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Abstract. Sorafenib, an antiangiogenic agent, can promote 
tumor invasion and metastasis. The phosphatidylinositol 
3-kinase (PI3K)/Akt/Snail-dependent pathway plays an impor-
tant role in tumor invasion and metastasis. Yet, little is known 
concerning the role of the PI3K/Akt/Snail-dependent pathway 
in sorafenib‑induced invasion and metastasis of hepatic 
carcinoma (HCC). A human HCC orthotopic xenograft model 
was established, and sorafenib (30 mg/kg/day) was adminis-
tered orally. Tumor growth and intrahepatic metastasis were 
assessed, and immunohistochemistry was applied to analyze 
the activation of the PI3K/Akt/Snail-dependent pathway. HCC 
cell lines were treated with sorafenib (1, 5 and 10 µM), and 
proliferation, migration and invasion were assessed. Western 
blotting and real-time polymerase chain reaction (RT-PCR) 
were used to examine the related gene expression of epithe-
lial-mesenchymal transition (EMT) markers and the PI3K/
Akt/Snail-dependent pathway. Sorafenib inhibited tumor 
growth and promoted intrahepatic invasion and metastasis 
of the orthotopic tumors grown from SMMC7721-GFP cells 
in vivo. Additionally, sorafenib promoted EMT and invasion 
and metastasis of HCC cells in vitro. Importantly, sorafenib 
enhanced PI3K and Akt activation and upregulation of the 
expression of transcription factor Snail, a critical EMT medi-
ator. The upregulation of transcription factor Snail expression 
by sorafenib may be related to activation of the PI3K/AKT 
signaling pathway. The PI3K/Akt/Snail-dependent pathway 
may mediate the pro-invasive and pro-metastatic effects of 
sorafenib on HCC by inducing EMT.

Introduction

Hepatic carcinoma (HCC) is the fifth most common 
malignancy worldwide and the second leading cause of cancer-
related death in Asia generally and in China in particular (1). 
Currently, surgical resection and liver transplantation offer the 
best potential for treating HCC (2-4), but most HCC patients 
are diagnosed in advanced stages. At present, sorafenib, a 
multikinase inhibitor with antiangiogenic and antiprolif-
erative effects, currently sets the new standard for advanced 
HCC (5,6). However, the survival benefit is only 2.8 months.

Antiangiogenic therapy has been thought to hold signifi-
cant potential for the treatment of cancer (7). However, clinical 
and preclinical observations indicate that these therapies may 
have limited efficacy. Although these agents typically produce 
inhibition of primary tumor growth, lasting responses are rare, 
with only a moderate increase in progression-free survival and 
little benefit in overall survival (8). In addition, recent reports 
describe that treatment of tumor-bearing mice with antian-
giogenic drugs leads to increased local tumor cell invasion 
and enhanced distant metastasis after prolonged treatment or 
after only short-term treatment (9,10). Notably, sorafenib, the 
only approved molecular-targeted drug for HCC, was found to 
promote invasion and metastasis of HCC by increased intrahe-
patic metastasis, lung metastasis, and circulating tumor cells 
in tumors with higher expression of HTATIP2 in xenograft 
models (11). Therefore, it is important to clarify the molecular 
mechanisms of invasion and metastasis caused by sorafenib 
from all aspects in HCC.

Epithelial-mesenchymal transition (EMT) plays a key role 
in tumor invasion and metastasis. During this process, epithe-
lial cells lose their epithelial signatures while acquiring the 
characteristics of mesenchymal cells including morphology, 
cellular structure and biological function (12). Transcription 
factor Snail has also been shown to confer survival properties 
either concomitantly with induction of EMT or independent 
of EMT (13-15). Snail, Slug and Twist transcription factors 
can act as E-box repressors and block E-cadherin transcrip-
tion (16). In addition, Snail transcription factor can mediate 
an increase in expression of mesenchymal markers such as 
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vimentin, fibronectin, matrix metalloproteinases (MMPs) and 
RhoA (17-20). The overall effect of Snail is increased migra-
tion and invasion (18,19).

Numerous signaling pathways are involved in the 
regulation of EMT. PI3K/Akt signaling is an important 
survival/proliferative pathway involving various growth 
factors, cytokines and activation of receptors (21). In addi-
tion, the PI3K/Akt signaling pathway plays a key role in the 
control of cell invasion and metastasis and the activation of 
PI3K/AKT is a central feature of EMT in the development 
of cancer (22-27). On the one hand, the PI3K/AKT signaling 
pathway can increase the expression of matrix metalloprotein-
ases to induce EMT (28,29). On the other hand, the PI3K/AKT 
signaling pathway can upregulate the expression of transcrip-
tion factor Snail to induce EMT (30-32). Notably, activation of 
the PI3K/Akt signaling pathway plays a key role in mediating 
resistance to sorafenib. The combination of MK-2206, an Akt 
inhibitor, and sorafenib overcomes such resistance (33). Yet, 
little is known concerning the role of the PI3K/Akt signaling 
pathway on the invasion and metastasis induced by sorafenib 
in HCC.

In the present study, we tested and verified that sorafenib 
promotes invasion and metastasis of HCC by inducing EMT. 
More importantly, we showed that activation of the PI3K/Akt/
Snail-dependent pathway may play a key role in this process.

Materials and methods

Reagents and antibodies. Sorafenib was purchased from 
Bayer Corporation (West Haven, CT, USA). Antibodies 
against E-cadherin, N-cadherin, vimentin, Snail and GAPDH 
were purchased from Epitomics (Burlingame, CA, USA); 
antibodies against p-PI3K and p-AKT were purchased from 
Bioworld Technology (Minneapolis, MN, USA).

Cell culture. The human HCC cell lines SMMC7721 and 
HCCLM3 originated from the American Type Culture 
Collection (ATCC) and were cultured in RPMI-1640 
containing 10% fetal bovine serum (FBS; Biochrom, Berlin, 
Germany) in 5% CO2 at 37˚C. SMMC7721-GFP cells were 
SMMC7721 cells transfected with green fluorescence protein 
(GFP) and were labeled as SMMC7721-GFP cells.

Cell proliferation, migration and invasion assays. Cell 
proliferation analysis was performed as previously described 
by us (34). Briefly, cells were plated at 5,000/well in 96-well 
microtiter plates and incubated overnight at 37˚C in a humidi-
fied incubator containing 5% CO2. On the following day, 
various concentrations of sorafenib were added to the wells, 
and cultures were incubated for an additional 24, 48 and 72 h. 
Cell viability was determined using a Cell Counting Kit-8 
(Dojindo, Gaithersburg, MD, USA) according to the manu-
facturer's instructions. For cell migration assay, cell migration 
was assessed using the Transwell assay (Boyden chambers; 
Corning, Cambridge, MA, USA). Cells (5x104) were seeded 
in serum-free medium in the upper chamber and allowed to 
migrate toward the lower chamber that contained 10% FBS. 
After 48 h, cells that had traveled through and adhered to the 
underside of the membrane were counted at x200 magnifica-
tion. The cell invasion assay was carried out similarly, except 

that 50 µl Matrigel (BD Biosciences, Franklin Lakes, NJ, USA) 
diluted 1:6 with serum-free medium was added to each well 
overnight before cells (2x105) were seeded onto the membrane.

Animal models and treatments. Six-week-old BALBc nu/nu 
female mice were obtained from the Shanghai Institute of 
Material Medica, Chinese Academy of Science. All mice were 
bred in laminar flow cabinets under specific pathogen-free 
conditions. We followed internationally recognized guidelines 
on animal welfare. The study design was approved by the 
Animal Ethics Committee, and the experiments were under-
taken in accordance with the Ethical Principles of Animal 
Experimentation of Fudan University. SMMC7721-GFP 
cells [5x106/0.2 ml phosphate-buffered saline (PBS)] were 
subcutaneously inoculated into the right flanks of 6-week-old 
BALBc nu/nu female mice. After 4 weeks, non-necrotic tumor 
tissue was cut into 1 mm3 pieces and orthotopically implanted 
into the liver. Treatment was started 2 weeks after orthotopic 
implantation of the tumors. Mice were randomly separated 
into two groups with 6  mice in each group. Mice in the 
experimental group received 30 mg/kg/day sorafenib, whereas 
the control mice received vehicle alone. Animal weight was 
measured twice a week for 4 weeks. At the end of the experi-
ment, mice were sacrificed, tumors were excised from each 
mouse, weighed and snap-frozen for further analysis.

Detection of metastasis. Tumors were excised and their largest 
(a) and smallest (b) diameters were measured to calculate 
tumor volume (V = ab2/2). The livers were also excised, and 
green fluorescent protein-positive metastatic foci were imaged 
by Lumazone imaging system (Mag Biosystems, Tucson, AZ, 
USA). Hematoxylin and eosin staining (H&E) was further 
applied to detect liver metastasis.

Western blot analysis. Cells were washed with cold PBS 
and lysed in culture dishes using PhosphoSafe™ Extraction 
Reagent (Merck, Darmstadt, Germany) containing 1% 
protease inhibitor cocktail (EDTA-Free; Thermo, San Jose, 
CA, USA). Protein concentrations were then determined 
using Bio-Rad detergent compatible protein assays (Bio-Rad, 
Hercules, CA, USA). A total of 30 µg protein from each of the 
control and treated cell lysates was loaded on 8-12% gradient 
NuPAGE gels (Novex, San Diego, CA, USA), electrophoresed 
under reducing conditions, and transferred onto polyvinyli-
dene difluoride membranes (0.22 Å; Millipore). Western blot 
analysis was carried out as previously described (34).

Immunohistochemistry. Procedures for the immunohisto-
chemistry were previously described (35). Briefly, the tumor 
sections were stained with rabbit anti-p-Akt, and rabbit anti-
p-PI3K at 4˚C overnight. Goat anti-rabbit IgG/horseradish 
peroxidase was applied as the secondary antibody according 
to the standard protocols provided by the manufacturer. For 
negative controls, primary antibodies were replaced with PBS. 
The procedures were performed by two independent investiga-
tors, both of whom were blinded to the model/treatment type 
for the series of experiments.

Real-time polymerase chain reaction. RT-PCR analysis was 
performed as previously described by us (36). The following 
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primers for amplification of human genes were used: 
E-cadherin forward, 5'-AGCCCCGCCTTATGATTCTCTG-3' 
and reverse, 5'-TGCCCCATTCGTTCAAGTAGTCAT-3'; 
N-cadherin forward, 5'-CCACGCCGAGCCCCAGTAT-3' and 
reverse, 5'-GGCCCCCAGTCGTTCAGGTAAT-3'; vimentin 
forward, 5'-CCTTGACATTGAGATTGCCACCTA-3' and 
reverse, 5'-TCATCGTGATGCTGAGAAGTTTCG-3'; Snail 
forward, 5'-CAGCCTGGGTGCCCTCAAGAT-3' and reverse, 
5'-GCACACGCCTGGCACTGGTA-3'.

Statistical analysis. All analyses of the results were performed 
using the GraphPad Prism software version 5.0 (GraphPad 
Software, San Diego, CA, USA) and the SPSS 19.0 software 
package (SPSS, Inc., Chicago, IL, USA). Statistical analyses 
were performed using the Student's t-test and analysis of 
variance (ANOVA) models. Differences were considered 
statistically significant at P<0.05.

Results

Sorafenib promotes invasion and migration in vivo. To eluci-
date the effects of sorafenib on HCC invasion and migration, 
mice were orthopically implanted with SMMC7721-GFP cells 
and treated with 30 mg/kg/day sorafenib. Tumor growth and 
metastasis were monitored. Our results showed that sorafenib 
substantially reduced the primary tumor growth compared with 
the control tumors. Tumor weight and volume were reduced 
in the sorafenib-treated mice (Fig. 1A and B). Additionally, 
sorafenib was well tolerated by the mice as no apparent weight 
loss was noted (Fig. 1C). Unfortunately, sorafenib-treated mice 
developed more intrahepatic metastatic lesions and exhibited 
irregular tumor margins as detected by green fluorescence 
imaging (Fig. 1D). To further explore the effect of sorafenib on 
the invasion and metastasis of HCC, liver metastatic nodules 
were evaluated by H&E staining as observed under a micro-

Figure 1. Sorafenib suppresses primary tumor growth and promotes intrahepatic metastasis of hepatic tumors in vivo. Mice were orthotopically implanted 
with SMMC7721-GFP cells and treated with sorafenib (30 mg/kg/day, i.g.) for four weeks. (A and B) Weight and volume of the hepatic tumors. At the end 
of the experiment, primary tumors from the control and sorafenib‑treated mice were carefully excised. Weight and volume were measured and are presented 
as bar graphs. P<0.05. (C) Body weights of the control and sorafenib-treated mice are presented as a line graph. Values are means ± SD. (D) At the end of 
the experiment, animals from the control and sorafenib-treated groups were imaged to visualize intrahepatic metastasis by Lumazone imaging system, and 
representative images are presented (red arrows represent micrometastases). (E) Liver tumors and liver tissues were analyzed using H&E staining (magnifica-
tion, x40). Liver metastases were quantified by counting the number of metastatic colonies in one histological section of the mid-portion of each liver sample 
from each mouse. Representative images and dot plots are shown. Data are expressed as the means ± SD (P<0.05). GFP, green fluorescence protein; H&E, 
hematoxylin and eosin staining.
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scope. The number of metastatic nodules was then statistically 
analyzed. A higher number of intrahepatic metastatic nodules 
was detected in the sorafenib-treated mice (Fig. 1E).

Sorafenib promotes invasion and migration of HCC cells. 
As sorafenib promoted invasion and migration in vivo, we 
wanted to further validate whether sorafenib could promote 
the invasion and migration in vitro. Cell proliferation assay 
was applied to assess the proliferative effect on hepatoma 
cells after sorafenib treatment. The antiproliferative effect of 
sorafenib on HCC cells was dose- and time-dependent at a 
concentration of 1-10 µM in the SMMC7721 and HCCLM3 
cells (Fig. 2A). Sorafenib at a concentration of 5 µM, with 
little effect on cell proliferation, was applied to assess the 
effect of sorafenib on the migration and invasion of HCC cells. 

Cells (5x104 or 2x105) were seeded in the upper chamber. A 
higher number of metastatic and invasive cells were detected 
in the sorafenib-treated HCC cells as assessed by Transwell 
assay (Fig. 2B and C).

Sorafenib promotes EMT in HCC cells. EMT is well known 
to closely correlate with cancer metastasis. To test and verify 
whether 5  µM sorafenib promotes the EMT process, we 
evaluated the expression of EMT markers in the sorafenib-
treated and the control cells. As expected, SMMC7721 and 
HCCLM3 cells treated with 5  µM sorafenib underwent 
significant morphological changes and displayed the mesen-
chymal phenotype (Fig. 3A). Importantly, epithelial marker 
E-cadherin was downregulated and mesenchymal markers 
N-cadherin and vimentin were upregulated in the sorafenib-

Figure 2. Sorafenib inhibits proliferation and promotes migration and invasion of HCC cells. (A) SMMC7721 and HCCLM3 cells were plated in a 96-well 
plate, treated with various concentrations of sorafenib and cell viability was measured by Cell Counting Kit-8. (B) Migration of HCC cells was measured by 
Transwell assay according to the manufacturer's instructions. Values are means ± SD (P<0.05). (C) Invasion of HCC cells was also measured by Transwell 
assay according to the manufacturer's instructions. Values are means ± SD (P<0.05). 
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treated cells (Fig. 3B). RT-PCR assay further confirmed the 
decreased levels of epithelial marker E-cadherin and the 
increased levels of mesenchymal markers N-cadherin and 
vimentin in the SMMC7721 and HCCLM3 cells (Fig. 3C).

Sorafenib upregulates the expression of Snail in vitro. As 
zinc-finger transcriptional repressor Snail plays a key role in 
EMT-mediated tumor invasion and metastasis, we ascertained 
whether Snail is involved in sorafenib-mediated EMT. HCC 
cells were treated with 5 µM sorafenib and western blot anal-
ysis and RT-PCR were carried out to measure Snail expression. 
As anticipated, transcription factor Snail was upregulated in 
the SMMC7721 and HCCLM3 cells, when compared to the 
controls (Fig. 4A and B).

Sorafenib activates the PI3K/AKT signaling pathway in vivo 
and vitro. As a highly conserved cellular program, EMT has 
been documented to involve several important pathways. 

Figure 3. Sorafenib promotes EMT in vitro. Cells were treated with 5 µM sorafenib, and EMT markers were evaluated by western blotting and RT-PCR. 
(A) After 72 h of treatment, morphological changes were evaluated in the SMMC7721 and HCCLM3 cells. (B and C) EMT markers, including E-cadherin, 
N-cadherin and vimentin, were assessed by western blotting and RT-PCR in the SMMC7721 and HCCLM3 cells. GAPDH was used as a loading control in the 
western blot analysis. EMT, epithelial-mesenchymal transition.

Figure 4. Sorafenib promotes the expression of transcription factor Snail 
in vitro. (A and B) After 72 h of treatment with 5 µM sorafenib, the expression 
of transcription factor Snail was assessed by western blotting and RT-PCR in 
SMMC7721 and HCCLM3 cells. GAPDH was used as a loading control in 
the western blot analysis.
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Accumulating research suggests that PI3K/Akt activation 
plays a pivotal role in tumor progression via induction of 
EMT. The PI3K/Akt/GSK-3β/Snail-dependent signaling 
pathway is involved in HCC. Thus, we detected the activity of 
PI3K/AKT in the sorafenib-induced invasion and metastasis 
of HCC. The results showed that the PI3K/AKT signaling 
pathway was activated in the HCC cells treated with 5 µM 
sorafenib (Fig. 5A). In addition, the marginal tissues of the 
xenografts were analyzed by immunohistochemical staining 
as described earlier. PI3K/AKT phosphorylation levels were 
also upregulated (Fig. 5B).

Discussion

As a result of the SHARP and ORIENTAL trials, sorafenib has 
become the new standard therapy for patients with advanced 
hepatic carcinoma (HCC) (5,6). However, the survival benefit 
is only a few months. Furthermore, tumors may progress 
during sorafenib treatment (9-11). In the present study, we 
demonstrated that sorafenib exerted an antitumor effect and 
inhibited tumor growth in mouse models of cancer. However, 
sorafenib also promoted invasion and metastasis of HCC in 
this tumor model by inducing EMT. Similar observations were 
reported by other authors. Importantly, we found that sorafenib 
upregulated the expression of transcription factor Snail and 
activated the PI3K/Akt signaling pathway.

In a previous study, increased local invasion and distant 
metastasis during or after treatment with sorafenib were 
observed  (11). EMT plays a key role in tumor invasion 
and metastasis. EMT is also reported to be involved in the 
progression of HCC and is correlated with the prognosis of 
patients (37). In the present study, more metastatic lesions in 
the livers of nude mice were detected in the sorafenib treat-
ment group. In addition, HCC cell lines, including SMMC7721 
and HCCLM3, were treated with 5 µM sorafenib, with little 
effect on cell proliferation as confirmed by Cell Counting 
Kit-8. Surprisingly, morphology of the cells underwent 
significant changes and presented a mesenchymal pheno-
type after treatment for 72 h. Then EMT-related markers 
were analyzed. As anticipated, mesenchymal markers were 
significantly upregulated and epithelial markers were mark-
edly decreased in the sorafenib‑treated cells. Transwell assay 
was also used to analyze the ability of hepatoma cell invasion 
and migration. Invasion and migration capacity of the HCC 
cell lines was enhanced. Therefore, these data indicate that 
sorafenib may promote HCC invasion and metastasis by the 
induction of EMT, consistent with other reports.

The Snail transcription factor, a member of the Snail 
superfamily, is a zinc finger protein that can mediate EMT 
through downregulation of cell adhesion molecules such 
as E-cadherin by binding several E-boxes located in the 
promotor region (16). Snail has also been shown to confer 
survival properties either concomitantly with induction of 
EMT or independent of EMT. Snail plays an important role 
in inducing EMT in HCC cells (38). In cancer patients, an 
EMT-phenotype transcriptome profile, with increased Snail 
expression correlates with invasive tumors. Phosphorylation 
and subsequent degradation of Snail is controlled by GSK-3β, 
which is predominantly regulated by PI3K/Akt  (39). The 
PI3K/Akt/GSK-3β/Snail-dependent signaling pathway can 
mediate invasion and metastasis of HCC (40,41). Increasing 
evidence also demonstrates that activation of the PI3K/
Akt pathway plays a central role in the EMT process and 
correlates with an aggressive phenotype in several types of 
malignancies (22-27). Several signaling pathways that induce 
EMT and metastasis often converge at or activate PI3K/Akt, 
which itself is frequently activated during tumor progression. 
Hyperactivation of Akt is closely associated with elevated 
invasion and metastasis, resulting in a poor prognosis and 
a greater probability of relapse in many different cancer 
types  (42-46). The PI3K/Akt signaling pathway plays 
a key role in invasion and metastasis of HCC. It was 
therefore of significance to investigate whether the PI3K/
Akt/Snail‑dependent signaling pathway participates in 
sorafenib-induced EMT. The PI3K/Akt signaling pathway 
was analyzed in the human HCC SMMC7721 and HCCLM3 
cells. Notably, we found that 5 µM sorafenib activated the 
PI3K/Akt signaling pathway and upregulated the expres-
sion of transcription factor Snail. Immunohistochemical 
staining was then applied to the xenograft marginal tissues. 
As anticipated, these results were further confirmed in vivo.

In conclusion, the present study showed that sorafenib 
upregulated the expression of transcription factor Snail and 
activated the PI3K/AKT signaling pathway. Importantly, 
these may be associated with sorafenib-induced invasion 
and metastasis of HCC. Therefore, inhibition of the expres-

Figure 5. Sorafenib activates the PI3K/AKT signaling pathway in vitro and 
in vivo. (A) After 72 h of treatment with 5 µM sorafenib, the phosphory-
lation of PI3K/AKT was analyzed by western blotting in SMMC7721 and 
HCCLM3 cells. GAPDH was used as a loading control in the western blot 
analysis. (B) At the end of the experiment, the control and sorafenib-treated 
tumors were excised for immunohistochemistry for P-PI3K and P-AKT.
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sion of transcription factor Snail or combined with PI3K/
AKT signaling pathway inhibitors may enhance the effec-
tiveness of sorafenib treatment of HCC. Currently, relevant 
studies are being carried out. The present study may 
provide the theoretical basis for the combined treatment 
of sorafenib and PI3K/AKT signaling pathway inhibitors 
to treat HCC.
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