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Abstract. The Maelstrom (MAEL) gene is a cancer-testis (or 
cancer-germline) gene, which is predominantly expressed 
in germline cells under normal conditions, but is aberrantly 
expressed in a range of human cancer cells. In germline cells, 
MAEL is found predominantly in the nuage, where it plays 
an essential role in piRNA biogenesis and piRNA-mediated 
silencing of transposons. However, the role of MAEL in cancer 
has not been elucidated. We performed immunoprecipitation 
and Nano-LC-MS/MS analysis to investigate the interactome of 
MAEL, and identified 14 components of stress granules (SGs) as 
potential binding partners of MAEL in MDA-MB-231 human 
breast cancer and SW480 colorectal cancer cells. The interac-
tions between MAEL and 8 of these SG components (PABPC1, 
YBX1, KHSRP, SYNCRIP, DDX39, ELAV1, EIF4A1 and 
EIF3F) were confirmed by anti-tag immunoprecipitation. 
Immunofluorescence analysis showed that MAEL co-localizes 
with the SG marker PABPC1 in SGs during oxidative stress. 
Nuages and SGs are the cytoplasmic RNA granules of germline 
cells and stressed somatic cells, respectively, and both serve 
as a platform for small RNA-mediated gene silencing. It is, 
therefore, suggested that MAEL may be involved in miRNA-
mediated gene silencing in SGs, as it does in the nuage. This 
finding should be valuable toward understanding the function of 
MAEL in carcinogenesis.

Introduction

The Maelstrom (MAEL) gene was first identified in Drosophila 
(1). It plays a role in the establishment of oocyte polarity by 
acting in the positioning of mRNA and the microtubule-
organizing center (MTOC) in early oocytes (1,2). Drosophila 
maelstrom protein co-localizes with Vasa and Aubergine in the 
nuage (3), a germline-unique perinuclear structure that serves 
as a platform for PIWI-interacting RNA (piRNA) biogenesis 
and piRNA-dependent silencing of transposons and some other 
harmful selfish elements (4,5). The mouse homolog of MAEL 
is also found to localize in the nuage (6,7) and is essential for 
spermatogenesis and transposon repression (7). Further study 
by Aravin et al (8) demonstrated that MAEL co-localizes with 
MIWI2/PIWIL4 in a type of nuage named piP-body, which 
harbors both piRNA pathway proteins (MIWI2, TDRD9 and 
MAEL) and P-body (processing body) components (DDX6, 
DCP1a, XRN1 and GW182), and that loss of MAEL disrupts 
normal MIWI2 localization and piRNA production leading 
to transposon activation. In rat spermatogenic cells, MAEL 
protein is detected in all types of nuage except the cluster of 
30-nm particles (i.e. 70- to 90-nm particles, satellite body, 
intermitochondrial cement, cluster of 60- to 90-nm particles, 
chromatoid body) (9). MAEL protein is also found in non-
nuage compartments (10) and the nucleus (3,9). In the nucleus, 
MAEL binds the miR-7 promoter and represses its expres-
sion (11).

Our previous study demonstrated that MAEL is a 
cancer-testis (CT) gene (12). The CT genes, also known as 
cancer-germline (CG) genes, are predominantly expressed 
in germ cells of the testis or/and ovary and have no or little 
expression in somatic adult tissues, but are aberrantly 
expressed in various types of cancers (13,14). We found that 
the human MAEL gene is only expressed in germ cells of 
the testis among normal tissues, but is expressed in various 
human cancer cell lines such as breast cancer MDA-MB-231 
cells and colorectal cancer SW480 cells. Like most of the CT 
genes (15,16), the expression of the MAEL gene is activated 
by hypomethylation in cancer (12). Kim et al (17) analyzed 
the methylation profile of 27,578 CpG sites spanning >14,000 
genes in colorectal cancer and adjacent normal mucosa, and 
found that among the genes tested, MAEL and SFT2D3 
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showed the lowest methylation level in tumor tissues when 
compared to the normal mucosa (17). However, the precise 
subcellular localization and function of MAEL in cancer cells 
are not clear.

In the present study, we identified the interacting partners 
of MAEL in breast cancer MDA-MB-231 and colorectal 
cancer SW480 cells using mass spectrometric method, and 
demonstrated that MAEL localizes in stress granules (SGs) 
in cancer cells and interacts with several components of SGs.

Materials and methods

Plasmids. The Myc-tagged YBX1 expression plasmid 
pDESTmycYBX1 [Addgene plasmid 19878, deposited by 
Landthaler  (18)] was obtained from Addgene (Cambridge, 
MA, USA). The other expression plasmids (pHA-MAEL, 
pMyc-DDX39, pMyc-EIF4A1, pMyc-EIF3F, pMyc-ELAV1, 
pMyc-PABPC1, pMyc-SYNCRIP and pMyc-KHSRP) were 
constructed as follows. The coding sequence of each gene 
was amplified from the first strand cDNA of MDA-MB-231 or 
SW480 cells with the primers described in Table I. The ampli-
fied products were cloned into the pMD18-T vector (Takara, 
Dalian, China) by TA cloning method, and subcloned into 
the pCMV-HA or pCMV-Myc vector (Clontech Laboratories, 
Inc., Mountain View, CA, USA) with restriction enzyme sites 
in the primer (Table I).

Immunoprecipitation (IP) of the MAEL protein complex. The 
human breast cancer MDA-MB-231 and colorectal cancer 
SW480 cells [American Tissue Culture Collection (ATCC), 
Manassas, VA, USA] were cultured in L-15 media that was 
supplemented with glutamine, antibiotics and 10% fetal bovine 
serum (FBS) at 37˚C in 5% CO2. The cells were washed with 
phosphate-buffered saline (PBS) and incubated with 0.5 mM 
cross-linker DSP (Pierce, Rockford, IL, USA) for 30 min. 
After cross-linking, cells were sequentially washed with PBS, 

PBS containing 25 mM Tris-HCl buffer and PBS. Then, cells 
were lysed in RIPA buffer by sonication, and subjected to 
centrifugation at 12,000 x g for 15 min. The supernatants were 
transferred to a new tube for immunoprecipitation.

Immunoprecipitation was performed as described by 
Lin et al (19). In each 1.5-ml tube, 2.5 mg of lysates was mixed 
with 2 µg of polyclonal antibody against MAEL or preimmune 
rabbit IgG (Signalway Antibody Co., Ltd., Nanjing, China), 
and incubated overnight at 4˚C with gentle shaking. Immune 
complexes were collected on protein A/G agarose beads and 
washed three times to remove non-specific binding using the 
same buffer as for the cell lyses. Proteins were eluted from the 
beads by boiling the beads in loading buffer for 10 min, and 
were then separated on SDS-PAGE gel and visualized with 
silver staining.

Nano-LC-MS/MS. Each excised protein gel band was destained 
and digested with trypsin as described by Lin  et  al  (19). 
Nano-LC MS/MS experiment was performed on an HPLC 
system composed of two LC-20AD nano-flow LC pumps, an 
SIL-20AC autosampler and an LC-20AB micro-flow LC pump 
(Shimadzu, Tokyo, Japan) connected to an LTQ Orbitrap 
mass spectrometer (Thermo Fisher Scientific, San Jose, CA, 
USA). Sample was loaded on a CapTrap column (0.5 x 2 mm; 
Michrom Bioresources, Inc., Auburn, CA, USA) for 6 min at 
a flow rate of 25 µl/min. The sample was subsequently sepa-
rated by a C18 reverse-phase column (0.10 x 150 mm, packed 
with 3 µm Magic C18AQ particles; Michrom Bioresources) 
at a flow rate of 500 nl/min. The mobile phases were 2% 
acetonitrile with 0.1% formic acid (phase A and the loading 
phase) and 95% acenitrile with 0.1% formic acid (phase B). 
To achieve proper separation, a 60-min linear gradient from 
0 to 80% phase B was employed. The separated sample was 
introduced into the mass spectrometer via an Advance 30-µm 
silica tip (Michrom Bioresources). The spray voltage was 
set at 1.6 kV and the heated capillary at 180˚C. The mass 

Table I. Primers used for amplifying the coding region of the genes.

Gene name	 Sequence (5'→3')	 Restriction site

MAEL-F	 GAATTCCCATGCCGAACCGTAAGG	 EcoRI
MAEL-R	 GGTACCGGGCCTGTTACTGTTTTCAGAA	 KpnI
DDX39-F	 GAATTCTCATGGCAGAACAGGATGTG	 EcoRI
DDX39-R	 CTCGAGTGGTGGTTACCGGCTCTG	 XhoI
EIF4A1-F	 GAATTCTCATGTCTGCGAGCCAGG	 EcoRI
EIF4A1-R	 GTCGACGCTGGGTGGCAGGACAG	 SalI
EIF3F-F	 GAATTCACAAGATGGCCACACCG	 EcoRI
EIF3F-R	 CTCGAGCCATTCACAGGTTTACAAGTTT	 XhoI
ELAV1-F	 GTCGACAATGTCTAATGGTTATGAAGACC	 SalI
ELAV1-R	 GGTACCGCATGAGCGAGTTATTTGTG	 KpnI
PABPC1-F	 GTCGACCGAGATGAACCCCAGTGC	 SalI
PABPC1-R	 GGTACCTTTAAACAGTTGGAACACCG	 KpnI
SYNCRIP-F	 GTCGACTGGAAACATGGCTACAGAACA	 SalI
SYNCRIP-R	 GGTACCCTACTTCCACTGTTGCCCAA	 KpnI
KHSRP-F	 GAATTCCCATGTCGGACTACAGCAC	 EcoRI
KHSRP-R	 GGTACCGATTCATTGAGCCTGCTGC	 KpnI
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spectrometer was operated in the data-dependent mode, and 
each cycle of duty consisted of one full-MS survey scan at the 
mass range 385-2000 Da with resolution power of 100,000 
using the Orbitrap section, followed by MS/MS experiments 
for 10 strongest peaks using the LTQ section. The AGC 
expectation during full-MS and MS/MS were 1,000,000 and 
10,000, respectively. Peptides were fragmented in the LTQ 
section using collision-induced dissociation with helium and 
the normalized collision energy value set at 35%. Previously 
fragmented peptides were excluded for 60 sec.

Database search. Tandem mass spectra were extracted by 
BioWorks version 3.3.1 SP1 (Thermo Fisher Scientific). All 
MS/MS samples were analyzed using Sequest (Thermo Fisher 
Scientific; version 28). Sequest was set up to search the human 
proteome database from UniProt release 2010_08 (down-
loaded from the official website of UniProtKB following this 
link: http://www.uniprot.org/uniprot/?query=organism:960
6+keyword: 181&format=*&compress=yes, downloaded at 
2010-07-13) assuming the digestion enzyme trypsin. Sequest 
was searched with a fragment ion mass tolerance of 1.00 Da 
and a parent ion tolerance of 20 ppm. Oxidation of methio-
nine (+15.99492 Da) and acetylation of lysine (+42.01057 Da) 
were specified as variable modifications. Trans-Proteomic 
Pipeline (20) was used to validate MS/MS based peptide and 
protein identifications. Peptide probability was specified by 
the Peptide Prophet algorithm (21). Protein probabilities were 
assigned by the Protein Prophet algorithm (22). Proteins that 
contained similar peptides and could not be differentiated 
based on MS/MS analysis alone were grouped to satisfy the 
principles of parsimony.

Gene Ontology analysis. Gene Ontology (GO) enrichment 
analysis was performed using the Database for Annotation, 
Visualization and Integrated Discovery (DAVID) func-
tional annotation tool (http://david.abcc.ncifcrf.gov)  (23). 
UniProt accession numbers of MAEL-associated proteins 
were submitted to DAVID system and categorized based on 
biological process (BP), molecular function (MF) and cellular 
component (CC) using the software.

Anti-tag co-immunoprecipitation. Transfection and co-IP 
were performed as previously described (24). Hek293 cells 
were co-transfected with HA-tagged MAEL expression plas-
mids and expression plasmids of each Myc-tagged SG gene. 
At 24 h after transfection, cell lysates were prepared and 
immunoprecipitated with rabbit anti-HA polyclonal antibody 
or preimmune rabbit IgG, and the precipitated protein was 
detected by western blot analysis using the anti-Myc mono-
clonal antibody. The anti-HA, anti-Myc and IgG antibodies 
were purchased from Santa Cruz Biotechnology (Santa Cruz, 
CA, USA).

Immunofluorescence staining of SGs. SW480 cells were grown 
on glass coverslips, and treated with 0.5 mM hydrogen peroxide 
(H2O2) for 1 h to induce the formation of SGs. Treated cells 
and control cells were fixed with 4% paraformaldehyde and 
permeabilized in 0.1% Triton X-100, respectively. To reduce 
the unspecific binding, the cells were incubated in 1% BSA 
overnight the 4˚C. Then, cells were incubated with anti-MAEL 

polyclonal antibody and anti-PABPC1 monoclonal antibody 
(Pierce, Rockford, IL, USA) for 2 h at room temperature, 
followed by incubation with Texas Red-conjugated anti-rabbit 
IgG (red) and FITC-conjugated anti-mouse IgG (green) for 1 h. 
The nuclei were labeled by DAPI. Images were obtained using 
a Zeiss LSM 510 confocal microscope (Carl Zeiss Imaging, 
Oberkochen, Germany). Texas Red-conjugated anti-rabbit IgG 
and FITC-conjugated anti-mouse IgG were purchased from 
Santa Cruz Biotechnology.

Results

RNA-binding proteins are enriched in the MAEL protein 
complex. To identify the potential interacting partners of 
MAEL protein, we performed the co-IP experiments to isolate 
the MAEL complex in human breast cancer MDA-MB‑231 
and colorectal cancer SW480 cells. The immune complexes 
of the anti-MAEL antibody and IgG were resolved on 
SDS-PAGE gel followed by silver staining. The protein bands 
which only existed in the complex of the anti-MAEL antibody 
were excised (Fig. 1), digested with trypsin and analyzed by 
Nano-LC MS/MS method. All MS/MS samples were analyzed 
using Sequest. According to the database search results, we 
identified 178 non-redundant proteins in the three bands from 
MDA-MB-231 cells and 167 proteins in the four bands from 
SW480 cells. Among these proteins, 78 proteins were common 
to both MDA-MB-231 and SW480 cells.

To find whether these 78 proteins share some particular 
features, we performed GO enrichment analysis with 
DAVID (23). Table II shows the top 5 significantly enriched 
terms in the MAEL-associated proteins. In the molecular 
function (MF) category, the RNA binding term is the most 
significant term (with the lowest P-value) and contains the 
largest number of proteins (32.1% of the 77 proteins assigned 

Figure 1. Silver-stained SDS-PAGE gel of the immunoprecipitates. The 
lysates (2.5 mg) of (A) MDA-MB-231 or (B) SW480 cells were mixed with 
2 µg of anti-MAEL antibody or IgG, and incubated overnight at 4˚C with 
gentle shaking. Immune complexes were separated on SDS-PAGE gel and 
visualized with silver stain. The protein bands which only existed in the 
complexes of the anti-MAEL antibody are indicated by arrows.
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to MF category). In the cellular component (CC) category, 
the term with the lowest P-value was the non-membrane-
bounded organelle, and that with the second lowest P-value 
was the ribonucleoprotein complex term. Additionally, a 
large number of MAEL-associated proteins were enriched 
in the nuclear lumen, consisting of 23 proteins (29.5% of 
the 70 proteins assigned to CC category). In the biological 
process (BP) category, the top three terms with the lowest 
P-value were RNA process, chromatin assembly and 
macromolecular complex assembly. When considering all 
three categories, we found that most MAEL-associated 
proteins were RNA-binding proteins existing in the ribo-
nucleoprotein complex.

MAEL interacts with stress granule proteins. MAEL protein 
is a component of nuage (3,6,7), a germline-unique ribonu-

cleoprotein complex particle. According to the above results 
(Table  II), MAEL associates with RNA-binding proteins, 
possibly a component of the ribonucleoprotein complex in cancer 
cells. However, we did not find other nuage components in the 
MAEL-associated proteins. Notably, the MAEL-associated 
proteins contained 14 components of SGs: PABPC1 (25), 
FUBP1/FBP1 (26), KHSRP/FBP2 (26), YBX1/YB-1 (27), 
SYNCRIP/hnRNP Q (28), EIF3F (29), EIF4A1 (30), EIF4B 
(31), ELAVL1  (32), HNRNPA1  (33), HNRNPA2B1  (34), 
DDX1 (27), DDX3X (35) and DDX39 (36). Among these, 
8 proteins (PABPC1, FUBP1, KHSRP, YBX1, SYNCRIP, 
EIF4B, HNRNPA1 and HNRNPA2B1) were identified from 
both MDA-MB-231 and SW480 cells (Table III); 6 proteins 
were found only in MDA-MB-231 (EIF4A1, EIF3F and 
DDX3X) or SW480 cells (DDX39, ELAVL1 and DDX1) 
(data not shown).

Table II. Top 5 significantly enriched GO terms in the MAEL-associated proteins.

Category	 Term	 Count	 Percentage	 Value

MF	 RNA binding	 25	 32.1	 1.12E-12
	 Structural constituent of the cytoskeleton	 10	 12.8	 4.04E-10
	 Structural molecule activity	 15	 19.2	 1.57E-05
	 Transcription corepressor activity	 6	 7.7	 1.60E-03
	 NAD or NADH binding	 4	 5.1	 2.60E-03
CC	 Non-membrane-bound organelle	 38	 48.7	 8.98E-10
	 Ribonucleoprotein complex	 18	 23.1	 1.28E-09
	 Spliceosome	 11	 14.1	 1.98E-09
	 Intermediate filament	 10	 12.8	 5.62E-07
	 Nuclear lumen	 23	 29.5	 4.10E-06
BP	 RNA splicing	 17	 21.8	 2.63E-12
	 Chromatin assembly	 7	 8.9	 6.84E-06
	 Macromolecular complex assembly	 11	 14.1	 9.58E-06
	 Ectoderm development	 8	 10.3	 1.14E-04
	 Intermediate filament-based process	 4	 5.1	 2.34E-04

MF, molecular function; CC, cellular component; BP, biological process.

Figure 2. Interaction between MAEL and SG proteins as detected by anti-tag co-immunoprecipitation (IP). Hek293 cells were transfected with HA-tagged 
MAEL expression plasmids and expression plasmid of each Myc-tagged SG gene. At 24 h after transfection, cell lysates were prepared and immunoprecipi-
tated with rabbit anti-HA polyclonal antibody or preimmune rabbit IgG, and the precipitated protein was detected by western blot analysis using the anti-Myc 
monoclonal antibody.
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Then, 8 (PABPC1, KHSRP, YBX1, SYNCRIP, EIF4A1, 
DDX39, ELAVL1 and EIF3F) of the identified SG proteins 
were selected for further confirmation of their interactions 
with MAEL protein by co-IP experiments. The coding regions 
of these 8 genes were cloned into mammalian expression 
vector pCMV-Myc for constructing Myc-tagged expression 
plasmids. The Myc-tagged expression plasmid of each SG 
protein was co-transfected with HA-tagged MAEL expression 
plasmid into Hek293 cells, respectively. The anti-tag immuno-
precipitation assays showed that all these 8 SG proteins were 
able to interact with the MAEL protein (Fig. 2).

MAEL localizes to SGs. As stated above, MAEL protein 
interacts with SG proteins. Therefore, we performed immuno-
fluorescence analysis to investigate whether the MAEL protein 
localizes in SGs. In the untreated SW480 cells, MAEL proteins 
were distributed homogeneously in both the cytoplasm and the 
nucleus (Fig. 3). After induction with H2O2, some cytoplasmic 
MAEL proteins displayed a distribution pattern of distinct 
speckles, and co-localization with SG marker PABPC1 (25) in 
the speckle (Fig. 3), suggesting that MAEL proteins localize 
to SGs. Strangely, after treatment with H2O2, PABPC1 did not 
condense into apparent speckles as it did in the cells treated 
with arsenite (37).

Discussion

Our previous study demonstrated that the human MAEL gene 
is only expressed in the spermatocytes and spermatids of the 
testis under normal condition, but is aberrantly expressed in 
various types of human cancer cells (12). The role of MAEL 
in spermatogenesis has been studied thoroughly, but no inves-
tigation on its function in cancer has been performed. In the 
present study, we identified 178 MAEL-associated proteins 
in breast cancer MDA-MB-231 cells and 167 in colorectal 
cancer SW480 cells by immunoprecipitation and Nano-
LC-MS/MS analysis. In these MAEL-associated proteins, 

we found 14 components of SGs, but none of the nuage. The 
protein interactions between MAEL and these stress granule 
proteins were confirmed by anti-tag immunoprecipitation. 
Immunofluorescence analysis showed that MAEL co-local-
izes with PABPC1 in SGs during oxidative stress. This is not 
surprising, given that both SGs and nuage are cytoplasmic 
ribonucleoprotein complex particles (RNA granules). Nuage 
is a germline-unique structure (4), whereas SGs are somatic 
RNA granules and are assembled when cells are exposed to 
stress (25,38,39). However, both nuage and SGs have similar 
composition, and serve as sites for small RNA-mediated gene 
silencing (40). MAEL has been found predominantly in the 
nuage of germline cells, where it plays an indispensable role 
in piRNA biogenesis and piRNA-mediated silencing of trans-
posons (3,6,7). Therefore, we hypothesized that MAEL plays 
a role in miRNA-mediated gene silencing in SGs, as it does in 
the nuage (7).

Additionally, we demonstrated that in cancer cells, the 
MAEL protein is distributed in both the cytoplasm and the 
nucleus, similar to its localization in germline cells (3,7). In 
the nucleus, MAEL functions as a regulator of gene expres-
sion. For example, mouse MAEL was found to interact 
with chromatin-remodeling factors SNF5 and SIN3B in the 
testis (6); Drosophila MAEL represses the transcription of 
miR-7 (11). In accordance with the nuclear function of MAEL 
in germline cells, Gene Ontology annotation showed that some 
MAEL-associated proteins in cancer cells are involved in 
chromatin remodeling and transcription repression.

Our results suggest that MAEL plays a similar role in 
germline and cancer cells, similar to most CT genes. For 
example, GAGE functions as a regulator of chromatin reor-
ganization in both germ and cancer cells (41). To date, 156 
families of CT genes have been collected in the CT database 
(http://www.cta.lncc.br). The discovery of CT genes led to 
the hypothesis that gametogenesis and carcinogenesis share 
a similar mechanism; the expression of germline genes in 
cancer reflects the activation of the silenced gametogen-

Figure 3. Co-localization of MAEL protein and PABPC1 in SGs. SW480 cells were treated with 0.5 mM H2O2 for 1 h to induce the formation of SGs. Treated 
cells (E-H) and control cells (A-D) were fixed and sequentially incubated with primary and secondary antibodies. The rabbit anti-MAEL polyclonal antibody 
and Texas Red-conjugated anti-rabbit IgG (red) were used to detect MAEL, whereas murine anti-PABPC1 monoclonal antibody and FITC-conjugated anti-
mouse IgG (green) were used to detect PABPC1. The nuclei were labeled by DAPI. Yellow in the merged image represents co-localization of MAEL and 
PABPC1. The arrows indicate representative SGs. 
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esis programme in somatic cells; this programme might 
contribute characteristic features to the neoplastic pheno-
type, including immortality, invasiveness, hypomethylation 
and metastatic capacity (42). Costa et al (43) believed that 
CT genes play a role in stem cell self-renewal; the expres-
sion of CT genes in tumor tissues contributes to maintaining 
stem cell properties and favors tumor proliferation. This 
hypothesis was supported by Yamada et al (44) who found 
that considerable numbers of CT genes showed preferential 
expression in cancer stem-like cells. Previous studies have 
shown that MAEL is necessary for proper germline stem 
cell lineage differentiation (11) and knockdown of MAEL 
expression disrupts the differentiation of mouse embryonic 
stem cells into germ cells (45). Therefore, whether MAEL 
also plays a role in cancer stem cells warrants further 
investigation.

In summary, we used proteomic approaches for isolating the 
interacting partners of MAEL, and demonstrated that MAEL, 
a component of nuage in germline cells, localizes in SGs and 
interacts with several components of SGs, suggesting that 
MAEL plays a role in carcinogenesis by post-transcriptionally 
regulating gene expression, as it does in gametogenesis. This 
finding should be valuable toward understanding the function 
of MAEL in carcinogenesis.
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