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Abstract. Human epidermal growth factor receptor-3 (HER-3) 
is the third member of the HER family. It was previously 
considered not to contain tyrosine kinase activity and catalytic 
activity and the intracellular region of HER-3 could not bind 
ATP and be auto-phosphorylated. Thus, the clinical value 
of HER-3 was ignored. Currently, biochemical analysis has 
confirmed that the kinase domain of HER-3 is a specific allo-
steric activator; it acts as a functional activator to activate the 
recipient kinase (HER-1, HER-2, HER-4). With the in-depth 
knowledge of its structure and function, studies on the relation-
ship of HER-3 and human tumors are rapidly increasing. HER-3 
is closely related to tumorigenesis, progression and metastasis. 
HER-3 is involved in resistance to targeted therapy, and may 
serve as a new therapeutic target. The expression of HER-3 
helps to predict prognosis and treatment efficacy. HER-3 has 
become a focus of concern in the HER family and has gained 
significant attention in the search for cancer treatment.
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1. Introduction

The human epidermal growth factor receptor (HER or ErbB) 
belongs to the tyrosine kinase receptor superfamily. It includes 

4  highly homologous members, HER-1 (ErbB1), HER-2 
(ErbB2), HER-3 (ErbB3) and HER-4 (ErbB4). The distin-
guishing characteristics of the HER family are interdependent 
and functional complementation between members. After 
the ligands bind to the receptor, it promotes the formation of 
HER/ErbB receptor homodimer or heterodimer which leads to 
activation of the tyrosine kinase domain (1,2) and downstream 
signaling pathways (3,4). Signal transduction networks control 
cellular activities such as gene expression, mitosis, cell differ-
entiation, cell proliferation, cell survival and apoptosis (1,5).

HER-3 is a distinctive member of the HER family as its 
kinase domain lacks certain residues that are known to be 
essential for catalytic activity in other kinases. The function 
of HER-3 was previously thought to be entirely dependent on 
other members of the family, the role of HER-3 was considered 
to be passive and the clinical value of HER-3 was greatly under-
estimated. Currently, biochemical analysis has confirmed that 
the kinase domain of HER-3 is a specific allosteric activator, 
it acts as a functional activator to activate the recipient kinase. 
Accompanied by an in-depth understanding of the structure 
and function of HER-3, recent studies have also found HER-3 
is involved in the tumorigenesis, progression, new target explo-
ration, target therapy resistance of several types of cancer. In 
the critical search of a cure for cancer, HER-3 provides insight 
into the better understanding of tumors and targeted therapy.

2. In-depth understanding of the structure and function 
of HER-3

HER-3 was initially isolated by MH  Kraus in 1989. The 
gene of HER-3 is located on chromosome 12q13, and its 
6.2 kb transcript is expressed in normal epithelial tissues (6). 
Subsequently, HER-3 cDNA was isolated from human tumor 
cell lines (7). HER-3 possesses 40-50% sequence homology 
with HER-1 and 40-45% homology with HER-2 (7-9). The 
structure of HER-3 is typical in receptor tyrosine kinase 
family (Fig. 1). It includes an extracellular domain (ECD) with 
612 amino acid residues, a transmembrane helix domain with 
32 hydrophobic amino acids, and an intracellular tyrosine 
kinase domain (TKD) with 677 amino acids (7). Determination 
of the 2.6-angstrom crystal structure of the entire extracel-
lular region of HER-3 revealed 4 type I insulin-like growth 
factor receptor homologous domains, 2 specific ligand 
binding flanking regions (district I and III) and 2 cysteine-rich 
regions (district II and IV). The interaction between district II 
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and IV limits the relative direction of ligand binding domain 
and provides a structural basis for understanding the varied 
affinity and conformational changes of HER-3 upon ligand 
binding  (10). The transmembrane region confers receptor 
internalization and ligand-dependent calcium influx (11). ErbB 
binding protein 1 (EBP-1) interacts with HER-3 and prevents 
the premature formation of dimers, which prevents inappro-
priate activation of molecular partners by HER-3 (12). The 
intracellular domain is a continuation of the transmembrane 
region and has a conserved ATP binding site (Gly-Xaa-Gly-
Xaa-Xaa-Gly-Xaa-Lys) that shares homology with other 
members of the tyrosine kinase family. The intracellular region 
is divided into a juxtamembrane region, a kinase domain 
and C-terminal tail. The juxtamembrane region is divided 
into N-terminal [juxtamembrane-A, (JM-A)] and C-terminal 
[juxtamembrane-B, (JM-B)] (13). The kinase domain includes 
N-lobe, helix αC, activation loop and C-lobe (13). The analysis 
of HER-3 dimers crystal structure shows that recipient protein 
kinase (HER-1, HER-2 and HER-4) interacts with the JM-A 
region of HER-3 via a conserved amino acid sequence, and 
the JM-B region of recipient protein kinase interacts with 
C-lobe of HER-3 by forming a stabilizing latch (14). C-lobe 
of HER-3 can combine and activate other members of the 
HER family, which is consistent with the role of HER-3 as a 
functional activator but not a recipient kinase. Helix αC of the 
kinase domain anchors activator kinase domain to recipient 
kinase domain (13). In general, HER-3 is very similar to inac-
tivated HER-1/HER-4. Conformational changes in helix αC 
sequence are highly important and may explain the difference 
in function of HER-3 compared with other members of the 
family. For example, Leu736 in helix αC of HER-1 is replaced 
by Thr738 in HER-3, and this change stabilizes the inactiva-
tion state of HER-3. Ile735 in hydrophobic core of HER-1 is 
replaced by Val737 in HER-3, and this change weakens the 
ability of HER-3 to form hydrophobic subunits. The structure 
of HER-3 is similar to that of an integrate kinase, but locked in 
an inactive conformation similar to that of Src/CDK. When the 
HER-3 sequence is activated, helix αC turns to the active site, 
the activation ring center is opened and bound the substrate 
peptide. There are 14 tyrosine residues in HER-3 C-terminal 
signal tail, including six PI3K binding sites that have been 
confirmed through phosphorylation, which mediate interac-
tions between three regulatory subunits of PI3K and lead to 
activation of downstream AKT signaling pathways (15).

At present, our understanding of the function of HER-3 is 
very limited. In the 1990s, the kinase activity of HER-3 was 
not detected by recombinant protein technique. Therefore, 
researchers believed that the kinase domain of HER-3 may be 
non-functional (16,17). HER-3 kinase domain lacks several key 
residues required for catalytic activity, such as Asp813 which 
is present in HER-1; thus HER-3 was thought not to contain 
tyrosine kinase activity and catalytic activity. The intracellular 
region of HER-3 does not bind ATP and is not auto-phosphor-
ylated (18,19). HER-3 was considered to be functional merely 
as a signaling substrate for other HER members, similar to the 
function of insulin receptors, IRS1 and IRS2. However, Kornev 
and Taylor's (20) study in 2009 demonstrated that HER-3 was 
not completely inactive; its activity was very low and was 
not comparable to that of HER-1, but the kinase activity of 
HER-3 was sufficient to mediate auto‑phosphorylation of its 

intracellular region. Shi et al (21), using molecular mechanics 
simulation in 2010, revealed that the phosphorylation cata-
lyzed by HER-3 was mediated via the ̔inactive-likeʼ structure 
rather than the conserved catalytic subunit, suggesting that the 
cytoplasmic region of HER-3 within the receptor dimers was 
capable of binding ATP and promoting auto-phosphorylation. 
Jura et al (13) confirmed, using biochemical analysis in 2009, 
that the kinase domain of HER-3 was a specific allosteric acti-
vator to activate the recipient protein kinase. Although these 
studies challenged the traditional understanding of HER-3 
function, the exact mechanism is not fully understood and 
further studies should be carried out. The function of HER-3 
should be re-inspected, the role of HER-3 in cell signaling 
transduction and human cancer is becoming increasingly 
important. Findings with regard to the function of HER-3 may 
provide insight into the pathogenesis and therapy of human 
cancer.

Following ligand binding, HER-3 forms a receptor dimer 
via a unique mechanism by which monomeric inactive state 
changes to active state upon homo- or heterodimerization and 
the tyrosine kinase and its downstream signaling pathways 
are activated (22). HER-3 interacts with other members of 
the HER family. First, HER-3 interacts with HER-1 directly. 
EGF can activate the tyrosine kinase of HER-1, and can also 
cross-activate HER-3 at the same time (22). Tyrosine kinase 
inhibitor (TKI) blocks downstream signaling pathways by 
inhibiting the interaction of HER-1 and HER-3 (23). Second, 
HER-3 interacts with HER-2 directly. Heregulin (HRG) ligand 
binding causes prolonged activation of HER-3, but this process 
is strongly dependent on HER-2 expression. In the HER 
family, HER-3 mainly interacts with HER-2. Since HER-2 
lacks ligand-binding activity and HER-3 lacks catalytic 
kinase activity, both the receptors are functionally interdepen-
dent. The relationship between HER-2 and HER-3 has been 
described as ̔deafʼ and ̔dumbʼ (18,24,25). The cooperation 
between HER-2 and HER-3 is unique, but the underlying 
molecular mechanism is poorly understood. Third, HER-3 and 
HER-4 can form heterodimer, but few studies have explored 
the relationship between them (26).

There are 2 relevant downstream signaling pathways 
of HER-3 (Fig. 2). The first one is the phosphatidylinositol 
3-kinase (PI3K)/3-phosphoinositide-dependent protein kinase 
(PDK) 1/protein kinase B (AKT) pathway. Activation of PI3K 
is induced by the formation of dimer between HER-3 and 
HER-1/2. PI3K is a dimeric protein kinase composed of P110 
catalytic subunit and P85 regulatory subunit (27). The P85 
subunit binds to HER-specific anchor sites via its SH2 domain, 
and the P110 subunit catalyzes the phosphorylation of phos-
phatidylinositol 4,5-bisphosphate (PIP2) to 3,4,5-triphosphate 
phosphatidylinositol (PIP3). The level of PIP3 is regulated by 
phosphatase and tensin homologue deleted on chromosome 10 
(PTEN) (28). PI3K accumulates PDK1/AKT in the cell 
membrane and activates it via phosphorylation, thus stimu-
lating downstream signaling. The PI3K pathway regulates cell 
growth, cell apoptosis, tumor cell invasion, as well as metas-
tasis and chemotherapy resistance. The second pathway is the 
Ras/Raf/MEK/mitogen-activated protein kinase (MAPK) 
pathway. Activation of HER-3 and subsequent phosphoryla-
tion of tyrosine kinase induce Grb2-SOS complex binding 
to phosphorylation anchor sites. Then, the three-dimensional 
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structure of SOS is altered which enables the formation of 
Ras-GTP from aggregated Ras-GDP (29,30), leading to the 
activation of Raf, MEK and MAPK (31,32). Activated MAPK 
transduces extracellular stimuli into the cell to regulate tran-
scription factors in the nucleus and induces cell migration and 
proliferation (33).

3. The close relationship between HER-3 and human tumor

The studies on HER-1 and HER-2 in tumor targeted therapy 
and efficacy prediction have developed. For example, small 

molecule HER-1 TKI, gefitinib, has been used in the first-line 
treatment of advanced non-small cell lung cancer (NSCLC) 
with HER-1 mutation (34). Anti-HER-1 monoclonal antibody, 
cetuximab, has been used in targeted therapy for head and 
neck squamous cell carcinoma, colorectal cancer and advanced 
NSCLC (35-37). Anti-HER-2 monoclonal antibody, trastu-
zumab, has been used in targeted therapy for HER-2 positive 
advanced breast cancer and gastric cancer (38,39). In view of 
the significant contribution of HER-1 and HER-2, researchers 
began looking into the role of HER-3. With the new under-
standing of the structure and function of HER-3, studies on the 

Figure 1. HER-3 structure diagram. The structure of HER-3 includes an extracellular ligand binding domain, a transmembrane helix domain and an intracel-
lular TKD. The intracellular region is divided into a juxtamembrane region, a kinase domain and C-terminal tail. The juxtamembrane region is divided into 
JM-A and JM-B. The kinase domain includes N-lobe, helix αC, activation loop and C-lobe. HER-3, human epidermal growth factor receptor-3; TKD, tyrosine 
kinase domain. JM-A, juxtamembrane-A; JM-B, juxtamembrane-B.

Figure 2. HER-3 and its downstream signaling pathways. The downstream signaling pathways include the PI3K/PDK1/AKT and the Ras/Raf/MEK/MAPK 
pathway. HER-3, human epidermal growth factor receptor-3; MAPK, mitogen-activated protein kinase.
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relationship of HER-3 with tumorigenesis, progression, new 
target exploration, target therapy resistance, prognosis and effi-
cacy prediction are increasing. Some studies have confirmed 
that HER-3 plays an important role in the occurrence and 
progression of lung cancer, breast cancer, colorectal cancer as 
well as other types of cancer (26,40-42). The HER-3/PI3K/AKT 
signal pathway plays a key role in the target therapy resistance 
of NSCLC, breast cancer, head and neck squamous cell carci-
noma, prostate cancer and hepatocellular carcinoma and other 
types of cancer (43-48). Inhibition of HER-3 and HER-1/HER-2 
is very important for tumor treatment (49,50) and it may be a 
new therapeutic target. HER-3 is also beneficial in predicting 
the prognosis and treatment efficacy. In the search for tumor 
treatment, HER-3 has become a focus of concern in the HER 
family. The following describes the role of HER-3 in different 
tumors.

Overexpression of HER-3 in NSCLC cell lines acceler-
ated growth and metastasis of tumor cells, and promoted 
tumorigenicity of allografts in a kinase-dependent manner. By 
contrast, downregulation of HER-3 inhibited proliferation and 
migration of tumor cells, tumor growth and metastasis in vivo. 
HER-3 silencing inhibited tumor cell growth by reducing 
DNA synthesis and caspase-8-mediated apoptosis, and tumor 
cell migration by increasing accumulation of focal adhesion 
components (40). Lung adenocarcinoma cells were markedly 
suppressed in culture by siRNAs to the receptor HER-3 or its 
downstream signaling partner AKT2 (51). The above studies 
suggest that HER-3 and its downstream signaling pathway 
play a crucial role in occurrence and metastasis of lung cancer. 
HER-1 TKI such as gefitinib/erlotinib is very effective treat-
ment for NSCLC with HER-1 mutation, but the emergence 
of drug resistance is difficult to overcome. The sensitivity of 
HER-1 TKI is associated with inhibition of the HER-3/PI3K/
AKT signaling pathway, i.e., this pathway will lead to TKI 
resistance if not effectively inhibited (43). Gefitinib tempo-
rarily inhibits HER-3/PI3K/AKT signaling, but in the process 
of subsequently sustained inhibition of HER-1 and HER-2, 
recovery of HER-3 activity and reactivation of the PI3K/
AKT pathway will lead to drug resistance. Downregulation 
of HER-3 led to reduction of AKT phosphorylation level and 
growth inhibition in an NSCLC mutant cell line that was 
sensitive to gefitinib. However, downregulation of HER-3 
did not alter the activity of AKT in resistant tumor cell lines, 
suggesting that the separation of HER-3 from downstream 
AKT signaling pathway was one of the important aspects 
of the drug resistance (52). HER-3 and PI3K/AKT pathways 
may enable tumor cells to escape TKI inhibition through a 
compensatory offset of the equilibrium between HER-3 
phosphorylation and dephosphorylation (43). Amplification 
of MET proto-oncogene promoted HER-3-dependent PI3K 
activation and led to drug resistance in gefitinib-sensitive lung 
cancer cell lines, inhibition of MET proto-oncogene restored 
the sensitivity to gefitinib (48). In addition to HER-1 mutation, 
a second mutation, T790M, is also associated with acquired 
drug resistance. Introduction of exogenous HER-1 with T790M 
mutation effectively blocked gefitinib activity and maintained 
HER-3/PI3K/AKT signal activation in lung cancer cells (53). 
In addition, oncogenic mutation of PIK3CA, p110αE545K, 
activated PI3K signaling and eliminated gefitinib-induced 
apoptosis (54). These studies demonstrated that HER-3 and/

or PI3K/AKT signal may be intermediate links of acquired 
gefitinib resistance. While irreversible tyrosine kinase agents 
inhibited HER-1 in resistant cells, they re-inhibited HER-3 and 
PI3K signaling at the same time, which further highlighted 
the central role of HER-3 in adjusting drug sensitivity or 
resistance (55). miR-22 in lung cancer cell lines played a good 
antitumor effect through inhibition of HER-3 transcriptional 
regulation (56). Thus, HER-3 is a potential therapeutic target 
and simultaneous inhibition of HER-3 and HER-1 will bring 
considerable benefit to the clinic. Due to the complexity of 
signaling networks, whether the HER-3/PI3K/AKT pathway 
alone can induce TKI resistance in NSCLC merits further 
study. The positive expression rates of HER-3 in NSCLC are 
18-67%. Study results on the response to TKI, survival and 
prognosis of patients with HER-3 high expression are incon-
sistent. A study including 192 surgically removed NSCLC 
cases showed the expression of HER-3mRNA was higher in 
patients with highly-differentiated, adenocarcinoma, mutant 
HER-1 than in patients with poorly-differentiated, non-
adenocarcinoma, wild-type HER-1, and the expression was 
higher in females than in males (57). Large sample studies and 
more uniform and accurate research methods are required to 
further clarify whether high HER-3 expression is an indicator 
of TKI benefit.

The role of the HER family in tumorigenesis is most 
aptly understood in breast cancer subtypes with HER-2 gene 
amplification. HER-3 is required for HER-2-induced preneo-
plastic changes to breast tumor formation (58). HER-2 must 
dimerize with HER-3 to promote breast cancer cell prolifera-
tion; deletion of HER-3 in HER-2 positive breast cancer cell 
lines produces strong anti‑proliferative effects (59). HER-2/
HER-3 heterodimer is the most powerful carcinogenic unit, 
the phosphorylation state of HER-3 is critical for HER-2 
positive breast cancer cell motility and metastasis  (41). A 
significant increase of HER-3 phosphorylation in HER-2 
positive breast cancer was accompanied by activation of 
downstream signaling pathways, and knockdown of HER-3 
was always accompanied by tumor shrinkage in vitro (60). 
Dephosphorylation of HER-3 and decoupling with PI3K lead 
to downregulation of AKT signaling and it is directly related 
to the anti-proliferative effect of trastuzumab. HER-3-specific 
affibody molecules (Z05416, Z05417) blocked cancer cell 
growth by inhibiting HRG-induced HER-3 phosphorylation 
in the MCF-7 and SKBR-3 breast cancer cell lines (61). The 
above studies clarify that the phosphorylation state of HER-3 
and downstream signaling play a central role in the occurrence 
of HER-2 positive breast cancer, and HER-3 may be a drug 
target. Since the process of TKI inhibiting HER-2/HER-3 
transphosphorylation and PI3K/AKT signaling pathway 
activation in HER-2 positive breast cancer are transient, 
the antitumor efficacy of TKI is weakened (43). The kinase 
function of HER-2 is essential during tumorigenesis  (62), 
therefore, inhibition of the catalytic kinase activity is a key 
mechanism for anticancer drugs. The buffering effect of 
incomplete inhibition of HER-2 kinase activity by HER-3 may 
be a highly important mechanism by which HER-2 positive 
breast cancer cells escape TKI treatment (43,63). miR-205 
downregulates HER-3 and recovers the sensitivity to TKI 
in human breast cancer cells (64). pHER-3 upregulation in a 
fulvestrant resistant cell line was mostly accompanied by an 
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increase of pAKT activity. However, highly specific inhibition 
by HER-3 antibody (A5) significantly downregulated pHER-3 
without affecting downstream ERK/AKT phosphorylation, 
suggesting that the resistant cells may produce endogenous 
ligand that reactivated pHER-3. Exogenous ligands binding 
to HER-3 affect AKT downstream signals, but the under-
lying mechanism remains unclear (47). Bispecific antibody 
(MM-111) formed trimer with HER-2/HER-3, which effec-
tively inhibited proliferation of HER-3 and HER-2 positive 
tumor cells (50). A new selective PI3K inhibitor (GDC-0941) 
combined with trastuzumab and pertuzumab inhibited the 
growth of tumor cells, and led to morphological changes of 
gland cells and inhibition of the HER-3/PI3K/AKT signal 
pathway (65). GDC-0941 is also effective for the treatment of 
trastuzumab-resistant tumor cells (66). XL147, which is also a 
PI3K inhibitor, inhibits tumor cell growth in a dose-dependent 
manner. In HER-2 positive breast cancer cells, knockdown of 
HER-3 by siRNA enhanced the effect of XL147 (67). Thus, 
multi-target treatment provides an increase of clinical benefit 
for patients with breast cancer, inhibition of HER-2, HER-3 
and PI3K simultaneously may be the future treatment direc-
tion of HER-2 positive breast cancer. The positive expression 
rates of HER-3 in breast cancer are 18-75%. The expression 
of HER-3 was positively correlated with high organizational 
classification and lymphatic vessel invasion, suggesting it was 
significantly associated with tumor progression and metastasis, 
and may serve as a useful prognostic biomarker (68). Tissue 
microarray analysis demonstrated that normal expression of 
HER-1/HER-2 and overexpression of HER-3 in invasive breast 
cancer indicated poor prognosis (69,77). Multivariate analysis 
showed that HER-2 and HER-3 were independent prognostic 
markers, while clustering analysis showed that coexpression of 
HER-1 and HER-3 suggested poor prognosis, with a 10-year 
survival rate of 42% (70). However, in HER-2 negative/low 
expression cases or HER-2 positive breast cancer patients 
treated with trastuzumab, there was no correlation between 
the expression of HRG, HER-3 and survival or known clinical 
prognostic factors (71,72).

There is almost no HER-3 expression in normal colon 
tissue, but the positive expression rates of HER-3 in colorectal 
cancer tissue are 50-89%. Knockdown of HER-3 by siRNA in 
colon cancer cell lines was accompanied by absence of HER-4 
expression and elevation of tumor cell apoptosis; HER-3/HER-4 
heterodimer may be one of the precipitating factors of colon 
cancer (26). HRG expression was detected in colon metastatic 
liver cancer cells, knockdown of integrin  αv and HER-3 
by siRNA significantly inhibited HRG-induced tumor cell 
migration as well as liver metastasis in vivo, marked phosphor-
ylation of AKT was found in the process, cell migration was 
suppressed by specific inhibitors of PI3K. The study indicated 
that HRG/HER-3/PI3K/AKT may participate in colon cancer 
liver metastasis (73). The median progression-free survival 
time and the median overall survival time of the patients with 
wild‑type K-RAS advanced colorectal cancer receiving cetux-
imab combining irinotecan treatment in the HER-3 negative 
group were significantly higher than in the HER-3 positive 
group, suggesting that HER-3 may be a predictor of cetuximab 
efficacy in patients with wild-type K-RAS advanced colorectal 
cancer (74). Comprehensive analysis of HER-3 and K-RAS 
may aid in identifying the most appropriate colorectal cancer 

patients for cetuximab treatment and may provide an effec-
tive treatment strategy. Studies on HER-3 and other digestive 
system tumors are limited. The positive expression rate of 
HER-3 in gastric cancer is 13.7%, and it correlates with late 
stage and poor prognosis (75). DARPP-32 promotes resistance 
of gastric cancer cells to gefitinib by stimulating interac-
tion between HER-1 and HER-3 and activating PI3K/AKT 
signaling (76). The results of the ToGA trial are encouraging; 
it is expected that routine detection of HER-2 will be included 
in the diagnosis of advanced gastric cancer (39,77). The trial 
investigates whether HER-3 will be of value for guiding the 
treatment of gastric cancer. HER-1/2 expression is absent in 
normal pancreatic tissue, but HER-3/4 are expressed (78). The 
positive expression rates of HER-3 in pancreatic cancer tissues 
are 27-47%. Generally, HER-3 positive was prone to cause 
targeted therapy drug resistance, but HER-3 increases the 
sensitivity of pancreatic cancer cells to erlotinib. Knockdown 
of HER-3 in erlotinib sensitive pancreatic cancer cell lines 
resulted in AKT level reduction and pancreatic cancer cell 
proliferation, suggesting that HER-3 may be a sensitive 
biomarker for erlotinib in pancreatic cancer (79). The median 
survival time in HER-3 overexpression patients with resectable 
pancreatic cancer was 37.2 months, but in HER-3‑negative 
patients it was 58.6 months, therefore, HER-3 overexpression 
may be an independent indicator of poor prognosis for patients 
with curatively resected pancreatic cancer (80). A study found 
sHER-3 (isomers) was more accurate than AFP in identifying 
early liver cancer from chronic hepatitis; the plasma high-level 
was closely related to portal venous invasion and extrahepatic 
metastasis (81). HER-3 restricted cell response to sorafenib or 
IGF1R inhibitor in hepatocellular carcinoma cells (46,82).

HER-3 is activated in multiple ovarian cancer cell lines. 
Activation of NRG1/HER-3 autocrine loop pathway promotes 
the proliferation of human ovarian cancer cells. In the mouse 
xenograft model, deletion of HER-3 inhibited prolifera-
tion of OVCAR8 cells and slowed down tumor progression, 
suggesting that HER-3 and/or NRG1 play a key role in the 
pathogenesis of ovarian cancer and are potential therapeutic 
targets for advanced ovarian cancer (83). The positive expres-
sion rates of HER-3 in ovarian cancer are 3-53%, and some 
studies reported that HER-3 expression was negatively corre-
lated to overall survival (84,85). Regardless of whether the 
corresponding ligand NRG existed or not, HER-3 promoted 
prostate cancer cells mobile in vitro and tumor formation 
in vivo (86). HER-2/HER-3 heterodimer promoted aberrant 
activation of androgen and led to the formation of hormone-
resistant prostate cancer (45). Further studies are required to 
elucidate the role of HER-3 and other HER members in repro-
ductive system tumors.

High expression of HER-3 and absence of HER-2 expres-
sion in melanoma indicated that HER-3 may be an allosteric 
activator of HER-1 or HER-4. Disorders of NRG1/HER-3 and 
HRG/HER-3 signaling are correlated with development and 
metastasis of melanoma (87,88). Anti-human HER-3 mono-
clonal antibody promoted HER-3 receptor internalization and 
degradation, and inhibited growth and migration of human 
melanoma cells (89). The pan-HER receptor TKI (canertinib) 
inhibits HER-1, HER-2 and HER-3 receptor phosphorylation 
and promotes apoptosis of malignant melanoma in vitro; it 
also displays antitumor activity in vivo (90).
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4. Conclusion

With protein crystallization, molecular biology has begun to 
reveal the structure of HER-3. At the same time, the kinase 
domain of HER-3 acting as a functional activator to activate 
the recipient kinase was confirmed. Insights into the activation 
mechanism of the HER family were also gradually elucidated. 
In the critical search of a cure for cancer, HER-3, as a member 
recognized step by step in the HER family, seems to provide 
some insight into tumor therapy. Although people have known 
about HER-3 for several years, the value of HER-3 was formerly 
ignored. Currently, research results demonstrate that HER-3 is 
closely related to tumorigenesis, progression and metastasis, 
which helps to clarify the mechanisms of tumor biological 
behavior. HER-3 is involved in targeted therapy resistance and 
may be a new therapeutic target. A further in-depth under-
standing of HER-3 will play a fueling role in HER-3 associated 
targeted therapies. Analyzing the relationship between the 
expression of HER-3 and the effects of targeted therapy may 
help to identify the most appropriate patient sub-groups for 
HER-3 targeted treatment. In the search for a breakthrough in 
cancer treatment, HER-3 has become an emerging protagonist 
in the HER family.
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