subjected to Gaussia luciferase
assay. Each assay condition was conducted in triplicate.

Statistical analysis. The in vitro experiments were performed
in triplicate. Data are expressed as the means + standard error
(SE). Statistical significances between vehicle treatment vs.
drug-treatment were determined by one-way ANOVA and the
Student's t-test. A value of p<0.05 was considered to indicate a
statistically significant result.

Results

PPD inhibits the proliferative activity of human cancer cells
in vitro. The effect of PPD and ginsenoside Rg3 on the prolif-
eration of HCT116 cells was evaluated by MTT assay. The IC,
of PPD was significantly lower than that of Rg3 in the HCT116
cells (Fig. 1A). At 10-30 uM, PPD exhibited strong anti-prolif-
eration effects after 48 and 72 h of treatment (Fig. 1B). We
also investigated whether PPD inhibits the viability of other
human cancer cell lines. Treatment of different types of cancer
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Figure 2. Cell cycle analysis of protopanaxadiol (PPD)-treated cells. Subconfluent HCT116 cells were treated with (A) 0, (B) 1, (C) 5 and (D) 10 xM PPD for
48 h. Cells were fixed, labeled with propidium iodide (PI), and subjected to flow cytometry. Histograms indicating the DNA content (x-axis, PI-fluorescence)

vs. cell count (y-axis) are shown.

cells with different dosages of PPD for 48 h significantly
suppressed the cell proliferation of the tested cancer cell lines:
human colon cancer (HCT116 and SW480), breast cancer
(MDA-MB-468 and MDA-MB-231), prostate cancer (PC3 and
DUI145) and osteosarcoma cell lines (MG63 and 143B) (data
not shown). The IC,, value for PPD in these cancer cell lines
was 4.69 uM for HCT116, 8.99 uM for SW480, 7.64 uM for
MDA-MB-468, 4.49 uM for MDA-MB-231, 1.40 uM for PC3,
471 uM for DU145, 5.17 uM for MG63, and 8.36 uM for 143B,
respectively. Crystal violet staining assay revealed that 10 uM
PPD had anti-proliferation effects on the HCT116 cells (cell
viability <30%) although PPD was less effective on the SW480
cells (Fig. 1C), which was consistent with the differences in
their ICs,, values.

PPD restricts the proliferating cancer cells in the G1/S phases
of the cell cycle. In order to better understand the mecha-
nism behind PPD-mediated inhibition of cell proliferation,
we analyzed the distribution of PPD-treated cancer cells in
different phases of the cell cycle by flow cytometry following
treatment of cells with different concentrations of PPD for
48 h. We found that PPD caused a dose-dependent cell accu-
mulation in the G1/S phase (Fig. 2). For example, treatment of
HCT116 cells with 10 xuM PPD led to an 86 to 91% increase in
cells in the G1+S phase (Fig. 2A vs. D), leading to fewer cells
progressing to the G2 phase. These results indicate that cell
cycle progression was significantly blocked in the G1/S phase
when cells were treated with PPD.

PPD effectively inhibits tumor growth in vivo. We further
tested the antitumor activity of PPD in a xenograft tumor
model of human colon cancer. The firefly luciferase-tagged
HCT116 cells were subcutaneously injected in mice to form
xenograft tumors. At one week, the tumor-bearing athymic
nude mice were i.p. administered PPD at 30 mg/kg once every
2 days for up to 3 weeks. The tumor growth was monitored by

using whole body Xenogen imaging (Fig. 3A). PPD was shown
to significantly inhibit xenograft tumor growth at 2 weeks after
treatment (Fig. 3B). At the endpoint (3 months after treatment),
the xenograft tumors were retrieved and were shown to be
smaller in the PPD treatment group (Fig. 3C). Histologically,
the PPD-treated xenograft tumors exhibited significant
necrosis (Fig. 3D-a vs. -b). Immunohistochemical staining with
a PCNA antibody revealed that xenograft tumor cells treated
with PPD exhibited a marked decrease in cell proliferation
(Fig. 3D-a vs. -b). Thus, the in vivo results suggest that PPD
may be developed into an efficacious anticancer agent.

Rg3 targets AKAPSL and PITPNA may be involved in the
antitumor effect of PPD. We previously found that the expres-
sion levels of AKAPSL and PITPNA were significantly altered
following treatment with S2h (American ginseng extract) or
ginsenoside Rg3 in HCT116 cells (13). As one of the main
metabolites of S2h and the aglycon of ginsenoside Rg3,
PPD was shown to affect the expression levels of AKAPSL
and PITPNA in the PPD-treated HCT116 cells (Fig. 4A).
Specifically, PPD treatment slightly upregulated AKAPSL
expression while significantly inhibiting PITPNA expression
in a time-dependent fashion. These results suggest that upreg-
ulation of AKAPSL and/or downregulation of PITPNA may
play an important role in mediating the anticancer activities
conferred by ginsenoside derivatives, such as PPD. However,
the exact mechanism behind their roles in the anticancer action
of PPD needs to be thoroughly investigated.

PPD targets MAPK and NF-kB signaling pathways in human
colon cancer. We sought to further investigate the mechanistic
basis underlying the anticancer activity of PPD. Although
the above results indicate that Rg3 targets AKAPSL and
PITPNA may play an important role in the mode of anticancer
action of PPD, it is known that cancer development usually
hijacks multiple cellular signaling pathways (23,24). Thus, we
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Figure 3. Anticancer effect of protopanaxadiol (PPD) on HCT116 tumor-bearing nude mice. (A) Xenogen bioluminescence imaging. Firefly luciferase-tagged
HCT116 cells were subcutaneously injected into the flanks of athymic nude mice. At 1 week post tumor cell injection (i.e., week 0), PPD was administered
(30 mg/kg) by i.p. injection once every 2 days for 3 week. Xenogen imaging was conducted weekly. Representative images of the control and PPD treatment
groups at week 3 post treatment are shown. (B) Xenogen bioluminescence imaging analysis. The obtained Xenogen imaging signal intensity (photons/sec/
cm?/steradian) at 1,2 and 3 weeks post treatment with PPD were quantitatively analyzed. "p<0.05; “p<0.01. (C) Representative gross images of the retrieved
xenograft tumors at the endpoint (3 week post treatment). (D) Histologic and proliferation analyses of the retrieved samples. The samples were fixed, par-
affin-embedded, sectioned, and subjected to hematoxylin and eosin (H&E) staining (a and b). For cell proliferation analysis, the sections were subjected to
immunohistochemical staining with an anti-PCNA antibody (c and d). Representative results are shown.
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Figure 4. Protopanaxadiol (PPD) targets multiple signaling pathways.
(A) The expression of anchor protein 8 (AKAPSL) and phosphatidylinositol
transfer protein oo (PITPNA) in PPD-treated cancer cells. Subconfluent
HCTI116 cells were treated with PPD (10 uM). Total RNA was collected
at the indicated time points and subjected to semi-quantitative reverse
transcription-polymerase chain reaction (RT-PCR) analysis with primer
pairs for human GAPDH, AKAPS8L and PITPNA transcripts. Representative
results are shown. (B) The effect of PPD on 8 different signaling pathways in
HCT116 cells. Various subconfluent HCT116-GLuc cells lines were seeded
in 24-well plates and treated without or with 10 uM PPD. At 24 h, cell culture
medium was subjected to Gaussia luciferase assay. Each assay condition was
carried out in triplicate.

tested the effect of PPD on 8 major cancer-related signaling
pathways, including MAPK/ERK, MAPK/INK, Wnt, Notch,
cell cycle/pRb-E2F, NF-kB, Myc/Max and hypoxia. When
HCT116 cells containing the pathway-speciifc reporters were
treated with 10 uM PPD, we found that the relative reporter
activities for NF-xB, MAPK/INK and MAPK/ERK pathways
were significantly inihibited (Fig. 4B). The other 5 pathways,
noticeably Myc/Max and Wnt, were not significantly affected
by PPD in HCT116 cells. Thus, these results suggest that PPD
may exert its anticancer activity at least in part by targeting
the ERK, JNK and/or NF-kB signaling pathways although the
exact mechanism needs to be fully elucidated.

Discussion

In the present study, we demonstrated the effectiveness of PPD,
a metabolite of ginseng saponin, against multiple tumor types
in human cancer cell culture and animal models. PPD inhib-
ited human cancer cell growth in 8 types of human cancer
cells and these results were consistent with other reports on the
effects of PPD on human cancer cell lines (25-29). Previous
studies have shown that PPD induced cell cycle arrest in the
GO0-Gl1 phase in human hepatocellular carcinoma SMMC7721
cells (30) or in the G1 phase in U937 human monocytic
leukemia cells (31). Similar variability was observed in the
HCT116 colon cancer cells.

Ginseng is one of the most widely used medicinal plants
and remains a top selling natural product globally. The
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major bioactive constituents in ginseng are ginsenosides, a
group of triterpene glycosides (2,4). Several natural ginseng
saponins have been shown to exhibit high potency against
multiple tumor types in cell culture and animal models (32).
Kim er al (33) studied 11 ginsenosides and determined that
Rg3 and Rh2 inhibited the proliferation of prostate cancer
cells. Iishi et al (34) used a rat AOM-induced tumor model to
determine the effects of Rg3 in inhibiting the cell proliferation
of colon cancer cells. Jia et al (35) reported that Rh2 inhib-
ited proliferation, induced apoptosis in cancer cell lines, and
sensitized drug-resistant breast cancer cells to paclitaxel. Rk1
and Rg5 were also found to inhibit the proliferation of human
hepatocellular carcinoma cells (36,37).

Notably, Compound K [(20-O-(p-D-glucopyranosyl)-
20(S)-protopanaxadiol)], one of the most important intestinal
metabolites isolated from ginseng PDS saponins, can also
induce apoptotic cell death concurrent with cell cycle arrest
in the GO-G1 phase in SMMC7721 cells (30) and G1 phase
arrest in U937 cells (31). Compound K was also found to
inhibit the cell viability and induce apoptosis of human
gastric carcinoma cells via the Bid-mediated mitochondrial
pathway (38). Moreover, Compound K significantly inhibited
PMA-induced MMP-9 secretion and protein expression by
suppressing DNA-binding and transcriptional activities of
AP-1, which is the downstream factor of p38 MAPK, ERK and
JNK (12). Similar to many other herbal medicines, ginseng is
usually taken orally. In this form its bioavailability is low due
to incomplete absorption (39). To date, the biotransformation
of ginsenosides to their metabolites by intestinal bacteria has
been reported. Some of the metabolites, such as Compound K
and PPD, have shown various bioactivities including cancer
chemoprevention (15). Nonetheless, the anticancer mecha-
nisms of these ginseng metabolites are largely unknown.

The low in vivo toxicity of PPD suggests that this
compound or its derivatives may have potential for clinical
applications in cancer chemotherapy (2). However, PPD is a
highly hydrophobic molecule with limited water solubility and
has low in vivo uptake. In our in vivo studies, we used PEG
and PEG400 to improve the solubility of PPD. Our results
clearly demonstrated that this formulation could circumvent
the limited solubility and/or bioavailability of PPD.

The glycoside of PPD was shown to induce apoptosis of
human prostate cancer cells via inhibition of the NF-«xB (40,41),
JNK and ERK pathways (12). PPD may induce apoptosis by
decreasing caspase-3 activity (25,42), MMP secretion (26) or
the ER stress pathway (27). However, it remains unclear how
PPD targets cancer-related signaling pathways. In the present
study, we used a cell-based, unbiased, pathway-specific anal-
ysis and identified three major pathways that may be targeted
by PPD. Thus, future investigation should be directed towards
how these pathways are inhibited. These lines of investiga-
tions are critical for the potential clinical use of PPD as an
anticancer agent.

In conclusion, we demonstrated that PPD effectively
inhibits cell proliferation and tumor growth of human cancer
both in vitro and in vivo. We demonstrated that the anticancer
activity of PPD in colon cancer cells is at least in part due
to the downregulation of multiple signaling pathways,
noticeably MAPK/ERK, MAPK/INK and NF-xB. Although
further investigations are required to dissect the underlying
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mechanisms, these results illustrate the potential clinical
applications for PPD alone or in combination with other anti-
cancer agents.
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