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Abstract. Glioblastoma is the most common and malig-
nant subtype among all brain tumors. Nuclear factor 
erythroid 2-related factor 2 (Nrf2) is an essential component 
of cellular defense against a variety of endogenous and exog-
enous stresses. A marked increase in research over the past few 
decades focusing on Nrf2 and its role in regulating glioblas-
toma has revealed the potential value of Nrf2 in the treatment 
of glioblastoma. In the present review, we discuss a novel 
framework of Nrf2 in the regulation of glioblastoma and the 
mechanisms regarding the downregulation of Nrf2 in treating 
glioblastoma. The candidate mechanisms include direct and 
indirect means. Direct mechanisms target tumor molecular 
pathways in order to overcome resistance to chemotherapy 
and radiotherapy, to inhibit proliferation, to block invasion 
and migration, to induce apoptosis, to promote differentiation, 
to enhance autophagy and to target glioblastoma stem cells. 
Indirect mechanisms target the reaction between glioblas-
toma cells and the surrounding microenvironment. Overall, 
the value of the Nrf2 pathway in glioblastoma provides a 
promising opportunity for new approaches by which to treat 
glioblastoma.
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1. Introduction

Glioma is one type of brain tumor that arises from glial cells 
and accounts for over 30% of all primary central nervous 
system tumors in the USA (1). Glioblastoma is the most 
common and malignant subtype of glioma, which is catego-
rized as grade IV according to the classification of the World 
Health Organization (WHO). The median survival time of 
glioblastoma patients is approximately 14 months, in spite of 
aggressive surgery, radiation and chemotherapy (2).

Nuclear factor erythroid 2-related factor 2 (Nrf2) belongs 
to a subset of basic leucine-zipper (bZip) genes sharing a 
conserved structural domain (3). It is broadly expressed in 
tissues and can be activated in response to a range of oxida-
tive and electrophilic stimulation. The activity of Nrf2 is 
primarily regulated by its inhibitor Kelch-like ECH-associated 
protein 1 (Keap1) (4). When uncoupled from the Nrf2/Keap1 
complex, Nrf2 is transported into the nucleus and modulates 
the expression of antioxidant genes through interaction with 
the antioxidant response element (ARE) (5). An increasing 
body of literature has revealed alternative mechanisms of 
Nrf2 activation, including phosphorylation of Nrf2 by various 
protein kinases, interaction with other protein partners (p21, 
caveolin-1) and epigenetic factors (microRNA-144, -28 and 
-200a and promoter methylation) (6).

Recently, Nrf2 has been demonstrated as an important 
regulator in different types of cancer. A dramatic increase 
in research focusing on Nrf2 and the associated mechanisms 
in the regulation of primary malignant brain tumors such as 
glioblastoma has been carried out. High expression of Nrf2 in 
glioblastoma was found to protects it from the killing effects 
of antitumor therapies, and blocking of Nrf2 can inhibit glio-
blastoma. Thus, Nrf2 is a potential new target with which to 
treat glioblastoma. The mechanisms of the downregulation 
of Nrf2 in treating glioblastoma contain two main aspects: 
direct and indirect means. Direct mechanisms target tumor 
molecular pathways to overcome resistance to chemotherapy 
and radiotherapy, to inhibit proliferation, to block invasion 
and migration, to induce apoptosis, to promote differentiation, 
to enhance autophagy and to target glioblastoma stem cells 
(GSCs). Indirect mechanisms target the reaction between glio-
blastoma cells and the surrounding microenvironment, such 
as the perivascular, hypoxic and immune microenvironments. 
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In the present study, we review the function of Nrf2 in the 
regulation of glioblastoma, and the associated mechanisms 
concerning the downregulation of Nrf2 in treating glioblas-
toma.

2. Direct mechanisms (Table I)

Overcoming resistance to chemotherapy and radiotherapy. 
Standard treatment of glioblastoma currently involves chemo-
therapy and radiotherapy. However, glioblastoma can easily 
develop resistance to chemotherapy and radiotherapy. It has 
been found that high expression of Nrf2 decreases the sensi-
tivity of glioblastoma cells to chemotherapy and radiotherapy.

Chemotherapy. There are a variety of tumors that develop 
strong tolerance to chemotherapy, including glioblastoma (7). 
Recently, the role of Nrf2 in inducing chemotherapy resistance 
has been reported in several types of tumors (8). In glioblastoma, 
Nrf2 expression was found to be increased during drug resis-
tance (8). Temozolomide (TMZ) is an alkylating agent which is 
commonly used for the treatment of glioblastoma (9-11). TMZ 
treatment was found to induce Nrf2 activation in the glioblas-
toma cell line U251 and downregulation of Nrf2 expression 
increased TMZ-induced cell death in U251 cells (12). In 
addition, the silencing of Nrf2 also increased cell necrosis 
induced by 5fluorouracil (5FU), cisplatin, etoposide (1315), 
oxaliplatin (16) and doxorubicin (ADM) (17,18). Blocking Nrf2 
activation is a potential method for enhancing chemotherapy 
sensitivity of glioblastoma cells (19).

Nrf2 may induce the chemoresistance of glioblastoma 
through stress response and a drug efflux mechanism (Fig. 1). 
The stress response mechanism implies that Nrf2 transcription 
upregulates endogenous phase II detoxifying enzymes, which 
may inactivate antitumor drugs by modifying their struc-
tures (20). In addition, activation of Nrf2 was also found to 
contribute to drug efflux pathways (21). ATPbinding cassette, 
subfamily G, member 2 (ABCG2) plays a crucial role in the 
efflux of xenobiotics and drugs, and Nrf2mediated regula-
tion of ABCG2 was found to increase the efflux of antitumor 
drugs and decrease the effect of chemotherapy (21). However, 
research suggests that Nrf2 is not an independent molecule 
in chemoresistance. The possible role of peroxiredoxin1 
(Prx1) co-functioning with Nrf2 in chemoresistance has been 
suggested (22).

Radiotherapy. Radiotherapy is the foundation of therapy 
following maximal surgical resection of glioblastoma (23,24). 
However, glioblastoma displays high resistance to radio-
therapy (25). Low-dose radiation induces Nrf2 activation 
reactively (12). The role of Nrf2 in radioresistance has been 
investigated. Using a genetically modified method to establish 
continuous activation of Nrf2, Nrf2 was found to protect glio-
blastoma against ionizing radiation toxicity, and Nrf2-inhibited 
tumor cells showed increased sensitivity to γ-irradiation (26).

The Nrf2/ARE pathway regulates the radioresistance 
of glioblastoma by modifying endogenous Nrf2 inhibitor 
and by upregulating the downstream signal of Nrf2 (27). 
Radioresistance may involve the loss-of-function mutations of 

Table I. Direct mechanisms of the downregulation of Nrf2 in the treatment of glioblastoma.

Mechanism Factors Associated molecules

Overcoming resistance to chemotherapy Stress response mechanisms Phase II detoxifying enzymes
 Drug efflux mechanisms ABCG2
Overcoming resistance to radiotherapy Endogenous Nrf2 inhibitors Keap1
 Downstream molecules HO-1
Inhibiting proliferation Downstream molecules HO1, GPx2, CXCR3B
 Crosstalk EGFR, Ki67, Kras, PI3K/Akt
 Post-transcriptional regulation miR-1, miR-200a and miR-206
Blocking invasion and migration Matrix metalloproteinases MMP-9
 Oxidative stress-related molecules HO-1
Inducing apoptosis Crosslinking Bcl2, p53, MAPK, NFκB
Promoting differentiation Cross-talkg Notch
 Anti-redox molecules GST
Enhancing autophagy P62/SQSTM1 system Keap1, p62, LC3
 Endoplasmic reticulum stress UPR
Targeting glioma stem cells Cross-linking MAPK, p53
 Downstream molecules HO-1
 Circulating cell-free DNA cirDNA

Nrf2, nuclear factor erythroid 2-related factor 2; ABCG2, ATP-binding cassette, subfamily G, member 2; Keap1, Kelch-like ECH-associated 
protein 1; HO1, heme oxygenase1; GPx2, glutathione peroxidase2; EGFR, epidermal growth factor receptor; MMP9, matrix metallopro-
teinase 9; Bcl2, Bcell lymphoma 2; MAPK, p38/mitogenactivated protein kinase; NFκB, nuclear factor-κB; SQSTM1, sequestosome 1; 
UPR, unfolded protein response; cirDNA, circulating cell-free DNA.
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the Nrf2 inhibitor Keap1, which allows Nrf2 to be continuously 
transported to the nucleus (28). Other research has demon-
strated that Nrf2 induces radioresistance by regulating the 
function of the major downstream molecule heme oxygenase-1 
(HO-1) (29). Downstream activation of Nrf2-ARE-dependent 
HO-1 was found to be important in the maintenance of resis-
tance to irradiation (12).

Inhibition of proliferation. Glioblastoma cells usually main-
tain a high rate of proliferation. High expression of Nrf2 gives 
glioblastoma an advantage for growth, and knockdown of Nrf2 
was found to inhibit the proliferation and growth of human 
glioblastoma cells (20,30,31).

The candidate mechanisms of Nrf2 in the regulation of 
proliferation mainly include three means: i) upregulation 
of downstream molecules of Nrf2; ii) cross-talk with other 
signaling pathways; iii) and post-transcriptional regulation. 
Nrf2 can induce the growth of tumor cells by increasing the 
expression of HO-1, glutathione peroxidase-2 (GPx2) (32,33) 
and CXCR3B (34), which are downstream molecules of Nrf2 
and are important in the regulation of the growth and prolifera-
tion of glioblastoma. The growth rate of cancer cells is inhibited 
by downregulation of these molecules. Nrf2 is also involved 
in regulating a variety of other signal transduction pathways. 
Recently, studies have demonstrated that Nrf2 can enhance cell 
proliferation by regulating epidermal growth factor receptor 
(EGFR), Ki67, Kras, and phosphoinositide3kinase (PI3K)/
Akt pathway, which are necessary for maintaining the prolif-
eration of glioblastoma (3538). Finally, Nrf2 may improve 
the accumulation of various proliferation-related proteins 
by regulating the associated small interfering RNA fraction. 
Recent studies have identified several microRNAs (miRs) as 

post-translational targets of Nrf2 to regulate proliferation. 
Studies have shown that NADPH and ribose are essential 
for the cell proliferation in tumors (39,40), and loss of Nrf2 
was found to decrease the expression of the redox-sensitive 
histone deacetylase HDAC4, resulting in increased expression 
of miR-1, miR-200a and miR-206, which markedly impaired 
NADPH production and ribose synthesis (41,42).

Blocking of invasion and migration. Glioblastoma can easily 
invade and migrate to surrounding brain tissue. Nrf2 may 
facilitate the remodeling of the tumor microenvironment 
making it advantageous for the autonomic invasion and migra-
tion of cancer cells (43). Nrf2 acts as a master switch in these 
processes by upregulating the expression of various invasion 
and migration-related proteins (44).

The Nrf2/ARE pathway may regulate glioblastoma inva-
sion and migration through matrix metalloproteinases (MMPs) 
and oxidative stress-related molecules. MMP activation could 
improve the degradation of intercellular connections, which 
enables glioblastoma cells to easily invade and migrate (45). 
Downregulation of the expression of Nrf2 in the U251 
glioblastoma cell line was found to inactivate matrix metal-
loproteinase-9 (MMP-9) and to decrease the invasion and 
migration of glioma (44). Oxidative stress is another impor-
tant mechanism involved in the invasion and migration of 
glioblastoma. HO-1 is the downstream molecule of Nrf2, 
which is important in regulating oxidative stress. Inhibition 
of HO-1 can weaken the invasive and migratory abilities of 
glioblastoma (46,47).

However, Thangasamy et al found that the Nrf2 inducer 
sulforaphane (SFN) can inhibit the expression of tyrosine 
kinase receptor, recepteur d’origine nantais (RON), which can 

Figure 1. Mechanisms of chemoresistance of glioblastoma induced by Nrf2. Nrf2 is activated by chemotherapy and is transported into the nucleus. Nrf2 binds 
to the ARE region and promotes the expression of phase II detoxifying enzymes, which inactive antitumor drugs by modifying their structures. In addition, 
Nrf2 upregulates the expression of ABCG2, increasing the efflux of antitumor drugs. Nrf2, nuclear factor erythroid 2related factor 2; TMZ, temozolomide; 
ADM, doxorubicin; 5FU, 5fluorouracil; ARE, antioxidant response element; ABCG2, ATPbinding cassette, subfamily G, member 2, Keap1, Kelchlike 
ECH-associated protein 1.
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mediate the invasion of carcinoma cells (48), indicating that 
Nrf2 may play a dual role in regulating the invasiveness of 
tumors.

Induction of apoptosis. In most glioblastoma cells, apoptosis is 
inhibited (49,50). It has been suggested that Nrf2 can block the 
apoptotic death of cancer cells (51). Overexpression of Nrf2 
was found to significantly diminish apoptosis (52). Inhibition 
of the Nrf2 transcription factor rendered cancer cells more 
susceptible to apoptosis (53).

The Nrf2/ARE pathway may regulate apoptosis by 
cross-linking with the B-cell lymphoma 2 (Bcl2), p53, 
p38/mitogenactivated protein kinase (MAPK) and nuclear 
factor-κB (NFκB) pathways. Bcl2 is an important gene 
in tumor genesis and in the anti-apoptosis process (54,55). 
Following increased expression of Nrf2, the expression of 
caspases 3 was decreased and the apoptosis rate was reduced, 
accompanied by the upregulated expression of Bcl2/Bax. 
This indicates that Nrf2 regulates apoptosis through the Bcl2-
related pathway (56,57). p53 is important due to its anticancer 
function, and plays an essential role in tumor apoptosis (58). 
Nrf2 also regulates the tumorsuppressor p53 by influencing 
the degradation of p53. The Nrf2 downstream molecule NQO1 
interacts with p53 and induces its degradation by the protea-
some in a ubiquitinindependent manner (59). In addition, Nrf2 
also attenuates the effect of the apoptosis inducer diamide in 
glioblastoma by upregulating the activity of p38/MAPK and 
inhibiting the NFκB pathway (60,61).

Promotion of dif ferentiation. Glioblastoma cells are 
usually in a poor stage of differentiation and exhibit low 
maturity (6264), and differentiation therapy is required as 

a therapeutic strategy for malignant tumors (65,66). Nrf2 
induces the suppression of differentiation by inhibiting a 
powerful differentiation inducer 1α, 25-dihydroxyvitamin D3 
(1,25 D3) (67,68), suggesting that Nrf2 plays an important role 
in the cooperative suppression of cancer cell differentiation.

Nrf2 may regulate the differentiation of glioblastoma 
through cross-talk with the Notch pathway and upregulation 
of anti-redox molecules. The Notch pathway is important for 
cell-cell communication, which involves genetic regulatory 
mechanisms that control the cell differentiation process (69). 
Nrf2 adaptive response pathway could directly activate the 
Notch signal through recruitment of the Notch intracellular 
domain (NICD) transcriptome and restrain glioblastoma 
cells in a low state of differentiation (70). In addition, high 
accumulation of reactive oxygen species (ROS) can induce 
the differentiation of cells (71). Nrf2 was found to upregulate 
the anti-redox molecule GST to eliminate ROS and reverse 
the differentiation induced by ROS (71,72). It has been 
reported that neuronal differentiation inducer retinoic acid 
(RA) increased Nrf2 expression reactively (73,74), and down-
regulation of Nrf2 improves the efficiency of RA in inducing 
differentiation (73,74).

Enhancement of autophagy. Autophagy is a lysosomal 
degradation process. Autophagy principally plays an adaptive 
role to protect organisms against diverse pathological condi-
tions (75,76). Many studies have shed light on the importance 
of autophagy in glioblastoma (77). Knockdown of Nrf2 was 
found to regulate the autophagy induced by TMZ in the U251 
glioblastoma cell line (78).

Nrf2 may regulate autophagy by altering the P62/SQSTM1 
system and endoplasmic reticulum (ER) stress reaction (Fig. 2). 

Figure 2. Regulation of autophagy by Nrf2 in glioblastoma. Keap1 uncoupled from the complex with Nrf2, binds to p62, and then interacts with LC3 and is 
transported to the autophagosome. It is then combined with lysosome to form autolysosome. In addition, Nrf2 can increase the production of the unfolded pro-
tein response (UPR) by endoplasmic reticulum (ER), and induce the ER stress to eliminate the UPR by forming autolysosome. Nrf2, nuclear factor erythroid 
2-related factor 2; Keap1, Kelch-like ECH-associated protein 1, ARE, antioxidant response element.
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The protein of p62, also known as sequestosome 1 (SQSTM1), 
is one of the adaptors of autophagy. It has been found to play 
a critical role in the formation of cytoplasmic proteinaceous 
inclusion. Keap1 uncoupled from the complex with Nrf2 can 
bind to the autophagy-adaptor protein p62, and then inter-
acts with LC3 and transports the ubiquitin conjugate to the 
autophagosome for degradation (79-81). ER stress is a cellular 
stress response which is activated in response to an accumula-
tion of the unfolded protein response (UPR). High expression 
of Nrf2 can also induce autophagy by increasing ER stress and 
by increasing ER-associated degradation (82).

Targeting GSCs. The glioma stem cell (GSC) hypothesis 
suggests that neoplastic clones are maintained exclusively 
by a rare fraction of cells with stem cell properties (83). The 
identification of brain tumorinitiating cells established a new 
cellular target for more effective therapies (84-86). Over the 
past decades, Nrf2 was found to be pivotal in the maintenance 
of the stemness of human GSCs. Knockdown of Nrf2 was 
found to inhibit the proliferation of GSCs, and significantly 
reduce the expression of self-renewal-related factors Bmi1, 
Sox2 and cyclin E (87).

Nrf2 may maintain the stemness of GSCs by cross-linking 
with MAPK and p53 pathway, regulating HO-1 and circulating 
cellfree DNA (cirDNA) (Fig. 3) (88). High expression of Nrf2 
can regulate the expression of MAPK and p53 in stem cells, 
which plays a critical role in the self-renewal of GSCs, indi-
cating that Nrf2 may regulate self-renewal through MAPK 
and p53 pathway (89). Nrf2 downstream compound HO-1 
is important in maintaining the high proliferation of stem 
cells. The HO-1 inducer cobalt protoporphyrin (CoPP) mark-
edly improved stem cell proliferation (90). Nrf2 also plays 
an important role in regulating the reaction of stem cells to 
cirDNA, which is a small fraction of DNA in the plasma and 
has been found to be important in inhibiting the apoptosis of 
stem cells. (91).

3. Indirect mechanisms

The microenvironment is a functional unit enabling complex 
and dynamic interactions with tumor cells (92). Glioblastoma 
cells are influenced by non-malignant cells of the tumor 
microenvironment such as vascular endothelial cells, fibro-
blasts and immune cells (93). The microenvironment serves 
as the basis for indirect mechanisms of Nrf2 in the treatment 
of glioblastoma. Indirect mechanisms include three main 
aspects of the microenvironment: i) perivascular, ii) hypoxic 
and iii) immune microenvironment (Table II).

Perivascular microenvironment. Angiogenesis plays a key role 
in glioblastoma in order to provide energy and maintain the 
development and progression of glioblastoma. Glioblastoma 
cells develop a framework to induce the angiogenesis around 
them (94,95). Recent studies have begun to explore the role of 
Nrf2 in tumor angiogenesis (96,97). In human glioblastoma 
cell line U251, knockdown of Nrf2 was found to significantly 
decrease microvessel density (MVD) and expression of small 
vessel marker CD31 (38).

Nrf2 may regulate angiogenesis through hypoxia-inducible 
factor 1α (HIF1α) and vascular endothelial growth factors 
(VEGFs). As a main downstream molecule of Nrf2, HIF1α is 
one of the master regulators that orchestrate cellular responses 
to hypoxia. Activation of HIF1α can lead to the activation 
of numerous perivascular compounds, such as angiopoietin, 
endothelin-1, inducible nitric oxide synthase (iNOS), adreno-
medullin and erythropoietin. Blocking HIF1α can inhibit the 
angiogenesis effect of Nrf2 (98). Another important inducer 
of vessels is VEGF. Nrf2 elevates VEGF expression and 
improves the growth of the vascular endothelia in tumors. 
Through a positive feedback loop, VEGF can also activate 
Nrf2 in an ERK1/2dependent manner and induce the produc-
tion of antioxidative enzymes (99). Anti-angiogenesis effects 
of Nrf2 knockdown were documented in chick chorioallantoic 
membrane assays and endothelial tube formation assays (100).

Hypoxic microenvironment. Hypoxia and tumor genesis are 
closely related (101). Glioblastoma has extensive areas of 
hypoxia and displays high tolerance to a low concentration of 
oxygen (102,103). Nrf2 has been identified as a regulator of 

Figure 3. Role of Nrf2 in regulating the function of GSCs in glioblastoma. 
After uncoupled from the Nrf2/Keap1 complex, Nrf2 increases the expres-
sion of MAPK and inhibits p53, along with the Nrf2 downstream compound 
HO-1, maintaining the self-renewal of GSCs. Nrf2 also regulates the reaction 
of GSCs to cirDNA, inhibiting the apoptosis of GSCs. Nrf2, nuclear factor 
erythroid 2-related factor 2; MAPK, mitogen-activated protein kinase; HO-1, 
heme oxygenase-1; cirDNA, circulating cell-free DNA; GSCs, glioma stem 
cells, Keap1, Kelch-like ECH-associated protein 1.

Table II. Indirect mechanisms of the downregulation of Nrf2 
in the treatment of glioblastoma.

Mechanisms Factors and associated molecules

Microenvironment
  Perivascular HIF1α, VEGF
  Hypoxic HIF1α, HO-1
  Immune Cytokines: IFNγ, IL-4, IL-5, IL-13
 Immune cells: Th, microglia

Nrf2, nuclear factor erythroid 2related factor 2; HIF1α, 
hypoxia-inducible factor α; VEGF, vascular endothelial growth factor; 
HO1, heme oxygenase1; IFNγ, interferon-γ; Th, T helper cell.
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several genes involved in the hypoxic defense response, such 
as HIF1α (104). In human glioblastoma, high expression of 
Nrf2 was significantly correlated with high tolerance to a low 
concentration of oxygen, less tumor necrosis on MRI and 
lower 1-year survival of patients (105).

It is believed that Nrf2 regulates the hypoxia resistance 
by HIF1α and HO1. HIF1α is a downstream molecule of 
Nrf2 and is one of the master regulators of hypoxia (98). In a 
CoCl2-induced hypoxia model, blockage of Nrf2 suppressed 
the expression of HIF1α, and suppressed the migration and 
invasion of tumors in a hypoxic microenvironment (106). 
HO-1 is another important molecule for resistance to hypoxia. 
In a 6-hydroxydopamine (6-OHDA)-induced hypoxic model, 
Nrf2 activation induced upregulation of HO-1, and mediated 
the cellular adaptive survival response to a hypoxic microen-
vironment (107).

Immune microenvironment. Glioblastoma can escape from 
tumor immunosurveillance and inactivate the reaction 
between tumors and immune cells. The immune microenvi-
ronment surounding glioblastoma plays an important role in 
these processes (108). In addition, Nrf2 was also found to be a 
critical regulator of the immune reaction (109).

The Nrf2/ARE pathway may regulate tumor immunosur-
veillance through regulation of the secretion of cytokines and 
the function of immune cells. Nrf2 regulates the secretion 
of many types of cytokines. Activation of Nrf2 was found to 
suppress the production of interferon-γ (IFNγ), while inducing 
the production of T helper cells 2 (Th2), cytokines IL-4, IL-5, 
and IL-13 (110). Nrf2 also regulates the function of immune 
cells. In glioblastoma, T helper cells (Th) play an important 
role in the adaptive immune system. Th helps the activation 
of other immune cells by releasing T cell cytokines. Nrf2 is a 
regulator of Th and activates CD4(+) T cells from differenti-
ating towards Th2, representing a novel regulatory mechanism 
in CD4(+) T cells (111). Microglia act as the main form of 
active immune defense in the central nervous system (CNS). 
Nrf2 also mediates immunoresistance by modifying the func-
tion of microglia. Activation of the Nrf2/HO1 pathway was 
found to suppress BV2 microglial cells and immunology in the 
brain (112). Upregulation of Nrf2 suppressed innate immune 
microglial cells in the CNS. Various small activators of Nrf2/
HO-1 such as carnosol, supercurcumin and dimethyl fuma-
rate are effective modulators of microglial-related immune 
responses (112).

4. Conclusion

In the past decades, a marked increasing in research has been 
carried out focusing on Nrf2 and its role in regulating glio-
blastoma and the possibilities of the downregulation of Nrf2 
for treating glioblastoma. Nrf2 plays an extensively role in the 
regulation of glioblastoma; hence, downregulation of Nrf2 
can interfere with a variety of behaviors of glioblastoma and 
actions of the microenvironment surrounding glioblastoma. 
Thus Nrf2 has promising value as a therapeutic target for 
glioblastoma. However, Nrf2 downregulation in most studies 
was obtained through RNA interference or knockdown 
technology, rather than pharmaceutical compounds, making 
targeted Nrf2 therapy somewhat difficult and less appealing at 

this time from a translational perspective. Recently, biochem-
ists have identified the small molecule, ochratoxin A, as an 
inhibitor of Nrf2 (113). Although it is a toxin produced by 
Aspergillus ochraceus, the single compound is a potential new 
strategy with which to inhibit Nrf2 in glioblastoma. For these 
reasons, future studies should focus on regulatory methods of 
Nrf2, which can be easily translated to the clinical setting and 
be used safely.
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