Secreted recombinant human IL-24 protein inhibits the proliferation of esophageal squamous cell carcinoma Eca-109 cells \textit{in vitro} and \textit{in vivo}

QUNFENG MA1*, BANGMING JIN2,3*, YAO ZHANG2*, YINAN SHI2, CHI ZHANG2, DAN LUO2, PENGKUN WANG2, CUIMI DUAN4, HEYU SONG2, XUE LI2, XUEFENG DENG1, ZHINAN CHEN3, ZILING WANG2, HONG JIANG2 and YAN LIU3

1Department of Thoracic Surgery, Affiliated Hospital of the Academy of Military Medical Sciences, Fengtai, Beijing 100071; 2College of Life Science and Bioengineering, School of Science, Beijing Jiaotong University, Haidian, Beijing 100044; 3College of Life Science, Southwest University, Beibei, Chongqing 400715; 4Department of Biological Diagnosis, Beijing Institute of Basic Medical Sciences, Haidian, Beijing 100850; 5Cell Engineering Research Center, The Fourth Military Medical University, Xicheng, Xi'an, Shaanxi 710032, P.R. China

Received November 17, 2015; Accepted December 16, 2015

DOI: 10.3892/or.2016.4633

Abstract. Interleukin-24 (IL-24) displays cancer-specific apoptosis-inducing properties in a broad spectrum of human tumors without harmful effects on normal cells. The human IL-24 protein is secreted as a glycosylated protein and functions as a pro-Th1 cytokine and a potent antiangiogenic molecule. However, the function of secreted recombinant human IL-24 (srhIL-24) protein in esophageal squamous cell carcinoma (ESCC) cells has not been studied. In the present study, we prepared a stable site-specific-integrated cell line, Flp-InTMCHO/IL-24 (FCHO/IL-24), which secreted rhIL-24 at a higher level than three random-integrated cell lines. \textit{In vitro}, we identified that the purified srhIL-24 inhibited proliferation and induced the apoptosis of ESCC Eca-109 cells and activated STAT3, which was related with the IL-20 receptors. \textit{In vivo}, the tumorigenicity of Eca-109 cells was significantly inhibited by s.c. injection of FCHO/IL-24 cells. Decreased tumor microvessel density and an increased number of TUNEL-positive tumor cells were associated with tumor growth inhibition, indicating the presence of antiangiogenic activity and induction of apoptotic activity. In summary, the present study demonstrated that srhIL-24 induced growth inhibition and apoptosis in ESCC Eca-109 cells \textit{in vitro} and \textit{in vivo}, which may be mediated by the receptor pathway.

Introduction

Esophageal carcinoma is the eighth most common cancer worldwide, with 482,000 new cases in 2008, and is the sixth most common cause of cancer-related deaths with 406,000 deaths (1). China has one of the highest incidences of esophageal carcinoma in the world. The predominant type of esophageal carcinoma is esophageal squamous cell carcinoma (ESCC), and the crude mortality rate in 2004-2005 was 15.2/100,000 (2). Despite advances in surgery and chemotherapy, the majority of patients have a poor prognosis since they are initially diagnosed in an advanced stage of disease, and frequently present with recurrence and are not responsive to further chemotherapy (3). The ESCC mortality and incidence rates are similar, and the 5-year overall survival rate is less than 15% (4). These facts emphasize the need to develop new effective therapies for ESCC.

One of the most encouraging candidates is melanoma differentiation-associated gene-7 (mda-7), also known as interleukin-24 (IL-24), which was identified by subtraction hybridization of cDNA libraries prepared from terminally differentiated human melanoma cells treated with human fibroblast interferon and mezerein (5). IL-24 is considered to be a tumor suppressor due to its ability to selectively kill and induce apoptosis in a wide range of cancer cells, both \textit{in vitro} and \textit{in vivo}, with minimal toxicity to normal cells (6). Of importance, IL-24 also exerts immunomodulatory effects (7), displays anti-angiogenic properties, and enhances tumor cell sensitivity to chemotherapy agents and radiotherapy (6). Dr P.D. Fisher, the discoverer of IL-24, suggested that it may be the long sought-after and proverbial ‘magical bullet’ for a diverse set of cancers (8). Although the biological activity of IL-24 was identified by adenovirus expressing IL-24 (Ad-IL-24),
overexpression of recombinant human IL-24 (rhIL-24) protein in tumor cells is the most critical factor, and the recombinant protein has advantages over Ad with regard to tumor treatment, such as lower cytotoxicity, higher activity and specificity, and easier usage. The rhIL-24 protein is usually expressed in different expression systems, such as bacteria (9) and mammalian cells (7), but seldom in yeast (10) or insects (11). However, secreted recombinant human IL-24 (srhIL-24) purified from mammalian cell supernatant has the highest antitumor activity at the lowest concentration in diverse cancer cells, such as melanoma (12-14), pancreatic (15), lung (14,16), prostate (14), cervical (14) and breast cancer (17). srhIL-24 has many functions apart from its inhibitory activity in tumor cells, similar to Ad-IL-24. Caudell et al (7) demonstrated in human peripheral blood mononuclear cells that srhIL-24 plays a role as a pro-Th1 cytokine and induces secretion of IL-6, IFN-γ, TNF-α, IL-1β, IL-12 and GM-CSF, which may evoke an antitumor immune response. srhIL-24 has potent anti-angiogenic activity in vitro and in vivo (16). In addition, srhIL-24 protein modulates the sensitivity of melanoma cells to the EGFR inhibitor erlotinib (18) and temozolomide (13) similar to Ad-IL-24, suggesting that a combination treatment of rhIL-24-mediated molecular therapy may be a novel treatment strategy for human melanoma. Secreted rhIL-24 by normal cells inhibits invasion and sensitizes specific cancer cells containing functional IL-20R to radiation (19).

With regard to ESCC, Ma et al (20) reported that Ad-IL-24 enhanced agent-mediated cytotoxicity in certain cell lines (TE-1, TE-2, TE-10, TE-11, YES-2, YES-4, YES-5, YES-6 and TTh cells), and the combination with 5-fluorouracil, cisplatin, mitomycin and etoposide produced greater antitumor effects than monotherapy. Our previous study showed that the human IL-24 peptide created by computer-guided design contributed to suppression of proliferation in ESCC Eca-109 cells (21). It is not clear whether rhIL-24 protein could inhibit ESCC cells and how it functions. In the present study, we prepared a stable site-specific integrated cell line, Flp-In™CHO/IL-24 (FCHO/IL-24), with high expression levels of secreted rhIL-24 and tested the antitumor activity of srhIL-24. We identified that srhIL-24 had high potent antitumor activity in ESCC Eca-109 cells in vitro and in vivo and activated STAT3, which may be mediated by the receptor pathway. The data strongly suggest that srhIL-24 may represent a potential treatment for ESCC.

Materials and methods

Reagents. Anti-IL-24 (AF1965 and MAB1965) and IL-20R antibodies (MAB11762, AF1788 and MAB2770) were purchased from R&D Systems, China (Shanghai, China). The pSTAT3 (Tyr705) rabbit antibody (D3A7) and anti-STAT3α rabbit antibody (D1A5) were purchased from Cell Signaling Technology (Beverly, MA, USA). The anti-PCNA (ZM-0213), Ki-67 (ZA-0502) and secondary antibodies were purchased from Zhongshan Golden Bridge Biotechnology (Beijing, China). The anti-CD34 antibody (BA0532) was purchased from Boster Biological Technology Ltd. (Wuhan, China). The anti-His antibody was a product of Beijing B&M Biotechnology (Beijing, China). The IL-24 ELISA kit (F01531) was purchased from Xitang Biotechnology (Shanghai, China). The Flp-In system plasmids (pCDNA5/FRT and pOG44) and pCEP4-IL-24 containing IL-24 full cDNA were kindly gifted from Dr Zhiwei Sun of the Beijing Institute of Biotechnology and Dr Jean-Christophe Renauld from Luding Institute for Cancer Research in Belgium, respectively.

Cell culture. Flp-In™CHO (FCHO) cells obtained from Invitrogen (Carlsbad, CA, USA) were maintained in F12 nutrient mixture medium supplemented with 10% fetal bovine serum (FBS), 100 µg/ml penicillin/streptomycin and 100 µg/ml Zeocin. Human melanoma A375 cells and lung cancer A549 cells were purchased from the Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences. ESCC Eca-109 cells, the human embryo lung fibroblast cell line HEL and human embryonic kidney 293 cells (HEK293) were kindly provided by Dr XiaoFei Zheng of the Beijing Institute of Radiation Medicine. A375, A549, Eco-109, HEL and HEK293 cells were checked by short tandem repeat (STR) analysis at the Beijing Micoread Gene Technology (Beijing, China) and maintained in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% FBS, 100 µg/ml penicillin/streptomycin, 2 mmol/l L-glutamine and HEPES buffer.

Production of secreted rhIL-24 protein. The full-length cDNA of IL-24 with an additional His6-tag at the COOH-terminus was cloned into the pcDNA™5/FRT. The recombinant plasmid pcDNA5/FRT-IL-24 was co-transfected with pOG44 into FCHO cells using the Lipofectamine 2000 method. The stable cells, FCHO/IL-24, were selected with 500 µg/ml hygromycin and identified by western blotting. Three other random-integrated cell lines (HEK293/pSecTag2A-IL-24, HEK293/pCDNA3.1/myc/His-IL-24 and HEK293/pCEP4-IL-24) were created by transfecting the plasmids containing the full-length cDNA of IL-24 (pSecTag2A-IL-24, pcDNA3.1/myc/His-IL-24 and pCEP4-IL-24) into HEK293 cells, respectively. The stable cell lines were isolated by hygromycin (400 µg/ml) or G418 (600 µg/ml). To identify and compare the expression level of srhIL-24, four types of engineered cells were seeded in 100-mm plates (1.5x10⁶) in 10 ml DMEM, respectively. The supernatant was collected at 1-4 days and assayed via ELISA. To purify the srhIL-24 protein on a large scale, FCHO/IL-24 cells were grown to 90% confluency in 150-mm tissue culture plates for 72 h. The supernatant was collected, centrifuged to remove cell debris, supplemented with protease inhibitors [1 µg/ml leupeptin, 1 µg/ml pepstatin and 0.5 mmol/l phenylmethyl-sulphonyl fluoride (PMSF)], mixed with Ni-NTA slurry and incubated at 4°C overnight. The Ni-NTA slurry-containing supernatant was allowed to pass through a column to collect the beads. The beads were washed with binding buffer (20 mmol/l sodium phosphate, 0.5 mol/l NaCl, 20 mmol/l imidazole, pH 7.4), and rhIL-24 was eluted by elution buffer (250 mmol/l imidazole in binding buffer). The eluted fractions identified as containing secreted rhIL-24 by western blotting were pooled, desalted and concentrated. The final protein concentration was determined by ELISA. The size of rhIL-24 was determined by western blotting.

Western blotting. Cells lysates were treated with RIPA lysis buffer and the protein concentrations were determined.
with the Pierce BCA protein assay kit (Thermo Scientific, Waltham, MA, USA). Total protein (20-50 µg) or 50 µl supernatant was separated by 15% SDS-PAGE and transferred to a nitrocellulose membrane. After incubation in 5% non-fat milk solution, the membranes were incubated in the anti-IL-24 antibody (1:400; AF1965) or anti-His-tag antibody (1:1,000) at 4˚C overnight. The activation of STAT3 in tumor cells was detected using the anti-pSTAT3 antibody (1:1,000) and anti-STAT3a (1:1,000) antibody. The proteins were visualized on Kodak X-ray film (Rochester, NY, USA) by application of the enhanced chemiluminescence western blotting detection system (Thermo Scientific).

ELISA. The ELISA reaction to detect rhIL-24 was conducted in 96-well plates according to the manufacturer's instructions. Briefly, samples (100 µl) were diluted, added to 96-well plates and incubated at 37˚C for 2 h. The plate was reacted with a biotinylated antibody against IL-24 for 1 h at 37˚C and then HRP-streptavidin for 30 min at room temperature. The reaction was developed with the addition of TMB peroxidase substrate and stopped with 1 N H₂SO₄. The optical density (OD) values were read on a Bio-Rad microplate reader Model 550 (Hercules, CA, USA) at 450 nm. The concentration of IL-24 was determined via comparison with a standard curve.

Cell viability assay. Cell viability was assessed by MTT assay. Cells were seeded in 96-well plates (2,500 cells/well) for 24 h at 37˚C and treated with purified rhIL-24 at different final concentrations (0, 1, 5, 10, 20 and 50 ng/ml). On day 4 after treatment, the medium was removed and MTT was added to each well. The cells were maintained at 37˚C for 4 h; then 150 µl of dimethyl sulfoxide (DMSO) was added to each well and mixed thoroughly. The absorbance was read on a Bio-Rad microplate reader Model 550 at 490 nm. The concentration of IL-24 was determined via comparison with a standard curve.

Clone formation assay. Cells (Eca-109, A375, A549 and HEL) were seeded at 400 cells/10-cm dish in triplicate and treated with purified rhIL-24 at different final concentrations (0, 1, 5, 10, 20 and 50 ng/ml) 24 h later. After 2 weeks of incubation, the clones were fixed with 4% formaldehyde, stained with Giemsa and colonies of >50 cells were enumerated.

Apoptosis assay. Cell apoptosis was detected via the Annexin V binding assay and FACS analysis. Cells (Eca-109, A375, A549 and HEL) were seeded at 4.5x10⁴ cells/well in 96-well plates according to the manufacturer's instructions (KGA105-50; Annexin V-FITC apoptosis detection kit; Nanjing KeyGen Biotech, Nanjing, China) and FACS assay was performed immediately after staining. For the xenograft tumor tissue, the apoptosis of a section was analyzed by TUNEL staining using the DeadEnd™ Colorimetric TUNEL system (G7130; Promega Corporation, Beijing, China) following the manufacturer's protocol. Hematoxylin was applied as a counter stain. In each sample, the number of apoptotic tumor cells from 50 different fields was evaluated at high magnification (x400).

Evaluation of tumor growth in vivo. The effect of rhIL-24 in Eca-109 cells in vivo was investigated by xenograft tumors in nude mice as previously described (16). All applicable international, national and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with ethical standards of the Center of Biomedical Analysis of Tsinghua University where the studies were conducted. First, the cell number of Eca-109-induced tumors in athymic BALB/c female nude mice was identified by injecting s.c. 1x10⁶, 2x10⁶ or 5x10⁶ cells into the lower right flank of mice, respectively. Each group consisted of three animals, and tumor growth was monitored for 30 days. Tumor length and width were measured using a Vernier caliper every other day without knowledge of the treatment groups, and the tumor volume was calculated by ‘length x width²/2’. At the same time, FCHO and FCHO/IL-24 cells were tested for their ability to induce tumors. Aliquots of cells (1x10⁶ and 2x10⁶) were injected s.c., as described above. Then, Eca-109 (5x10⁶/ml), FCHO (2x10⁷/ml) and FCHO/IL-24 cells (2x10⁷/ml) were resuspended in sterile phosphate-buffered saline (PBS) at different cell concentrations, respectively. There were 8 animals in the experimental group and each animal received 7x10⁶ cells (200 µl) into the lower right flank, which consisted of 5x10⁶ Eca-109 cells and 2x10⁶ FCHO/IL-24 cells. Each animal in the control group received a mixture of Eca-109 and FCHO cells, as described above. After 30 days, the animals were euthanized, and the tumors were analyzed by immunohistochemical staining with H&E, PCNA or Ki-67, CD34, IL-24 and TUNEL staining. Finally, Eca-109 cells were injected s.c. into the lower right flanks of nude mice. When the size of the tumors reached 50-100 mm³ (nearly 7 days), the animals were divided randomly into two groups. The animals in the experimental group were injected s.c. into the upper right flank with 200 µl Matrigel containing FCHO/IL-24 cells (2x10⁶/animal), and the mice in the control group were injected with Matrigel containing FCHO cells. The tumor volume was monitored and the tumor sections were analyzed as described above.

Immunohistochemical analysis. Immunohistochemical labeling was performed on 10% formalin-fixed, paraffin-embedded tumor tissues (cut into 4-µm sections). After being deparaffinized in xylene and rehydrated in graded concentrations of ethanol, the sections were recovered in citrate buffer and blocked with 3% H₂O₂ and 10% serum. The primary antibodies were added and incubated overnight at 4˚C at various dilutions as follows: IL-24 (1:20; AF1965), PCNA (1:500; ZM-0213), Ki-67 (1:100; ZA-0502) and CD34 (1:100; BA-0532). Then, the slides were incubated with a secondary antibody and the horseradish peroxidase-streptavidin complex reagent for 30 min, respectively (Beijing Golden Bridge Biotechnology, Beijing, China). The immunolabeling was developed with the chromogen 3,3'-diaminobenzidine tetra-hydrochloride (DAB). Hematoxylin was applied as a counter stain. Tissue sections stained without the primary antibody served as the negative controls. The staining of tissue sections
was analyzed and quantified, and the results were interpreted in a blinded manner.

Statistical analysis. All experiments were performed at least three times. Statistical comparisons between groups were performed using an unpaired Student's t-test with the Statistical Package for the Social Sciences (SPSS) software version 15 (SPSS, Inc., Chicago, IL, USA). p<0.05 or p<0.01 was considered to indicate a statistically significant result.

Results

Purification of rhIL-24 from the site-specific-integrated cell line FCHO/IL-24 with a high expression level of rhIL-24. Although the protein expressed in mammalian cells has a high biological function at a ng/ml concentration, the expression level is lower than that in *E. coli* (22). To identify whether IL-24 cDNA site-specifically integrated at a specific genomic location is an advantage over random integration, we established a stable site-specific cell line, FCHO/IL-24, that secretes rhIL-24 using the Flp-In system (for generating stable mammalian expression cell lines by Flp recombinase-mediated integration; Invitrogen, Carlsbad, CA, USA). After culturing for 72 h, the supernatant and lysates of FCHO/IL-24, FCHO/mock and FCHO cells were collected and examined by western blotting using anti-human IL-24 (AF1965) and anti-His, antibodies. As shown in Fig. 1A, both the anti-IL-24 and the anti-His antibodies recognized the recombinant glycosylated protein in the supernatant (MW, 40 kDa) and the doublet intracellular protein in the lysates (MW, 23 and 30 kDa) of FCHO/IL-24 cells, as in previous studies (23,24). The samples of FCHO/mock and FCHO did not display any detectable rhIL-24 expression. Thus, we successfully established the FCHO/IL-24 cell line to constitutively express secreted rhIL-24 protein.

At the same time, we established 3 random-integrated cell lines, HEK293/pSecTag2A-IL-24, HEK293/pCDNA3.1myc/His-IL-24 and HEK293/pCEP4-IL-24, which could stably secrete rhIL-24 into the supernatant, as determined by western blotting assays (data not shown). To compare the expression level of srhIL-24 via ELISA, we collected the supernatant from the four cell types at different times (1-4 days). As shown in Fig. 1B, compared with the three random-integrated cell lines, FCHO/IL-24 secreted srhIL-24 protein at the highest level with a marked difference (p<0.05 or p<0.01). The expression level of FCHO/IL-24 was 1.7, 5.7, 7.4 and 8.0 ng/ml at the respective times, which was more than that of HEK293/pCEP4-IL-24 at 1.4, 4.0, 6.1 and 7.1 ng/ml, respectively. The difference between the two cell lines was particularly notable (p<0.05) on day 2. This experiment was repeated at least three times. Thus, the expression level of the site-specific stable cell line FCHO/IL-24 was higher than the levels in the three random-integrated cell lines. The rhIL-24 protein in the supernatant of FCHO/IL-24 cells was eluted by 250 mmol/l imidazole using Ni²⁺ affinity chromatography and recognized by the anti-IL-24 antibody (data not shown). The final concentration of purified srhIL-24 was 500 ng/ml after treatment of ultrafiltration, as determined by ELISA.

Secreted rhIL-24 inhibits ESCC Eca-109 cell growth and induces apoptosis in a dose-dependent manner. We showed that Eca-109, A375 and HEL cells were IL-20R-positive by immunofluorescence, while the A549 cell line showed positive staining for IL-20R2, and the two other receptor subunits were not expressed (21). Therefore, A375 cells were used as a positive control for the expression of IL-20 receptor complexes, which are the target receptors of IL-24; A549 cells were used as a negative control for receptor expression. The control for primary normal cells was HEL, which showed positive expression of IL-20R. The effects of rhIL-24 on cell growth were analyzed on day 4 using the MTT assay. Purified rhIL-24 was added at different concentrations (0, 1, 5, 10, 20 and 50 ng/ml) to the cell culture media, and PBS was used as the untreated control. As shown in Fig. 2A, compared with the PBS-treated cells, rhIL-24 induced a significant decrease in the cell viability of the Eca-109 and A375 cells. In these two cell lines, a decrease in cell viability was evident even after treatment with 1 ng/ml...
(p<0.05), and increasing concentrations of rhIL-24 produced a more significantly pronounced effect (p<0.01). The highest percentage of inhibition of rhIL-24 in the Eca-109 and A375 cells was 34.69 and 36.21% at 50 ng/ml, respectively. However, treatment with rhIL-24 at the same concentrations (1-50 ng/ml) did not decrease the viability of the other two cell lines (A549 and HEL). These results showed that the observed inhibitory activity in the MTT assays was attributable to rhIL-24. This effect was corroborated by a clone formation assay (Fig. 2B). These data demonstrated that rhIL-24 inhibited the growth and clone formation of the Eca-109 and A375 cells in a dose-dependent manner and had no effect on A549 and HEL cells.

Previous studies have extensively demonstrated that secreted rhIL-24 can trigger apoptosis in a broad spectrum of tumors (13,15,16). Annexin V binding and FACS assays were performed to determine whether secreted rhIL-24 induced apoptosis in the Eca-109 and A375 cells. As shown in Fig. 2C, both cancer cell lines underwent significant apoptosis after secreted rhIL-24 treatment in a dose-dependent manner. The apoptosis rates of Eca-109 and A375 cells were 34.5 and 64.5% when rhIL-24 was added at a final concentration of 40 ng/ml, respectively. The results indicated that the secreted rhIL-24 protein robustly induced apoptosis in the ESCC Eca-109 and melanoma A375 cells in a dose-dependent manner compared with PBS treatment.

rhIL-24 protein-mediated killing of Eca-109 cells and activation of STAT3 may be related to IL-20 receptors. To confirm that the inhibitory effect was due to treatment with rhIL-24, cell viability was assessed using MTT assay 4 days after treatment with rhIL-24 (20 ng/ml) plus various neutralizing antibodies against IL-24 (AF1965 or MAB1965) or IL-20R (IL-20R1, IL-20R2 or IL-22R1) at a concentration of 200 ng/ml. As shown in Fig. 3A, the anti-IL-24 antibody (AF1965 or MAB1965) significantly inhibited (p<0.05 or p<0.01) IL-24-mediated cell killing in the Eca-109 cells, as did the anti-IL-20R antibodies (IL-20R1, IL-20R2 or IL-22R1) (p<0.01). The anti-IL-24 or anti-IL-20R antibodies also significantly reduced the killing of A375 cells (p<0.05 or p<0.01) (Fig. 3A). Treatment with immunoglobulin (Ig), a nonspecific control, had no effect on the cell killing by rhIL-24. This result suggested that rhIL-24-mediated cell death was caused by extracellular mechanisms. At the same time, an anti-IL-24 or an anti-IL-20R antibody was not able to fully abrogate cell killing. These results suggest the possibility that other unappreciated functional receptor molecules and signaling pathways may allow them to antagonize the growth suppression of secreted rhIL-24 protein on cancer cells.

Recent studies have demonstrated the activation of STAT3 in tumor cells upon receptor engagement by srhIL-24 (12,23). As shown in Fig. 3B, western blotting analysis showed that the addition of srhIL-24 (final concentration of 20 ng/ml) in the culture media of Eca-109 cells increased the expression levels of the pSTAT-3 protein at 4 h, but not at 1 h, as in A375 cells. On the basis of these studies, we identified that activity of srhIL-24 on the proliferation of Eca-109 and A375 cells and activation of STAT3, may be mediated by the receptor pathway.

rhIL-24 inhibits the tumorigenicity of Eca-109 cells in nude mice. We firstly identified the cell number of Eca-109 cells...
MA et al: IL-24 PROTEIN INHIBITS THE PROLIFERATION OF Eca-109 CELLS

Figure 3. rhIL-24 protein kills Eca-109 cells and activates STAT3 which may be related with the IL-20 receptor pathway. (A) The suppressive effects of rhIL-24 protein on Eca-109 and A375 cells were neutralized by anti-IL-24 or anti-IL-20R antibodies. Eca-109 and A375 cells were treated with 20 ng/ml rhIL-24 plus 200 ng/ml of the various antibodies (anti-IL-24 antibody, AF1965 and MAB1965; anti-IL-20 receptor antibody, IL-20R1, IL-20R2 or IL-22R1) as indicated for 4 days. Cell viability was evaluated using a standard MTT assay. The numbers represent the ratio of the specific treatments indicated vs. control cells; the columns indicate the average of three independent experiments (n=3) (**p<0.01 and *p<0.05). (B) STAT3 was activated by purified srhIL-24 protein. A375 and Eca-109 cells were treated with 20 ng/ml srhIL-24 for 1 and 4 h, respectively, and pSTAT3 and STAT3 were analyzed using anti-pSTAT3 and anti-STAT3 antibodies by western blotting. Cells treated with PBS served as a control, and tubulin as the internal standard.

to induce tumors in nude mice. After 5-7 days following s.c. injection of 5x10⁶ Eca-109 cells into nude mice, the tumors reached 50-100 mm³, which was more rapid than the animals that received 1x10⁶ or 2x10⁶ cells (data not shown). At the same time, we verified whether parental FCHO cells and gene engineered FCHO/IL-24 cells could induce tumors in nude mice. Injection of 1x10⁶ or 2x10⁶ of FCHO or FCHO/IL-24 cells alone for 30 days did not induce tumors in the nude mice (data not shown). Then, the animals in the experimental group were injected s.c. with a total of 7x10⁶ cells containing a mixture of Eca-109 and FCHO/IL-24 cells (2.5:1 ratio). For animals in the control group, Eca-109 and FCHO cells were mixed and injected s.c. as described above. After 30 days, the growth of tumors was significantly suppressed by 67% (mean value) in the animals of the experimental group compared with the control group (Fig. 4A; p<0.05). There was no significant differences in the tumor cell mitotic index or tissue infiltration and tumor cell proliferative index between the two group as determined by H&E and PCNA staining, respectively (Fig. 4B and C). However, less vascularization as determined by CD34 staining was detected in tumor tissues of the experimental group than that noted in the control group (Fig. 4D and E; p<0.01). The reduction in CD34 staining indicated that secreted rhIL-24 inhibited angiogenesis in the tumor tissues of nude mice. Compared with tumor tissues of the control group, a higher number of TUNEL-positive stained cells were observed in tumor cells of the experimental group (Fig. 4F and G; p<0.01). Immunohistochemical analysis with an anti-IL-24 antibody in the tumor sections of the experimental group demonstrated IL-24 protein expression (Fig. 4H). In contrast, IL-24 was not detected in the tumor sections of the control group. Finally, we ascertained whether the growth of formed tumor xenografts could be inhibited by rhIL-24 protein secreted by FCHO/IL-24 cells. When the tumors reached 50-100 mm³ following s.c. injection of Eca-109 cells (5x10⁶) in the lower right flank of nude mice, 2x10⁶ FCHO/IL-24 cells resuspended in Matrigel
were injected s.c. in the upper right flank of the experimental group animals. The animals of the control group received the same number of FCHO cells resuspended in Matrigel at the same site. The day of implantation of FCHO or FCHO/IL-24 cells was recorded as the first day and tumor volume was measured as described above. Compared with the tumors of the control group, the growth of Eca-109 tumor xenografts in the experimental group was significantly inhibited by 29% (mean value) (Fig. 5A; p<0.05) after 30 days. Similar to the findings described above, there was no significant difference in staining by the H&E or anti-Ki-67 antibody in the tumor tissues between the two groups (Fig. 5B and C). In addition, the tumor tissues of the experimental group showed significantly less CD34-positive staining (Fig. 5D and E; **p<0.01) and more TUNEL-positive staining (Fig. 5F and G; **p<0.01) than that of the control group. The IL-24 protein was expressed in the tumor sections of the experimental group, but not in the tumor sections of the control group. Arrows denote tumor cells expressing IL-24 protein.
results demonstrated that srhIL-24 inhibited tumor growth by reducing angiogenesis and inducing apoptosis in vivo.

Discussion
Since 1995, numerous publications have shown that IL-24 selectively kills a large variety of cancer cells in vivo and in vitro and leaves healthy cells unharmed. Due to the lack of post-translational modification, particularly glycosylation, rhIL-24 protein expressed from E. coli plays a role at very high concentrations (µg/ml) (25), or has no activity (26) on tumor cells. In contrast, rhIL-24 from mammalian cells plays an antitumor role at a substantially lower concentration (ng/ml) (17,23), but the expression level is lower. At present, there are several reported methods to prepare rhIL-24 from mammalian cells, such as overexpression of plasmid pCEP4-IL-24 in HEK293 cells (7,16,27) and infection of immortal normal human (14,19) or tumor cells (13) with Ad-IL-24. In the present study, we aimed to improve the expression level of srhIL-24 protein using a site-specific
rhIL-24 protein did not have any biological effect similar to other studies (13,14,23,27). In contrast to Ad-IL-24, a dose-dependent manner. The concentration of srhIL-24 was formation (1-50 ng/ml) and induced apoptosis (1-40 ng/ml) in Eca-109 cells. srhIL-24 inhibited the growth and colony differentiation, growth and progression. Oncogene 11:2477-2486, 1995.

Acknowledgements

The present study was supported by the Beijing Natural Science Foundation (grant no. 7142117) to Q.F. Ma and the National High Technology Research and Development Program of China (863 Program, grant no. 2014AA021605) to Z.L. Wang.

References

in vitro

