Astrocyte elevated gene-1 regulates CCL3/CCR5-induced epithelial-to-mesenchymal transition via Erk1/2 and Akt signaling in cardiac myxoma

PING SHI1, CHANGCUN FANG2 and XINYAN PANG2

Departments of 1Emergency Surgery and 2Cardiosurgery, Qilu Hospital of Shandong University, Jinan, Shandong, P.R. China

Received May 8, 2015; Accepted June 9, 2015
DOI: 10.3892/or.2015.4081

Abstract. In recent years, astrocyte elevated gene-1 (AEG-1) has been reported as a key mediator that is involved in the epithelial-to-mesenchymal transition (EMT) process. However, the mechanisms underlying CCL3/CCR5-AEG-1 pathway-mediated EMT in cardiac myxoma (CM) has not been well featured till now. We used immnohistochemistry and immunoblotting to assess the expression of CCR5 and AEG-1 in 30 cases of CM tissues and cells. Subsequently, cultured CM cells were treated with si-AEG-1 or si-CCR5 and then subjected to in vitro assays. We observed that CCR5 and AEG-1 proteins were highly expressed in CM tissues (73.3 and 76.7%, respectively) and closely correlated with tumor size (>5 cm). Importantly, we validated the expression of AEG-1, p-Erk1/2, p-Akt, vimentin, N-cadherin and MMP2 increased in the CM cell with CCL3 treatment in a time- and concentration-dependent manner. When CM cells were treated with si-CCR5, the expression of AEG-1, p-Erk1/2, p-Akt, vimentin, N-cadherin and MMP2 was downregulated. In addition, when CM cells were treated with si-AEG-1, the expression of p-Erk1/2, p-Akt, vimentin, N-cadherin and MMP2 was also downregulated. Using the cell cycle and proliferation assay, the knockdown of AEG-1 inhibited the entry of G1 into S phase and the proliferation capacity of CM cells. In conclusion, AEG-1 mediates CCL3/CCR5-induced EMT of CM via Erk1/2 instead of Akt signaling pathway, which indicates CCL3/CCR5-AEG-1-Erk1/2-EMT pathway could be indicative of a useful target to benefit CM patients.

Introduction

Cardiac myxoma (CM) is mostly sporadic in heart diseases (1,2), and the clinical manifestation and long-term complications include the recurrence, sudden death, heart failure and potential coronary embolisms (3,4). Due to scarcity of studies indicating the molecular and signaling mechanisms in the CM development, it is very hard to realize the target therapy of CM. Generally surgical resection of CM mass is recommended as the only clinical regimen; however, this option has severe risk of death and can cause recurrences, infarction and stroke (5). Thus, it is necessary to throw light on the molecular mechanisms underlying CM progression, by which we can develop some new and useful targets agents.

It should be noted that astrocyte elevated gene-1 (AEG-1) can be produced in primary human fetal astrocytes (6). Recently, some studies proved that AEG-1 plays a crucial role in the pathogenesis, progression and invasion in different tumors (7-9). AEG-1 was also reported to induce the expression of E-cadherin and vimentin (10,11), suggesting that AEG-1 may be involved in the regulation of epithelial-to-mesenchymal transition (EMT) (12). Moreover, CCR5, a G-protein-coupled receptor, activates cellular signaling cascades by binding to its ligand CCL3 (13,14). CCL3/CCR5 axis promotes tumor development in various ways, including angiogenesis, modulation of extracellular matrix (15). However, the underlying mechanisms of CCL3/CCR5 in CM and the signaling pathways are not well known.

In the present study, we investigated and analyzed the biological roles of AEG-1 in CCL3/CCR5-induced EMT process using immunohistochemistry, immunoblotting, siRNA transfection and proliferation assay. Based on our results, we concluded that AEG-1 mediates CCL3/CCR5-induced EMT of CM via Erk1/2 instead of Akt signaling pathway, which indicates that CCL3/CCR5-AEG-1-Erk1/2-EMT pathway could be indicative of a useful target to benefit CM patients.

Materials and methods

Patients and tissues. Thirty left atrial myxomas were enrolled, including 14 male and 16 female patients (mean age, 53±5.8) who underwent surgery between August 2001 and August 2014. Gross assessment of CM tissues was carried out in order to measure the basic parameters such as tumor size. All pathological tissues were subjected to formalin fixation and paraffin-embedded. Prior to our medical research, the patients consent was obtained from the Institute Research Ethics Committee of Qilu Hospital of Shandong University.
CM cell culture. The culture of CM cells was conducted as previously mentioned in a published study (16). In vivo CM tissue was obtained from a 45-year-old patient who was diagnosed with sporadic CM, during surgical operation at Qilu Hospital. The patients gave informed consent before the operation, and the study design was approved and supported by the Qilu Hospital Medical Ethics Committee. The CM cells were harvested and separated by enzymatic digestion using collagenase and then were maintained in Dulbecco’s modified Eagle’s medium (DMEM). Prior to in vitro assays, the DMEM medium was changed with serum-free DMEM for another 24 h, and then changed into fresh DMEM with the indicated reagents.

Reagents. Recombinant human CCL3 was purchased from Sigma (St. Louis, MO, USA). Antibodies were purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA). The specific antibodies included anti-p-Erk1/2, anti-t-Erk1/2, anti-p-Akt, anti-AEG-1, anti-N-cadherin, anti-MMP2 and anti-α-tubulin antibody (Santa Cruz Biotechnology). All experiments were conducted in the absence of fetal bovine serum (FBS).

Immunohistochemistry. All sections were dewaxed in xylene and rehydrated in graded ethanol, followed by incubating in 3% hydrogen peroxide for 10 min to quench endogenous peroxides. Samples were heated in 0.01 mol/l citrate buffer for 15 min at 100°C, and then were placed at room temperature for 30 min. After cooled, samples were blocked with 2% normal goat serum in phosphate-buffered saline (PBS) for 30 min to block antigenic epitopes, then incubated with primary antibody (1:100 dilution; Santa Cruz Biotechnology) for 1 h at room temperature for 20 min. Next, the sections were incubated in DAB and counterstained in Mayer’s hematoxylin, dehydrated in alcohol and xylene. The positive-stained slices (Santa Cruz Biotechnology) were assessed from and PBS was used as negative control. Under the microscope, the positive areas appeared as brown yellow granules.

Evaluation of immunohistochemistry staining. The score of the immunohistochemistry staining was evaluated by one investigator who was blinded to the present study. The sections were scored based on the positive percentage and staining intensity. Sections were defined as positive if there were substantial amount of brown yellow granules in the plasma of the cells. The intensity of plasma staining was scored and graded as: 0 (0% cells); 1 (0-25% cells); 2 (25-50% cells); and 3 (>50% cells). Staining intensity was also evaluated semi-quantitatively as: 0 (none), 1 (mild), 2 (moderate), 3 (intense). The total score for each section was then evaluated by multiplying the intensity and positive percentage score, and was classified respectively into four levels: 0 (-), 1-3 (+), 4-6 (++) and 7-9 (+++). The score was considered negative or low expression when the total was <4, and positive or high expression when it was ≥4.

siRNA transfection. AEG-1 and CCR5 siRNA (a generous gift from Dr Wei Wang in Chinese Academy Science) transfection was performed as previously described. Cells were plated in 24-well plates. After 24 h, the cells were transfected with control siRNA or with AEG-1/CCR5 siRNA using siRNA transfection reagent according to the manufacturer's instructions. The following siRNA sequences were targeted: AEG-1-siRNA positive sense, 5'-GCCAGGTATCTTGTGGAATACTA-3' and antisense, 5'-GCTGACTGTCTTGTTCATC-3'; CCR5 siRNA positive sense, 5'-GUUCAGAAACUACCUCUCUAUGUCUUUUC-3' and antisense, 5'-UUCAAGCUUCUUGGAGAUCAGAGAAAG-5'; control siRNA-positive sense, 5'-CAACCUCUGGCUCUUAGGT-T-3' and antisense, 5'-UUUUGCCCAAUUUCCCGGCGT-3'.

Cell cycle distribution analysis. After cells were seeded for 24 h, the cells reached ~75% confluence and were then treated with CCL3 at concentrations of 30 µM for 24 h. Following the treatment, cells were detached and fixed with 70% ethanol at -20°C overnight. Subsequently, the cells were collected by centrifugation at 250 x g for 5 min. Then, the cells were washed with centrifugation in Tris-buffered saline containing 0.1% Tween-20 (TBST) for 2 h at room temperature. The protein was treated overnight with primary antibodies at 4°C. After washed in TBST 3 times, the polyvinilidene fluoride membrane was incubated with horseradish peroxidase (HRP)-conjugated secondary antibody for another 2 h. Finally, the protein bands were measured using the ECL detection system.

Proliferation assays. The proliferation assays were performed as reported previously (16). Cells were seeded into plastic wells and grown for 48 h in DMEM with 10% FBS. After 24 h, cells were treated with different IGF-1 treatment for 48 h with high serum conditions, and then exposed to DMEM containing 1 mCi [3H]-thymidine for the next 24 h. The cells were washed, obtained and counted in a liquid scintillation counter.

Statistical analysis. Data are expressed as the mean ± standard error (SEM) of repeated assays. The correlation between CCR5 and AEG-1 was analyzed using Spearman’s test. Significant differences between the two groups were assessed using χ² analysis, Student’s t-test and one-way ANOVA. In the present study, the p<0.05 was considered to indicate a statistically significant result.

Results

Expression of CCR5 and AEG-1 in the CM tissue and cells. To identify the potential CCR5-AEG-1-EMT pathway in CM tissues, we introduced immunohistochemistry to investigate
the expression level of CCR5 and AEG-1 in 30 cases of CM tissues. As shown in Fig. 1, we found that 22 cases in all 30 CM tissues highly expressed CCR5 protein, and the expression rate was 73.3%. However, CCR5 protein was rarely stained in surrounding non-tumor samples. Similar with CCR5 expression model, 23 cases of CM tissues expressed AEG-1 protein and the expression ratio was 76.7%. We also demonstrated that AEG-1 protein was not constitutively expressed in surrounding tissues. Under the microscope, CCR5 and AEG-1 protein was mainly located at the cell membrane and cytoplasm. Based on the Spearman's correlation analysis, high CCR5 expression was closely correlated to high AEG-1 expression in CM tissues (r=0.919, p=0.001).

Correlations between CCR5, AEG-1 expression and clinicopathology. We analyzed the correlation between CCR5, AEG-1 expression and clinicopathology. As described in Table I, tumor size (>5 cm in diameter) was significantly associated with high-CCR5 expression (p=0.024), yet age and location had no significant association with the CCR5 expression. Likewise, tumor size (>5 cm in diameter) was also closely associated with high AEG-1 expression (p=0.003), however, age, gender and tumor location had no discernible associations with the AEG-1 expression.

CCL3/CCR5 activates AEG-1 signaling and the EMT process in cultured CM cells in a time- and dose-dependent manner. To investigate the potential CCL3/CCR5 signaling pathway in the EMT process, we cultured CM cells with different CCL3 concentrations (0, 5, 10, 20, 30 and 40 ng/ml), and then carried out immunoblotting to assess the expression status of the downstream signaling protein p-Erk1/2, p-Akt and AEG-1. As shown in Fig. 2a, immunoblotting results identified that the expression of p-Erk1/2, p-Akt and AEG-1 was highly upregulated in CCL3-induced CM cells in a dose-dependent manner. Besides, we also assessed the EMT biomarkers vimentin, N-cadherin and MMP2. Our results showed that the protein expression of vimentin, N-cadherin and MMP2 was aberrantly increased in CCL3 treatment, which was also in a dose-dependent manner. In addition, we assessed the appropriate time when the downstream protein and EMT biomarkers in the cells can be activated. We found that CCL3 activates cells

Table I. Correlation of CCR5, AEG-1 expression with clinicopathological features of cardiac myxoma.

<table>
<thead>
<tr>
<th>Indicators</th>
<th>CCR5 Case</th>
<th>CCR5 High</th>
<th>CCR5 Low</th>
<th>P-value</th>
<th>AEG-1 Case</th>
<th>AEG-1 High</th>
<th>AEG-1 Low</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><60</td>
<td>10</td>
<td>8</td>
<td>2</td>
<td>0.559</td>
<td>8</td>
<td>2</td>
<td>0.760</td>
<td></td>
</tr>
<tr>
<td>≥60</td>
<td>20</td>
<td>14</td>
<td>6</td>
<td></td>
<td>15</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>14</td>
<td>10</td>
<td>4</td>
<td>0.825</td>
<td>11</td>
<td>3</td>
<td>0.818</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>16</td>
<td>12</td>
<td>4</td>
<td></td>
<td>12</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Left atrium</td>
<td>26</td>
<td>20</td>
<td>6</td>
<td>0.257</td>
<td>20</td>
<td>6</td>
<td>0.933</td>
<td></td>
</tr>
<tr>
<td>Right atrium</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td></td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tumor size (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><5</td>
<td>16</td>
<td>9</td>
<td>7</td>
<td>0.024</td>
<td>9</td>
<td>8</td>
<td>0.003</td>
<td></td>
</tr>
<tr>
<td>≥5</td>
<td>14</td>
<td>13</td>
<td>1</td>
<td></td>
<td>14</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AEG-1, astrocyte elevated gene-1.
time-dependently and 30 min treatment is better than the other time points. The treatment of 30 and 40 min showed no differences (p=0.356) (Fig. 2b). These results indicate that CCL3 activates AEG-1 signaling and the EMT process in CM cells, and the detailed pathways should be identified using gene silencing.

Knockdown of CCR5 abrogates CCL3-induced AEG-1 signaling and EMT. To further investigate the potential CCL3/CCR5 signaling pathway in the EMT process we cultured CM cells with CCR5 siRNA, then treated with CCL3 treatment (30 ng/ml), and then carried out immunoblotting to assess the expression status of the downstream signaling protein p-Erk1/2, p-Akt and AEG-1. As shown in Fig. 3, immunoblotting results identified that the expression of p-Erk1/2, p-Akt was obviously inhibited in CCR5 siRNA-induced CM cells. Besides, we also assessed the EMT biomarkers vimentin, N-cadherin and MMP2. Our findings showed that the protein expression of vimentin, N-cadherin and MMP2 is obviously affected. These results indeed indicate that CCL3 activates AEG-1 signaling and the EMT process in cultured CM cells.

Knockdown of AEG-1 abrogates CCL3-induced EMT. Based on the above studies, we assumed that AEG-1 played a key role in regulating CCL3-induced EMT. To this end, we introduced AEG-1 siRNA to silence the mRNA transcription of AEG-1 gene (Fig. 4a), and then performed immunoblotting assay to assess downstream signaling molecules in the CCL3 pathway as well as EMT biomarkers as previously mentioned. As shown in Fig. 4b and c, our results showed the expression of p-Erk1/2, p-Akt, vimentin, N-cadherin and MMP2 increased in CM cells treated with control siRNA or CCL3 alone, which was consistent with our previous conclusion. By contrast, once we transfected AEG-1 siRNA into CM cells, the expression of p-Erk1/2, p-Akt, vimentin, N-cadherin and MMP2 was obviously decreased. These results suggest that AEG-1 acts as a key mediator in CCL3-induced Erk1/2 and Akt signaling, and then regulates the progression of EMT.
Silencing of either AEG-1 or CCR5 affects CCL3-induced CM cell cycle. Based on the above studies, we further assessed the effects of AEG-1 or CCR5 on cell cycle and the expression of cell cycle regulators, including CDK2, cyclin D1 in CM cells using flow cytometry and western blotting. Incubation of CM cells with si-AEG-1 or si-CCR5 resulted in the inhibition of G1 phase entry into S phase (Fig. 5a). At the same time, the expression of CDK2 and cyclin D1 in CM cells was obviously suppressed in comparison with the control (Fig. 5b), indicating that AEG-1 is a key regulator in G1-to-S phase transition.
Depletion of either AEG-1 or CCR5 affects CCL3-induced CM cell proliferation. To assess the impact of AEG-1 and CCR5 on proliferation behavior of CM cells, we investigated the potential roles of AEG-1 and CCR5 in CCL3-induced CM cell behavior using proliferation assay. In the present study, CCL3 treatment caused a 2- to 5-fold increase in [3H]-thymidine incorporation in a concentration-dependent manner (p<0.05). Unfortunately, this increase induced by CCL3 stimulation was abolished by knockdown of AEG-1 or CCR5. AEG-1 depletion decreased the constitutive proliferation of CM cells in a dose-dependent manner (p<0.05) (Fig. 6).

Discussion

In the published studies, CCL3/CCR5 axis has been reported to be involved in CM development. Moreover, AEG-1 is also reported to promote tumor progression, and involved in various growth factors, chemokines-induced signaling pathways (17,18). In the present study, we tried to elucidate the role of AEG-1 in activation and regulation of CCL3-induced EMT pathway. Firstly, based on IHC results, high expression of CCR5 and AEG-1 protein was stained in major CM tissues. Pathological results proved that CCR5 and AEG-1 protein was significantly correlated with tumor size. In accordance with our results, the published studies identified that the CCR5 and AEG-1 were highly expressed in many other tumors, such as hepatocellular carcinoma (19) and also closely associated with the tumor size. All things considered, we assumed that CCR5-AEG-1 pathway was implicated in the progression of CM.

The EMT process was reported to play a key role in the tumorigenesis. The EMT process is characterized as the deregulation of cell-to-cell link systems and the consolidation of cellular migration and motility, making abnormally proliferating cells detached from the original epithelial tissues (20,21). Recent studies showed that it is the high N-cadherin expression that impairs E-cadherin regulated intercellular adhesion, and
in lack of epithelial barrier and deregulation of extra-
epithelial signals in the signaling transduction of tumor biology. The Erk1/2 pathway can be activated by various factors, such as chemokines and inflammation mediators. More and more studies found the dysfunction of Erk1/2 signaling is the most common cause of cancer cell proliferation, which greatly promotes malignancy transformation (22). These kinases in EMT process offer some novel targets (23). As reported, the abnormal activation of AEG-1-Erk1/2 pathway in human sacral chondrosarcoma mediated cell proliferation and EMT progression (24). Moreover, the effects of PI3K/Akt pathway on chemokine-induced EMT have been focused on (25,26). However, few studies described the role of AEG-1 in Akt-induced EMT. In the present study, our results suggest that AEG-1 acts as a key mediator in CCL3-induced Erk1/2 pathway and the EMT process, as well as in Akt signaling.

Since functional analysis demonstrates the real effects of AEG-1, we conducted proliferation assays, and observed that CCL3 caused an obvious increase in [3H]-thymidine incorporation in a concentration-dependent mode, and then [3H]-thymidine incorporation was affected by knockdown of AEG-1. AEG-1 depletion decreased the constitutive proliferation of CM cells. These results indicate that AEG-1 interferes with CCL3-induced CM cell invasion and migration. In agreement with our studies, some studies on tumor biology also testified the significance of AEG-1 in the cell growth of tumor cells (27,28).

In conclusion, our results suggest that AEG-1 mediates CCL3/CCR5-induced EMT of CM via both Akt and Erk1/2 signaling pathways in CM development, indicating that CCL3-AEG-1-Erk1/2 and Akt-EMT pathways could be suggested as a prospective target to antagonize the CM progression, which can benefit CM patients in the clinical practice.

Acknowledgements

We greatly thank other members of our laboratory for valuable suggestions and writing.

References

3. Anpalakan S, Ramasamy D and Fan KS: An unusual presenta-

18. Shih JY and Yang PC: The EMT regulator slug and lung carcino-

20. Shih JY and Yang PC: The EMT regulator slug and lung carcino-

