
ONCOLOGY REPORTS  34:  2821-2826,  2015

Abstract. Liver kinase B1 (LKB1), also known as 
serine/threo nine kinase 11 (STK11), is a tumor suppressor 
that is inactivated in Peutz-Jeghers familial cancer syndrome. 
LKB1 phosphorylates and activates AMP-activated protein 
kinase (AMPK), which negatively regulates cancer cell 
proliferation and metabolism. However, recent evidence 
demonstrates that the LKB1/AMPK pathway is involved in the 
process of tumor invasion and migration, which is an impor-
tant hallmark of carcinoma progression to higher pathological 
grades of malignancy. This review focuses on the function of 
the LKB1/AMPK pathway in the invasion and migration of 
cancer cells and provides an overview of therapeutic strategies 
aimed at this pathway in malignant tumors.
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1. The function of liver kinase B1

Liver kinase B1 (LKB1), also named serine/threonine 
kinase 11 (STK11), was first identified in Peutz-Jeghers 
syndrome (PJS), which is a tumor susceptible syndrome 

characterized by inactivation of LKB1 (1,2). Somatic muta-
tions of LKB1 have also been found in many malignant 
tumors such as lung cancer (3), breast cancer (4) and colon 
cancer (5). When forming a complex with STE20-related 
adaptor protein (STRAD), LKB1 translocates from the 
nucleus to the cytoplasm to exert biological functions (6). 
Mouse protein-25 (MO25), a scaffold protein, interacts with 
the carboxyl terminus of STRAD and stabilizes the LKB1-
STRAD complex, leading to LKB1 activation (7).

It is well known that LKB1 controls cell polarity and 
maintains intracellular energy balance (8,9). LKB1 functions 
as a tumor suppressor by phosphorylating and activating 
AMP-activated protein kinase (AMPK) (8,9). LKB1/AMPK 
signaling regulates the formation of cytoskeletal microtubules 
and the expression of cell polarity proteins, including prostate 
apoptosis response-4 (PAR-4), to maintain cell polarity (10). 
LKB1 deficiency disturbs the polarity of mammary epithelial 
cells, resulting in cell disorder and an increased invasion and 
migration ability of epithelial cells (11). Moreover, LKB1 
inhibits tumor initiation and progression by arresting the cell 
cycle in the G1 phase and by promoting cell apoptosis (12,13). 
Therefore, dysregulation of LKB1 is not only the underlying 
pathological cause of PJS, but it is also related to the initia-
tion and progression of various types of tumors via multiple 
mechanisms (Fig. 1).

2. The function of AMPK

AMPK is a heterotrimer formed by a catalytic subunit (α) and 
two regulatory subunits (β and γ) (14). AMPK can be phosphor-
ylated and activated by LKB1 and calcium dependent protein 
kinase kinase-β (CaMKK-β) (14-16). AMPK can also be 
activated by small molecules, including 5-aminoimidazole-4-
carboxamide-1-β-D-ribofuranoside (AICAR), metformin and 
analogues of these proteins (17,18).

AMPK is a tumor suppressor and sensor of cellular energy 
status. It plays an important role in the control of cellular 
metabolism, proliferation and autophagy (19). As an energy 
sensor, AMPK is activated when the intracellular AMP/ATP 
ratio rises. Activated AMPK increases the production of ATP 
and decreases AMP consumption to maintain the balance of 
the AMP/ATP ratio (20). Rapidly growing cancer cells depend 
on a sustained energy supply. Tumor cells synthesize ATP by 
increasing glucose uptake and glycolysis to satisfy metabolic 

Role of the LKB1/AMPK pathway in tumor invasion 
and metastasis of cancer cells (Review)

NIANSHuANG LI*,  DEqIANG HuANG*,  NONGHuA Lu  and  LINGYu LuO

Research Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, 
Nanchang, Jiangxi 330006, P.R. China

Received June 10, 2015;  Accepted July 31, 2015

DOI: 10.3892/or.2015.4288

Correspondence to: Dr Lingyu Luo, Research Institute of Digestive 
Diseases, The First Affiliated Hospital of Nanchang university, 
17 Yongwaizen Street, Nanchang, Jiangxi 330006, P.R. China
E-mail: 15270855639@163.com

*Contributed equally

Key words: liver kinase B1, AMP-activated protein kinase, TGF-β 
signal transduction, tumor invasion, metastasis



LI et al:  ROLE OF LKB1/AMPK/TGF-β SIGNALING IN TuMORS2822

requirements, a phenomenon called the Warburg effect (21). 
It has been reported that AMPK suppresses the Warburg 
effect in tumor cells to inhibit tumor energy metabolism (22). 
Furthermore, dysregulation of AMPK is closely related to 
tumor growth, neovascularization, invasion and migration of 
cancer cells (23).

Rattan et al reported that AICAR increases protein 
expression of cyclin-dependent kinase inhibitor 1A (p21), 
cyclin-dependent kinase inhibitor 1B (p27) and p53 via 
AMPK activation to suppress cell proliferation in various 
tumor types (24). In addition, in higher eukaryotes, AMPK 
directly phosphorylates serine-1387 in tumor suppressor 
tuberous sclerosis 2 (TSC2) to suppress the mammalian 
target of rapamycin (mTOR) signaling pathway (25). mTOR 
is a critical regulator of cell growth and autophagy (26). 
Autophagy involves degradation of damaged organelles and 
cytoplasmic components to provide materials and energy for 
cell survival under stressful conditions, such as starvation (27). 
mTOR inhibits autophagy through phosphorylating unc-51 
like autophagy activating kinase 1 and 2 (uLK1 and uLK2). 
Stressful conditions, including starvation, hypoxia and energy 
depletion, lead to suppression of mTOR signaling, which in 
turn results in activation of autophagy (Fig. 1). Various studies 
have shown that AMPK stimulates uLK phosphorylation via 
inhibition of mTOR signaling to promote autophagy (28). 
Moreover, AMPK can also directly phosphorylate serine-555, 
threonine-574 and serine-637 on uLK1 to induce mitochon-
drial autophagy (mitophagy) (29).

3. Signal transduction in tumor invasion and metastasis

Metastasis is the leading cause of morbidity and mortality in 
patients diagnosed with cancer. In order to acquire metastatic 
characteristics, cancer cells must go through several stages 
including epithelial-mesenchymal transition (EMT) (30), 
degradation of the extracellular matrix (ECM) (31) and angio-

genesis (32). At the molecular level, the invasion and migration 
of tumor cells may cause changes in gene expression such 
as matrix metalloproteinase-2 (MMP-2) (33), MMP-9 (34), 
α-smooth muscle actin (α-SMA) (35), and EMT-associated 
proteins (36).

Recent studies have shown that alterations in signal trans-
duction are hallmarks of tumor progression, which lead to 
uncontrolled cellular proliferation, invasion and metastasis. 
EMT is an important process in carcinogenesis by which 
epithelial cells lose their cell polarity and cell-cell adhesion, 
and acquire mesenchymal-like properties. The completion of 
EMT enhances cell motility, migratory capacity and ECM 
degradation ability, which promotes tumor cell invasion and 
migration (37,38). The TGF-β signaling pathway plays a 
crucial role in EMT (39). TGF-β-activated-R-Smad complex 
translocates from the cytoplasm to the nucleus (40), binds to 
the promoter of SNAIL1/2, ZEB1/2, triggers EMT and leads 
to the occurrence of tumor development, invasion and metas-
tasis (41,42). Wiercinska et al reported that TGF-β upregulates 
the expression of MMP-2 and MMP-9 and induces breast 
cancer cell invasion via a Smad3- and Smad4-dependent 
manner (43).

TGF-β also promotes cancer cell invasion and migration 
through non-Smad signaling pathways (Fig. 2). In NMuMG 
cell lines, the activation of mTOR signaling by TGF-β occurs 
through activation of phosphatidylinositol 3-kinase (PI3K), 
protein kinase B (Akt), ribosomal protein S6 kinase 1 
(S6K1) and eukaryotic initiation factor 4E-binding protein 1 
(4EBP1) to induce EMT and cell invasion (44). Likewise, in 
carcinoma cells, TGF-β regulates EMT-associated cytoskel-
etal changes and protein expression by activating mTOR 
complex 2 (mTOR2), further inducing EMT and cell inva-
sion (45). Thakur et al demonstrated that TGF-β upregulates 
the expression of Snail1 and increases the motility and 
invasiveness of human prostate cancer cells by activating the 
TRAF6/p38MAPK pathway (46).

Figure 1. Regulation of cell growth, metabolism and polarity by LKB1/AMPK signaling. MO25 and STRAD form a complex with and activate LKB1, a 
major upstream kinase of AMPK. AMPK maintains cell polarity and suppresses cell growth and metabolism by negatively regulating the mTOR pathway and 
Warburg effect. Moreover, AMPK forms a complex with uLK1, leading to initiation of autophagy.
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Apart from TGF-β signaling, other signal pathways 
including PI3K/AKT (47), NF-κB (48,49), Hedgehog (50), 
MAPK/ERK (51), p38MAPK (52) and Wnt/β-catenin (53,54) 
play important roles in tumor progression (Fig. 2). Wu et al 
identified a novel binding site (-626/-617) of NF-κB II in the 
promoter region of MMP-9 (55). It has been reported that 
treatment with Hedgehog inhibitors contributed to the motility 
and invasiveness of rhabdomyosarcoma cell lines (56).

4. Regulation of tumor cell invasion and migration by 
LKB1/AMPK signaling

The function of LKB1/AMPK in cancer cell invasion and 
migration. LKB1 is a well-known tumor suppressor and 
also an upstream kinase of tumor energy metabolism sensor 
AMPK. SNAIL, an EMT transcriptional factor, is upregulated 
in LKB1-deficient tumor cells (57). Similarly, in immortal-
ized epithelial cells and lung adenocarcinoma cells depleted 
of LKB1, ZEB1 was found to be upregulated, accompanied 
by increased expression of mesenchymal marker proteins, 
cell viability and invasiveness (58). Double knockout of 
LKB1 and phosphatase and tensin homolog deleted in chro-
mosome ten (PTEN) in mouse bladder tissues was found to 
lead to enhanced cell proliferation and tumor initiation, EMT, 
upregulation of SNAIL, nuclear localization of vimentin, and 
decreased expression of E-cadherin and tight junction protein 
zonal occludin-1 (ZO-1) (59). These data indicate that LKB1 
plays a key role in the suppression of EMT during tumor 
progression.

AMPK, a conserved downstream kinase of LKB1, not 
only inhibits tumor cell proliferation and energy metabolism 

but also exerts dual regulatory effects on cancer cell invasion. 
Some studies have proposed that AMPK induces cell migra-
tion. Lysophophatidic acid (LPA) can induce the activation of 
AMPK and promote ovarian cancer metastasis (60). Park et al 
reported that silencing of AMPK abrogated the ability of 
anthocyanins to inhibit the migratory phenotype of hepato-
carcinoma cells. However, more recent studies underscore 
the ability of AMPK to negatively regulate tumor growth 
and invasion. Metformin, an AMPK activator, was reported 
to inhibit EMT and melanoma metastasis in an AMPK/
p53-dependent manner (61). Similarly, metformin was found 
to inhibit MMP-2 and MMP-9 levels, cell proliferation and 
migration of human umbilical vein endothelial cells (62). 
Chemokine ligand 3 (CCL-3) can promote MMP-2 expression 
and the migration of human chondrosarcoma cells, which is 
abolished by AMPK activation (63). Kim et al reported that 
berberine dramatically increased AMPK phosphorylation but 
decreased ERK activity and cytochrome c oxidase subunit II 
(COX-2) expression, leading to suppression of human mela-
noma cell migration (64). These studies suggest that AMPK 
plays an important role in tumor invasion and migration.

The LKB1/AMPK pathway regulates cancer cell invasion 
and migration via a variety of signaling pathways. Tumor 
cell invasion and metastasis is a complex process that results 
from interaction and crosstalk between multiple pathways. 
The LKB1/AMPK pathway regulates invasion and metastasis 
via diversified signaling pathways, such as NF-κB, AKT, 
forkhead box O3 (Foxo3a), TGF-β and mTOR. It has been 
reported that AICAR activates AMPK to suppress AKT/
FOXO3 signaling, inhibiting EMT and reversing mesen-

Figure 2. Multiple signaling pathways involved in cancer cell invasion and metastasis. TGF-β induces EMT, invasion and metastasis of cancer cells via Smad 
and non-Smad pathways. In addition, the PI3K/AKT, NF-κB, Hedgehog, MAPK/ERK, p38MAPK, Wnt/β-catenin signaling pathways are involved in tumor 
invasion and metastasis.
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chymal characteristics of tumor cells (65). In PC3 and PC3M 
cells, AICAR and A769662 downregulated mTOR and S6K1 
levels, and inhibited migration by activating AMPK (66). 
Emerging evidence indicates that LKB1/AMPK inhibits 
tumor invasion and migration through downregulation of 
the downstream factors of TGF-β signaling, such as MMPs 
and Snail (67,68). It was reported that AMPK inhibited 
TGF-β-induced EMT in HK-2 cells (69). In addition, AICAR, 
metformin and adiponectin were found to activate AMPK, 
but inhibited TGF-β-induced fibrosis via downregulation of 
collagen type I α 1 (COL1A) and α-SMA expression in hepatic 
stellate cells (70). AMPK-mediated proteasomal degrada-
tion of p300 is the underlying mechanism of activation (70). 
Moreover, treatment of breast cancer cells with metformin 
decreased the functions of TGF-β (71). Conversely, silencing 
an AMPK downstream effector, lipopolysaccharide-induced 
TNF-α factor (LITAF), by RNA interference, accelerated 
tumor growth (72). Furthermore, metformin was shown to 
arrest cell cycle progression, inhibit proliferation and induce 
apoptosis of breast cancer cells through suppression of AKT 
and ERK signaling pathways (73). In contrast, inhibition of 
AMPK resulted in enhanced cell proliferation and migration 
of prostate cancer cells, accompanied by an upregulation of 
S6K1 and insulin-like growth factor 1 (IGF-1) and downregu-
lation of p53 and p21 (74).

AMPK can also indirectly modulate tumor progression 
through various other signaling pathways. Capsaicin suppressed 
the invasion and migration of cholangiocarcinoma cells by 
inhibiting the AMPK-NF-κB pathway, leading to subsequent 
reduced expression of MMP-9 (75). AMPK/JAK/STATA3 and 
AMPK/GSK3β/β-catenin pathways were found to be involved 
in hepatocarcinoma cell and endometrial cancer cell invasion 
and metastasis (76,77). Novel (nua) kinase family 1 (NuAK1) 
and ARK5, members of the AMPK family, play important 
roles in cancer cell migration and invasion by regulating the 
AKT and NF-κB signaling pathways (78,79).

5. Conclusions

LKB1, an upstream kinase of AMPK, is a tumor suppressor. 
LKB1/AMPK maintains cell polarity and inhibits cell prolif-
eration and energy metabolism. Moreover, recent studies 
demonstrated that the LKB1/AMPK pathway plays an 
important role in the invasion and migration of tumor cells 
by regulating gene expression and activation of multiple 
signaling pathways. The TGF-β signaling pathway promotes 
cancer metastasis while the LKB1/AMPK pathway negatively 
regulates the progression of cancer. Thus, the regulation of 
TGF-β signaling may be an important mechanism by which 
LKB1/AMPK inhibits tumor metastasis. Further investiga-
tion of the crosstalk between the LKB1/AMPK pathway and 
other signaling pathways will accelerate the development and 
approval of highly targeted cancer drugs.
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