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Abstract. Cancer stem cells (CSCs) are a small population of 
cells in cancer with stem-like properties such as cell prolifera-
tion, multiple differentiation and tumor initiation capacities. 
CSCs are therapy-resistant and cause cancer metastasis and 
recurrence. One key issue in cancer therapy is how to target 
and eliminate CSCs, in order to cure cancer completely 
without relapse and metastasis. To target CSCs, many cell 
surface markers, DNAs and microRNAs are considered as 
CSC markers. To date, the majority of the reported markers 
are not very specific to CSCs and are also present in non-
CSCs. However, the combination of several markers is quite 
valuable for identifying and targeting CSCs, although more 
specific identification methods are needed. While CSCs are 
considered as critical therapeutic targets, useful treatment 
methods remain to be established. Epigenetic gene regulators, 
microRNAs, are associated with tumor initiation and progres-
sion. MicroRNAs have been recently considered as promising 
therapeutic targets, which can alter the therapeutic resistance 
of CSCs through epigenetic modification. Moreover, carbon 
ion beam radiotherapy is a promising treatment for CSCs. 
Evidence indicates that the carbon ion beam is more effective 
against CSCs than the conventional X-ray beam. Combination 
therapies of radiosensitizing microRNAs and carbon ion beam 

radiotherapy may be a promising cancer strategy. This review 
focuses on the identification and treatment resistance of CSCs 
and the potential of microRNAs as new radiosensitizers and 
carbon ion beam radiotherapy as a promising therapeutic 
strategy against CSCs.
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1. Introduction: Cancer stem cells (CSCs)

Cancer treatments have markedly improved in recent decades. 
Surgery is considered the main treatment for primary 
tumors. Yet, surgery has limitations since it can be highly 
invasive, sometimes causing the loss of function of organs. 
Improvements in chemoradiotherapy are promising as this 
modality is less invasive and may preserve organ function. 
Utilizing a combination of various cancer therapies, such as 
surgery, radiotherapy, systemic chemotherapy and molecular 
targeted therapy, locoregional cancer control rates have greatly 
improved (1). However, relapse and metastasis, which worsen 
patient outcomes, are of concern. It is important to prevent 
cancer recurrence and metastasis as the resultant tumors are 
often more viable and resistant to chemoradiotherapy. The 
reasons for therapeutic resistant of cancer cells are controver-
sial. However, the cancer stem cell (CSC) theory may provide 
an accurate explanation.

The CSC theory explains that a small population of cells in 
a tumor has stem cell properties, such as self-renewal, multiple 
differentiation and tumor initiation capacities. The idea of 
CSCs has attacted interest recently, but it was conceptualized 
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in 1971 with the discovery of mouse myeloma tumor stem 
cells (2). When injected into mice, not all leukemia cells but 
only a small population of leukemia cells initiated tumors, and 
these tumor-initiating cells were termed CSCs. In humans, 
CSCs were first discovered in leukemia by Bonnet and Dick in 
1997 (3). The recurrence rates of patients with residual tumors 
after surgery and the rates of distant metastases of patients 
with circulating cancer cells after successful treatment of the 
primary tumor were not 100%, although these patients were 
part of a high-risk group (4-9). These data suggested that not 
all cancer cells have the potential to cause recurrence and 
metastasis (10). Recent studies have revealed that CSCs play 
an important role in maintaining tumor growth (11). Growing 
evidence suggests that CSCs are resistant to chemoradiotherapy 
and cause tumor metastasis and recurrence  (12). Overall, 
CSCs are a stem cell-like population in cancer with tumor 
initiation, self-renewal and multiple differentiation capacities 
which cause metastasis and recurrence, and it appears that 
the targeting of CSCs during cancer treatment is a promising 
strategy for a permanent cancer cure.

In this review, we discuss how the idea of CSCs can be 
used in future clinical practice. We focus on radiotherapy, 
particularly the potential of carbon ion beam therapy in rela-
tion to CSCs.

2. Methods for identifying CSCs: Biomarkers

To date, in order to target CSCs, markers of CSCs have been 
studied. CSCs have been identified in several types of tumors, 
and biomarkers have been established, such as those identified 
by SP assay (13-15): CD44 in breast CSCs (16); and CD133 
in hematopoietic CSCs, (17) neural stem cells (18) and colon 
cancer cells (19,20). These biomarkers are sometimes related 
with the prognosis of tumors.

CD133 is a major marker of CSCs in various types of 
cancers, including glioblastoma, rectal cancer and lung 
cancer  (21-24). CD133 is also expressed in differentiated 
epithelial cells, and some CD133-expressing cancer cells have 
CSC properties (16-25).

MicroRNA expression in CSCs can also be used for the 
identification of CSCs. MicroRNAs are endogenous RNAs, 
which contribute to oncogenic transformation, tumor suppres-
sion, and cell differentiation as well as pluripotency (26-28).

Several microRNAs are known as CSC regulators. 
miR-181 was found to be highly expressed in CSCs in HCC, 
in embryonic liver tissues, and pluripotent hepatic stem 
cells in the human liver (29). The expression of miR-130b 
in HCC positively regulates CD133+ CSCs with respect to 
self-renewal, tumor initiation and chemoresistance proper-
ties (30). miR-34a was found to inhibit the growth of CSCs 
and metastasis in prostate cancer by directly repressing CD44 
expression (31). miR-200b negatively regulates CSCs in breast 
cancer by reducing CSC formation (32). These microRNAs 
regulate CSCs positively or negatively, and identification of 
their mechanism of action may make it possible to target or 
eliminate CSCs specifically.

CSCs can be identified by measuring expression levels of 
those biomarkers, although these markers are not specific. A 
combination of these markers may be more useful for identi-
fication of CSCs.

3. The resistance mechanisms of CSCs

CSCs are a small population present in cancer cells with 
unique properties: i) self-renewal capability, ii) cell differen-
tiation ability and iii) cancer initiation potential (33,34). These 
properties of CSCs contribute to chemoradiotherapy resistance 
and cause tumor recurrence. Enhanced DNA repair capacity 
and reduced reactive oxygen species (ROS) levels may be 
responsible for the radioresistance of CSCs (35-38).

Several pathways such as OCT4, WNT, NOTCH, Sonic 
Hedgehog (SHH), B lymphoma Mo-MLV insertion region 1 
homolog (BMI1), and SNAIL1/SLUG are known to be linked 
to the radiation resistance of CSCs (39). Wang et al reported 
that inhibition of the NOTCH pathway with γ-secretase 
inhibitors sensitized glioma CSCs to radiation (40). Chen et al 
observed that the survival rate of CD133+ cells was higher than 
that of CD133- cells after radiation in lung cancer. In the same 
study, OCT4 knockdown improved the treatment effects of 
chemoradiotherapy on CD133+ cells (41). CD133 is expressed in 
radiation-resistant CSCs of glioma (36) and colon cancer (42). 
The DNA repair- and cell cycle-regulating proteins Chk1/
Chk2 have been proven to be related to such resistance. It has 
also been demonstrated that the inhibition of these kinases 
improves treatment sensitivity  (36). Zhang  et  al reported 
that the EMT-inducing transcription factor zinc finger E-box 
binding homeobox 1 (ZEB1) is a regulator of radiosensitivity 
and DNA damage response in breast cancer cells (43). In the 
same study, downregulation of ZEB1 was found to radiosensi-
tize breast cancer cells, indicating that ZEB1-targeting agents 
could be used as tumor sensitizers.

Recent studies have revealed that certain CSC-related 
mechanisms are epigenetic. Suvà et al observed that CSCs 
can be reprogrammed from normal cancer cells in glio-
blastoma. They also showed that inhibition of the core 
transcription factors can suppress cancer stem cell properties, 
and these proteins can be used as therapeutic targets (44). 
Seguin et  al reported that integrin  β3 expression and the 
related KRAS‑RalB-NF-κB pathway are both necessary 
and sufficient for CSC formation and erlotinib resistance. 
Bortezomib reverses both tumor stemness and erlotinib resis-
tance by inhibiting this pathway (45). These findings suggest 
that the therapeutic resistance of tumors is related to genetic 
alterations, and epigenetic removal of CSC properties would 
enhance the therapeutic sensitivity of tumors.

4. MicroRNAs as radiosensitizers of CSCs

MicroRNAs (miRNAs) are small non-coding RNAs that 
regulate epigenetic gene expression (26). A growing body of 
evidence suggests that miRNAs are associated with tumor 
initiation and progression  (46-49). Cui et al reported that 
nanoparticle-delivered miR-200c serves as an effective radio-
sensitizer of gastric cancer cells and suppresses CSC-like 
properties (50). CSC-targeted therapies including the miR-200 
family tend to damage normal stem cells. Damage to normal 
cells must be considered in clinical practice, and it is difficult 
to selectively damage cancer cells while sparing normal cells. 
By exploiting cellular uptake differences depending on gelati-
nase levels, Cui et al showed that it possible to spare normal 
cells via the gelatinase strategy. Gelatinases are overexpressed 
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in numerous cancers but are undetectable in normal cells (50). 
Yao  et  al  (52) demonstrated that miR-205 is related with 
radiosensitivity in breast cancer. Downregulation of miR-205 
is observed in radio-resistant cancer cells, and it is highly asso-
ciated with poor distant relapse-free survival in breast cancer 
patients. Such findings suggest that miRNAs could be utilized 
as promising radiosensitizers with minimal side effects, while 
further in  vivo studies and clinical trials are required for 
clinical utilization.

5. Radiotherapy: The potential of carbon ion beam therapy 
in relation to CSC-targeted treatment

X-ray-induced DNA damage mostly occurs through ROS inter-
action. CSCs have lower ROS levels and enhanced protection 
from oxidative damage and therefore exhibit better radiation 
resistance compared with normal cancer cells  (35,53,54).
Nevertheless, fractionated radiotherapy may result in the 
repopulation of CSCs (55). Although normal cancer cells are 
killed by radiotherapy, radioresistant CSCs can survive and 
proliferate during such treatment. Thus, an increased propor-
tion of CSCs makes a tumor more aggressive (Figs. 1 and 2).

High-LET heavy ions may be the key to treating the 
therapeutic resistance of CSCs. Heavy-ion radiotherapy such 
as carbon ion radiotherapy has higher relative biological effec-
tiveness (RBE), ranging between 3 and 5 (56,57), and therefore 
is more effective against hypoxic radioresistant cells than 
conventional X-ray radiotherapy. Carbon ion radiotherapy for 
malignant tumors has yielded favorable results in several clin-
ical trials (58-63). It was reported that Bcl-2-overexpressing 
HeLa cells are more resistant to γ-rays (0.2  keV/µm) and 

helium ions (16.2 keV/µm) than neomycin resistance gene-
expressing HeLa cells, whereas heavy ions (76.3-1610 keV/µm) 
yield similar survival regardless of Bcl-2 overexpression. This 
implies that heavy-ion radiotherapy may be equally effective 
against CSCs (64) and that carbon ion beam radiotherapy may 
not induce CSC repopulation in contrast to X-ray radiotherapy.

Notably, when cancer cells are irradiated by X-rays and 
a carbon ion beam, genomic expression patterns are changed 
differentially. Carbon ion beam-specific gene expression 
patterns may be promising therapeutic targets, which have not 
been well studied to date.

6. Conclusions

CSCs are responsible for tumor recurrence, metastasis and 
treatment resistance; thus, they are key targets by which to 
ensure the permanent elimination of cancer cells. Several 
CSC markers have been recently discovered. Although these 
markers are not specific, CSCs can be reliably identified using 
combinations of these markers. Furthermore, specific epigen-
etic alterations, which are believed to be responsible for the 
therapeutic resistance of CSCs, are now better understood. 
These markers and alterations are promising therapeutic 
targets. By inhibiting the expression of the responsible genes, 
CSCs can be radiosensitized. Targeting CSCs while sparing 
non-CSCs is a challenging task as these cell populations 
exhibit similar expression patterns and biological proper-
ties. Recent studies and insights into epigenetic processes 
and cellular metabolism are providing clues regarding novel 
promising targeted therapeutic agents that specifically inhibit 
the growth of CSCs; nanoparticle-delivered miR-200c is a 
good example. Nevertheless, most studies are currently at the 

Figure 1. Difference in the biological effects of X-ray and carbon ion beam 
irradiation. OER of X-ray is between 2.5 and 3.5, which implies that approxi-
mately 2/3 of DNA damage is induced indirectly through ROS. Thus, hypoxic 
cells with low ROS levels are relatively X-ray resistant. OER decreases as 
LET increases. Carbon ion beam-induced damage is mostly through direct 
interaction as a high LET beam induces damage regardless of ROS levels. 
Moreover, a carbon ion beam has strong biological effects; the RBE of a 
carbon ion beam ranges between 3 and 5, whereas RBE of X-ray is 1.10. OER, 
oxygen enhanced ratio; ROS, reactive oxygen species; LET, linear energy 
transfer; RBE, relative biological effect.

Figure 2. Repopulation of CSCs induced by X-ray radiotherapy and the ability 
of carbon ion beam radiotherapy in eliminating cancer cells. X-ray‑resistant 
CSCs may survive X-ray radiotherapy while differentiated cancer cells are 
killed. Thus, the proportion of CSCs at the tumor site increases and causes 
cancer progression, metastasis and recurrence. Carbon ion beam radio-
therapy is more effective against CSCs; therefore, CSC repopulation is less 
likely to occur. These observations explain the reason why carbon ion beam 
radiotherapy is a promising modality for cancer elimination. CSCs, cancer 
stem cells; ROS, reactive oxygen species; LET, linear energy transfer.
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in vitro level, and translational research is needed to use these 
ideas in clinical practice.

Carbon ion beam radiotherapy is a promising method for 
the elimination of CSCs, with strong effects on CSCs. The 
tumor control rates of carbon ion beam radiotherapy may be 
further improved by the use of CSC-targeting drugs such as 
microRNAs as radiosensitizers. Such combination therapies 
for carbon ion beam radiotherapy have not yet been adequately 
researched, and further studies are warranted to establish an 
optimal combination.
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