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Abstract. The incidence of thyroid cancer and its associated 
morbidity has shown the most rapid increase among all cancers 
since 1982, but the mechanisms involved in thyroid cancer, 
particularly significant key genes induced in thyroid cancer, 
remain undefined. In many studies, gene probes have been 
used to search for key genes involved in causing and facilitating 
thyroid cancer. As a result, many possible virulence genes and 
pathways have been identified. However, these studies lack a 
case contrast for selecting the most possible virulence genes 
and pathways, as well as conclusive results with which to 
clarify the mechanisms of cancer development. In the present 
study, we used gene set enrichment and meta-analysis to select 
key genes and pathways. Based on gene set enrichment, we 
identified 5 downregulated and 4 upregulated mixed pathways 
in 6 tissue datasets. Based on the meta-analysis, there were 
17 common pathways in the tissue datasets. One pathway, the 
p53 signaling pathway, which includes 13 genes, was identified 
by both the gene set enrichment analysis and meta-analysis. 
Genes are important elements that form key pathways. These 
pathways can induce the development of thyroid cancer later in 
life. The key pathways and genes identified in the present study 
can be used in the next stage of research, which will involve 
gene elimination and other methods of experimentation.

Introduction

Thyroid cancer is the most common endocrine neoplasm and 
accounts for ~1.7% of total cancer diagnoses; the incidence of 

thyroid cancer has increased the most rapidly of all cancers 
since the nuclear accident at Chernobyl. Currently, thyroid 
cancer ranks fifth among the most prevalent female cancers (1). 
Although numerous studies have been conducted to determine 
the genes that may influence the development of thyroid cancer, 
the results are not satisfactory. Many studies have applied 
real-time quantitative PCR and in situ hybridization to select 
possible key genes derived from cancer tissue sections; these 
genes include PDCD4  (2), PROM1, LOXL2, GFRA1 and 
DKK4 (3). Yet, thyroid cancer is not determined by a single 
gene; therefore, it is critical to elucidate the gene interactions 
involved in thyroid cancer and identify several key genes in the 
pathway that can effectively suppress cancer development.

The main issue with regards to genome-wide RNA expres-
sion analysis is how to obtain gene expression profiles. To 
solve this problem, genome-wide expression analysis with 
RNA microarray, which can identify predefined biological 
pathways associated with the phenotypic variations in many 
studies, have been performed (4). In this way, we can identify 
various biological pathways. Another issue is determining a 
method for identifying the entire range of pathways related to 
thyroid cancer.

To resolve this problem, Mootha et al (5) recommended 
gene set enrichment analysis (GSEA), which has been recog-
nized as the most effective way for gene set analysis. It can be 
used to identify predefined gene sets that demonstrate differen-
tial expression levels in normal and abnormal tissue samples.

After performing GSEA, it is possible to identify the 
significant genes in the mixed pathways rather than in abnormal 
tissues only. By contrasting normal and abnormal tissues, we 
can easily and clearly determine the differentially expressed 
genes from both tissues. GSEA and meta-analysis were used to 
find the mixed pathways. Two gene analysis methods provided a 
systematic insight into the pathways that were altered during the 
mechanism of thyroid cancer. After identifying the genes that 
had significant differences in expression between normal and 
abnormal tissues and, thus may cause disease, we can use those 
genes for further research in clinical or animal experiments.

Materials and methods

Datasets. Using the GSEA method, thyroid cancer genes were 
searched for in GEO (http://www.ncbi.nlm.nih.gov/geo/) and 
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ArrayExpress (http://www.ebi.ac.uk/arrayexpress/). Using the 
above sources, we designed Table I. The rows of Table I are as 
follows: row 1 is the GEO accession number; row 2 is the first 
author or contributor; row 3 is the year the gene was published; 
row 4 is the data platform; and row 5 states whether the tissue 
was paired or unpaired.

After searching, we determined 6 gene expression datasets 
which met the above standard. We collected the data and 
organized it into Table I. There were 2 paired and 4 unpaired 
datasets that contained 303 tissues in total.

Data processing of standardized microarray preprocessing. 
With the Bioconductor software (v2.10.1) (5), we preprocessed 
the data. The robust multichip average (RMA) algorithm in 
the Affy conductor package was used for each Affymetrix 
raw dataset to calculate the adjusted background, normalize 
and set the log2 probe intensities. We selected genes that 
met explicit KEGG pathways for further GSEA analysis and 
meta-analysis. The measure of variability was within the 
interquartile range (IQR) and a cut-off was set up to remove 
IQR values <0.5 for all the remaining genes. If one gene was 
targeted for multiple probe sets, we retained the probe set with 
the largest variability. Pathway analysis of each dataset was 
performed independently.

Data processing of GSEA. Using the category v2.10.1 package, 
which is used for GSEA, each pathway and the mean of the 
genes were calculated with the Student's t‑test statistical score. 
A permutation test with n=1,000 was used to identify the 
significantly altered pathways. A P-value ≤0.05 was consid-
ered statistically significant.

Data processing of the meta-analysis. We calculated the 
Chi‑square value of each gene remaining after the selection 
process based on the formula according to Brown (6). The 
formula is:

The genes whose Chi‑square values were <0.05 were 
eliminated and the remaining genes were used to obtain 

the pathways of the KEGG from DAVID Bioinformatics 
Resources 6.7 ( http://david.abcc.ncifcrf.gov/).

Results

Re-analyzing each dataset to produce differentially expressed 
pathways. There were 6  datasets containing 214  thyroid 
cancers and 89 normal tissues. We investigated each dataset 
using the same GSEA method. It should be mentioned that the 
GSE27155 data platform is different from other platforms, thus 
our software was unable to recognize the data generated from 
that platform. In addition, the tissues in the GSE6004 dataset 
were from thyroid cancer centers and thyroid cancer invasive 
areas, and, thus were not in fact normal tissues. The above 
2 datasets were eventually discarded from the GSEA analysis.

Common significant pathways obtained from 4  thyroid 
cancer tissue datasets by GSEA. After performing the GSEA 
calculations, we obtained 4 upregulated and 5 downregulated 
pathways that existed in 4 thyroid cancers. From the results of 
the GSEA, we obtained information concerning the regulated 
pathways in KEGG (http://www.genome.jp/kegg/) (7).

Conclusion of the meta-analysis. With the paired t‑test we 
obtained the P‑value for each gene. We downloaded the gene 
probe platform to translate the gene probe number to the 
gene name (http://www.ncbi.nlm.nih.gov/geo/) and inserted 
the gene names into the SAS 9.13 software for total analysis. 
Finally, we selected 525 significant genes whose P-value was 
<0.05 and we found 266 genes in DAVID (http://david.abcc.
ncifcrf.gov/). The identified genes exist in 18 pathways, and 
the main pathways are involved in ECM-receptor interaction, 
focal adhesion, and complement and coagulation cascades. 
The details are documented in Table II.

Common pathways between GSEA and meta-analysis. There 
was one intersecting pathway between the common significant 
pathways of GSEA and meta-analysis in cancer tissues. This was 
identified as the p53 signaling pathway a member of the regula-
tory pathways. The p53 signaling pathway contains 13 genes: 
Bid, PMAIP1, CCND1, CDKN1A, TNFRSF10B, CDKN2A, 
CCND3, Bax, RRM2, DDB2, Fas, THBS1 and insulin-like 

Table I. Characteristics of datasets selected in the studies.

GEO	 Contributor	 Year	 Chip	 Experimental design	 Probes	 Source	 Disease	 Normal
accession no.				    (tissues)

GSE3678	 Ismael Reyes	 2005	 HG-U133_Plus_2	 Paired	 54675	 Homo sapiens	 7	 7

GSE3467	 Sandya Liyanarachchi	 2005	 HG-U133_Plus_2	 Paired	 54675	 Homo sapiens	 9	 9

GSE33630	 Gil Tomas	 2011	 HG-U133_Plus_2	 Unpaired	 54675	 Homo sapiens	 60	 45

GSE29265	 Gil Tomas	 2011	 HG-U133_Plus_2	 Unpaired	 54675	 Homo sapiens	 29	 20

GSE27155	 Rork Kuick	 2011	 HG-U133A	 Unpaired	 22283	 Homo sapiens	 95	 4

GSE6004	 Sandya Liyanarachchi	 2006	 HG-U133_Plus_2	 Unpaired	 54675	 Homo sapiens	 14	 4

Paired, compare thyroid cancer (TPC) to normal controls from the same patients with TPC; Unpaired, compare TPC from men to normal controls from 
men without TPC.
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Table II. Common significant pathways obtained by meta-analysis.

Pathway	 Pathway	 P‑value	 No. of genes	 Gene names (P‑value)
entry	 name		  included

map04512	 ECM-receptor	 1.23 E-08	 27	 TNC (0.00000), COL3A1 (0.01894), ITGB4 (0.00956), ITGB5 (0.00001),
	 interaction			   SDC4 (0.00000), SDC2 (0.00000), SDC3 (0.00013), LAMB3 (0.00000), 
				    CD44 (0.00000), COMP (0.00000), COL6A3 (0.04683), AGRN (0.00000),
				    THBS1 (0.00035), THBS2 (0.01667), FN1 (0.00000), SPP1 (0.00113),
				    COL4A2 (0.01460), COL4A1 (0.00005), ITGA3 (0.00000), COL5A1 (0.00122), 
				    LAMA2 (0.00006), SDC1 (0.00009), ITGA7 (0.01369), COL1A2 (0.00004),
				    LAMC2 (0.00006), COL1A1 (0.00001), LAMC1 (0.00000)

map04510	 Focal	 1.29 E-04	 36	 CAV2 (0.04769), CAV1 (0.00540), PGF (0.00002), TNC (0.00000), COL3A1 (0.01894),
	 adhesion			   ITGB4 (0.00956), ITGB5 (0.00001), LAMB3 (0.00000), RAC2 (0.02943), 
				    PAK3 (0.00006), COMP (0.00000), BCL2 (0.00000), COL6A3 (0.04683), 
				    THBS1 (0.00035), THBS2 (0.01667), FN1 (0.00000), SPP1 (0.00113), 
				    COL4A2 (0.01460), COL4A1 (0.00005), MET (0.00000), ACTN1 (0.00000), 
				    ITGA3 (0.00000), COL5A1 (0.00122), LAMA2 (0.00006), MAPK1 (0.00107), 
				    CCND1 (0.00000), CCND3 (0.00159), FYN (0.00081), JUN (0.00000),
				    VEGFA (0.00850), ITGA7 (0.01369), COL1A2 (0.00004), LAMC2 (0.00006), 
				    LAMC1 (0.00000), COL1A1 (0.00001)

map04610	 Complement	 3.85 E-04	 17	 C3AR1 (0.02394), C7 (0.00962), A2M (0.00352), CFB (0.00126), C1S (0.01114), 
	 and			   PLAUR (0.00001), C1QA (0.01674), C1QB (0.01345), CD55 (0.00003),
	 coagulation			   THBD (0.00154), F5 (0.02164), TFPI (0.00000), SERPINA1 (0.00000), CFI (0.00000), 
	 cascades			   CFD (0.00000), PROS1 (0.00000), PLAU (0.00000)

map05020	 Prion diseases	 8.63 E-04	 11	 C1QA (0.01674), EGR1 (0.01634), NCAM1 (0.00000), C1QB (0.01345), 
				    MAPK1 (0.00107), C7 (0.00962), FYN (0.00081), Bax (0.00000), LAMC1 (0.00000), 
				    PRKACB (0.03796), PRKX (0.00000)

map05200	 Pathways	 0.00946	 44	 FGFR2 (0.00000), Bid (0.00000), PGF (0.00002), FOXO1 (0.00386), FGF13 (0.00105),
	 in cancer			   BCL2L1 (0.00000), ZBTB16 (0.00210), KIT (0.00000), LAMB3 (0.00000),
				    CDKN2A (0.00019), RAC2 (0.02943), FOS (0.00094), BCL2 (0.00000),
				    PAX8 (0.00062), TGFA (0.00000), Fas (0.00161), RUNX1 (0.00000), FGF1 (0.00000),
 				    TRAF5 (0.01267), FN1 (0.00000), CSF1R (0.00256), COL4A2 (0.01460), 
				    BMP2 (0.00000), CTBP2 (0.02010), COL4A1 (0.00005), EPAS1 (0.04291), 
				    MET (0.00000), RUNX1T1 (0.00004), RXRG (0.00000), ITGA3 (0.00000), 
				    STAT1 (0.00180), LAMA2 (0.00006), MAPK1 (0.00107), CDKN1A (0.00000), 
				    CCND1 (0.00000), HSP90B1 (0.00001), JUN (0.00000), Bax (0.00000), 
				    VEGFA (0.00850), PTCH1 (0.00094), LAMC2 (0.00006), LAMC1 (0.00000), 
				    PIAS1 (0.00046), GSTP1 (0.02676)

map05416	 Viral	 0.01141	 14	 Bid (0.00000), ICAM1 (0.00000), CAV1 (0.00540),  ITGB2 (0.02312), CD40 (0.00511),
	 myocarditis			   LAMA2 (0.00006), CCND1 (0.00000), CD86 (0.01044), CD55 (0.00003), 
				    RAC2 (0.02943), FYN (0.00081), MYH11 (0.00012), SGCD (0.00001), 
				    MYH10 (0.00400)

map00910	 Nitrogen	 0.01514	 7	 GLS2 (0.00147), CTH (0.00000), GLUL (0.00012), GLUD2 (0.01921), 
	 metabolism			   CA12 (0.00030), CA4 (0.00000), CA2 (0.00595)

map04115	 p53 signaling	 0.01952	 13	 Bid (0.00000), PMAIP1 (0.00004), CCND1 (0.00000), CDKN1A (0.00000),
	 pathway			   TNFRSF10B (0.00000), CDKN2A (0.00019), CCND3 (0.00159), Bax (0.00000),
				    RRM2 (0.00721), DDB2 (0.00000), Fas (0.00161), THBS1 (0.00035), 
				    IGFBP3 (0.01155).

map04710	 Circadian	 0.02567	 5	 CRY2 (0.00000), CSNK1E (0.04482), PER2 (0.01305), BHLHE40 (0.00000), 
	 rhythm			   ARNTL (0.00074).

map04350	 TGF-β	 0.02598	 15	 BMP2 (0.00000), LTBP1 (0.00004), DCN (0.00000), INHBB (0.00585), 
	 signaling		   	 MAPK1 (0.00107), ID1 (0.00005), ZFYVE16 (0.00302), COMP (0.00000), 
	 pathway			   SMURF2 (0.01653), ID4 (0.00000), ID3 (0.00000), THBS1 (0.00035), 
				    BMP7 (0.01168), THBS2 (0.01667), BMPR1A (0.00000).

map00071	 Fatty acid	 0.02647	 9	 ALDH7A1 (0.00000), ACSL1 (0.01961), ACADM (0.00031), ALDH2 (0.00000),
	 metabolism			   ADH5 (0.00000), ACADL (0.00041), ACAT1 (0.00002), DCI (0.03344), 
				    ACSL5 (0.00158)
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growth factor binding protein 3 (IGFBP3). The relationship 
among these genes is described in Fig. 1 from analysis with 
DAVID (http://david.abcc.ncifcrf.gov/conver-sion.jsp).

Discussion

Although the thyroid is a small and inconspicuous organ (8), 
its morbidity is ranked first of all the endocrine organs. The 
mechanism of thyroid cancer is not clear and a single theory 
cannot thoroughly explain it. As we know, the causes of cancer 
are multiple and complex. At the gene level, a large number 
of genes are thought to be associated with cancer, but which 
genes are most important is difficult to ascertain. Traditional 
methods have involved the study of one gene in one sample 
or one experiment alone. This causes obvious bias and can 
easily result in researchers ignoring the key gene and/or 
pathway. In addition, analyzing gene chip data with a single set 
t‑test has certain limitations; for example, restrictions on the 
sample size may result in a suspect variation estimate that can 
produce high false-positive results (9). Finally, gene chip data 
may ignore differences in expression levels among different 
samples, which may result in various significant genes not 
being identified.

A gene that is truly significant should impact the key 
pathway that regulates the growth of the cancer or be involved 
in a mixed-pathway that leads to cancer formation. To identify 
these genes, a group of chip data that contains samples of 
2 different biological states (such as normal and cancerous) 
must be analyzed based on the GSEA method (10). Analysis of 
the genes that have a common expression trend will reveal the 
genes and pathways that are associated with disease.

We combined the GSEA and meta-analysis methods to 
analyze 6 datasets in order to find the key pathways or genes 
in thyroid cancer. The GSEA analysis indicated differentially 
expressed genes between samples (the number of samples >2) 
and we clustered the samples to obtain sample classification 
of obvious gene expression differences. Using the software 
R language and statistical analysis we obtained 9 groups of 
data with expression level alterations in common pathways 
(4 upregulated and 5 downregulated pathways). Meta-analysis 
with a t‑test was used for single data sets to determine 
differentially expressed genes; the pathways associated with 
the differentially expressed genes were determined using 
the DAVID website. Finally, we analyzed the pathways that 
overlapped to determine the genes with significant differences. 
We obtained one pathway with significant differences in gene 
expression between normal and thyroid cancerous tissues and 
that was the p53 signaling pathway.

p53 signaling pathway. The p53 gene is a tumor-suppressor 
gene. Its expression product is a gene regulatory protein (p53 
protein). When the product of p53 gene expression is increased 
dramatically, it can inhibit the cell cycle. Once the p53 gene 
is mutated or the p53 protein is inactivated, control over cell 
division is lost and human cancers arise. Approximately half 
of human cancer is due to p53 gene mutations or protein 
inactivation (11). The protein encoded by the p53 gene is a 
transcription factor that controls imitation of the cell cycle (12). 
Many relevant signals that indicate the health of a cell are sent 
to the p53 gene for determining whether to initiate cell divi-
sion. If the cell is damaged beyond repair, the p53 protein will 
participate in the initiation of cell death by apoptosis. Cells 

Table II. Continued.

Pathway	 Pathway	 P‑value	 No. of genes	 Gene names (P‑value)
entry	 name		  included

map05222	 Small cell	 0.04134	 14	 COL4A2 (0.01460), COL4A1 (0.00005), RXRG (0.00000), ITGA3 (0.00000), 
	 lung cancer			   BCL2L1 (0.00000), LAMA2 (0.00006), CCND1 (0.00000), LAMB3 (0.00000), 
				    BCL2 (0.00000), LAMC2 (0.00006), PIAS1 (0.00046), LAMC1 (0.00000), 
				    TRAF5 (0.01267), FN1 (0.00000)

map05014	 ALS	 0.04991	 10	 Bid (0.00000), GPX1 (0.00000), TNFRSF1B (0.00290), DERL1 (0.00021), 
				    MAPK13 (0.00000), GRIN2C (0.00000), BCL2 (0.00000), Bax (0.00000), 
				    CCS (0.01625), BCL2L1 (0.00000)

map04514	 CAMs	 0.05605	 19	 CLDN8 (0.00001), ICAM1 (0.00000), CLDN5 (0.00005), ITGB2 (0.02312),
				    CLDN10 (0.00000), CDH2 (0.00000), CD40 (0.00511), CDH3 (0.00000), 
				    SDC4 (0.00000), CDH4 (0.00368), ITGAM (0.00789), SDC2 (0.00000),
				     SDC3 (0.00013), NRCAM (0.00000), NCAM1 (0.00000), CD86 (0.01044), 
				    SDC1 (0.00009), CD58 (0.03269), SELPLG (0.01061)

map00450	 Selenoamino	 0.08398	 6	 CTH (0.00000), SEPHS1 (0.00012), AHCYL2 (0.00032), PAPSS1 (0.00003),
	 acid metabolism			   PAPSS2 (0.00000), CBS (0.00417)

map05219	 Bladder cancer	 0.08540	 8	 RPS6KA5 (0.00000), MAPK1 (0.00107), CDKN1A (0.00000), CCND1 (0.00000), 
				    CDKN2A (0.00019), PGF (0.00002), VEGFA (0.00850), THBS1 (0.00035)

map00980	 Metabolism of	 0.09494	 10	 GSTM1 (0.00371), AKR1C3 (0.00087), GSTM2 (0.00100), AKR1C2 (0.00000),
	 xenobiotics by	  		  CYP1B1 (0.00000), ALDH1A3 (0.00000), ADH5 (0.00000), AKR1C1 (0.00000), 
	 cytochrome P450			   ALDH3B1 (0.00000), GSTP1 (0.02676)

ALS, amyotrophic lateral sclerosis; CAMs, cell adhesion molecules.
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without the p53 gene will continue to divide even in adverse 
conditions. Like all other tumor suppressors, the p53 gene 
plays a monitoring role in cell division. The p53 gene judges 
the degree of DNA variation, and if the variation is small, the 
gene will promote cell repair, whereas if the DNA variation is 
striking, p53 will induce apoptosis (13). Many animal experi-
ments have confirmed this function of p53 (14).

The p53 signaling pathway was the only common inter-
secting pathway between the significant pathways found by 
GSEA and meta-analysis in cancer tissues. p53 activation is 
induced by a number of stress signals, including DNA damage, 
oxidative stress and activation of oncogenes. The p53 protein is 
employed as a transcriptional activator of p53-regulated genes 
that causes one of three outcomes: cell cycle arrest, cellular 
senescence or apoptosis. Other p53-regulated gene functions 
include communication with adjacent cells, repair of damaged 
DNA and establishment of positive or negative feedback loops 
that enhance or attenuate the functions of the p53 protein and 
integrate stress responses with other signal transduction path-
ways (15). The present study confirmed that thyroid cancer 
is associated with the p53 signaling pathway which is also 
closely related to ataxia with ocular apraxia (16), Li-Fraumeni 
syndrome  (17), lymphangioleiomyomatosis  (18), tuberous 
sclerosis complex (19), Seckel syndrome (20), choroid plexus 
papilloma (21), plasminogen activator inhibitor type‑1 (PAI-1) 
deficiency (22) and VACTERL/VATER association (23). A 
previous mouse experiment indicated that inactivation of p53 
is related to thyroid cancer (24). One study indicated that p53 
expression was not observed in thyroid cancer specimens (25). 
However, additional studies indicate that abnormal p53 activa-
tion is closely related to the development of thyroid cancer (26). 
The p53 signaling pathway plays an important role in cancer 
cell apoptosis and DNA repair (27).

There are 13  genes in the p53 signaling pathway: Bid, 
PMAIP1, CCND1, CDKN1A, TNFRSF10B, CDKN2A, CCND3, 
Bax, RRM2, DDB2, Fas, THBS1 and IGFBP3. The mechanisms 
of some of the above genes are clear. For example, the Bid gene 
encodes a death agonist that heterodimerizes with either the 
Bax agonist or BCL2 antagonist, and the protein encoded by 
Bid is a member of the BCL‑2 family of cell death regulators. 
The protein encoded by the CCND1 gene belongs to the highly 
conserved cyclin family, whose members are characterized by 
a dramatic periodicity in protein abundance throughout the cell 
cycle and function as regulators of CDK kinases. 

Studies indicate that tumor-specific pyruvate kinase M2 
(PKM2) is required for the dissociation of HDAC3 from the 
CCND1 and MYC promoter regions (28). The CDKN1A gene 
(also called p21), which has been confirmed as a target gene 
in prostate cancer  (29), encodes a potent cyclin-dependent 
kinase inhibitor. The encoded protein binds to and inhibits the 
activity of cyclin-CDK2, whose expression reduction leads to 
the activation of CDK2- (30) and CDK4-associated kinases 
complexes, and thus, functions as a regulator of cell cycle 
progression during the G1 phase. The expression of CDKN1A 
is tightly controlled by the tumor-suppressor protein p53 and 
CDKN1A mediates p53-dependent cell cycle G1 phase arrest 
in response to a variety of stress stimuli. Studies indicate 
that G2-M cell cycle arrest is associated with upregulation of 
p21CIP1/WAF1 expression (31). 

The protein encoded by the TNFRSF10B (also called 
DR5) gene is a member of the TNF‑receptor superfamily and 
contains an intracellular death domain. This receptor can be 
activated by tumor necrosis factor-related apoptosis inducing 
ligand (TNFSF10/TRAIL/APO-2L) and transduces an apop-
totic signal. Drug studies indicate that the upregulation of DR5 
leads to tumor death (32). 

Figure 1. p53 signaling pathway (the figure is from KEGG database; red stars indicate P values <0.05).
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The CDKN2A gene (also called p14 or ARF) generates 
several transcript variants that differ in their first exons. At 
least three alternatively spliced variants encoding distinct 
proteins have been reported, two of which encode structur-
ally related isoforms known to function as inhibitors of CDK4 
kinase. Some studies suggest that polymorphisms of MDM2 
and p14ARF contribute to the interindividual differences in 
susceptibility to differentiated thyroid cancer (33). 

The protein encoded by the CCND3 gene belongs to the 
highly conserved cyclin family, whose members are character-
ized by a dramatic periodicity in protein abundance throughout 
the cell cycle. Cyclins function as regulators of CDK kinases. 
Different cyclins exhibit distinct expression and degradation 
patterns that contribute to the temporal coordination of each 
mitotic event. Co‑immunoprecipitation experiments indicate 
that the level of p27-bound cyclin D3 was much higher in 
oxyphilic neoplasias than in normal thyroids and other thyroid 
tumors (34). 

The protein encoded by the Bax gene belongs to the BCL2 
protein family. BCL2 family members form heterodimers or 
homodimers and act as anti- or pro-apoptotic regulators that 
are involved in a wide variety of cellular activities. The Bax 
protein forms a heterodimer with BCL2 and functions as an 
apoptotic activator. Studies indicate that apoptosis is associ-
ated with a decrease in the level of Bcl-2 expression and an 
increase in the level of Bax expression (35) and that BCL2 
may be associated with the multifocality and bilaterality of 
papillary thyroid cancer (36). 

The RRM2 gene encodes one of two non-identical subunits 
for ribonucleotide reductase. This reductase catalyzes the 
formation of deoxyribonucleotides from ribonucleotides. 

The DDB2 gene encodes a protein that is necessary for 
the repair of ultraviolet light-damaged DNA. This protein is 
the smaller subunit of a heterodimeric protein complex that 
participates in nucleotide excision repair, and this complex 
mediates the ubiquitylation of histones H3 and H4, which 
facilitate the cellular response to DNA damage. 

The protein encoded by the Fas gene is a member of the 
TNF-receptor superfamily. This receptor contains a death 
domain, has been shown to play a central role in the physi-
ological regulation of programmed cell death, and has been 
implicated in the pathogenesis of various malignancies and 
diseases of the immune system (37). The present study showed 
that FasL expression (positivity, staining and intensity) was high 
and increased in papillary microcarcinoma of the thyroid tissue. 

The protein encoded by the THBS1 gene is a subunit of a 
disulfide-linked homotrimeric protein. This protein is an adhe-
sive glycoprotein that mediates cell‑to‑cell and cell‑to‑matrix 
interactions. Some studies indicate that the THBS1 gene is 
related to thyroid cancer (38). 

The IGFBP3 gene is a member of the IGFBP family and 
encodes a protein with an IGFBP domain and a thyroglobulin 
type‑I domain. One study indicates that serum IGFBP-3 and 
TSH levels did not modulate these associations in thyroid 
cancer (39).

The mechanism of the p53 signaling pathway is not 
completely clear to date, and the interaction of genes in this 
pathway require further study. Of the 13 genes in the p53 
signaling pathway, 8 have been confirmed to be related to 
thyroid cancer by one or more experiments. These 8 genes 

include CCND1, CDKN1A, TNFRSF10B, CDKN2A, CCND3, 
Bax, Fas and THBS1. The other genes, Bid, PMAIP1, RRM2 
and DDB2, have not been confirmed to be related to thyroid 
cancer and require further investigation. To date, studies of 
IGFBP-3 have indicated that it is not involved in the develop-
ment of thyroid cancer, but additional experiments with larger 
samples are needed to confirm these results.

In conclusion, the pathogenesis of thyroid papillary cancer 
is quite complicated. We identified a significant pathway and 
13 key genes based on gene set enrichment and meta-analysis. 
The clinical trials that we have mentioned in our discussion 
confirm that the p53 signaling pathway and the relevant genes 
play an important role in the development of thyroid cancer. 
Various mechanisms of this pathway and the genes are clear, 
but others require clarification. Further study concerning the 
specific role and interactions of the genes included in the 
related pathways are needed to improve the understanding of 
thyroid cancer, particularly the interaction of genes in the p53 
pathway.
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