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Abstract. In association studies, the combined effects of single 
nucleotide polymorphism (SNP)-SNP interactions and the 
problem of imbalanced data between cases and controls are 
frequently ignored. In the present study, we used an improved 
multifactor dimensionality reduction (MDR) approach namely 
MDR-ER to detect the high order SNP-SNP interaction in an 
imbalanced breast cancer data set containing seven SNPs of 
chemokine CXCL12/CXCR4 pathway genes. Most individual 
SNPs were not significantly associated with breast cancer. 
After MDR‑ER analysis, six significant SNP‑SNP interaction 
models with seven genes (highest cross-validation consistency, 
10; classification error rates, 41.3‑21.0; and prediction error 
rates, 47.4‑55.3) were identified. CD4 and VEGFA genes were 
associated in a 2‑loci interaction model (classification error rate, 
41.3; prediction error rate, 47.5; odds ratio (OR), 2.069; 95% 
bootstrap CI, 1.40-2.90; P=1.71E-04) and it also appeared in all 
the best 2-7-loci models. When the loci number increased, the 

classification error rates and P‑values decreased. The powers in 
2‑7‑loci in all models were >0.9. The minimum classification 
error rate of the MDR-ER-generated model was shown with 
the 7-loci interaction model (classification error rate, 21.0; 
OR=15.282; 95% bootstrap CI, 9.54-23.87; P=4.03E-31). In the 
epistasis network analysis, the overall effect with breast cancer 
susceptibility was identified and the SNP order of impact 
on breast cancer was identified as follows: CD4 = VEGFA > 
KITLG > CXCL12 > CCR7 = MMP2 > CXCR4. In conclusion, 
the MDR-ER can effectively and correctly identify the best 
SNP-SNP interaction models in an imbalanced data set for 
breast cancer cases.

Introduction

Breast cancer is the most commonly occurring malig-
nant disease in women. The effective identification and 
screening of biomarkers for breast cancer prediction may 
reduce the occurrence of breast cancer (1). Single nucleotide 
polymorphisms (SNPs), the most abundant variants of the 
human genome (2), have become significant biomarkers for 
personalized medicine and the recognition of disease/cancer 
susceptibility (3-5).

Chemokines play a vital role in carcinogenesis (6,7). 
The representative chemokines are the chemokine ligand 
CXCL12 also known as stromal cell-derived factor-1 (SDF-1) 
and its receptor CXC chemokine receptor 4 (CXCR4) which 
are two main cross-talking factors in tumor microenviron-
ments such as breast carcinogenesis (8). Moreover, the 
evidence of possible crosstalk between CXCL12, vascular 
endothelial growth factor (VEGF) (9), matrix metallopro-
teinase 2 (MMP2) (10), soluble KIT ligands (KITLG) (11), 
CXCR4, T-cell antigen T4/LEU3 (CD4) (12), and CC-chemokine 
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receptor 7 (CCR7) (13) are supported by the prediction of 
protein-protein interaction software (STRING 9) (14) and 
previously discussed (15). Therefore, the relationship between 
SNPs for these CXCL12/CXCR4-related genes warrants inves-
tigation.

although many disease/cancer-associated SNPs have 
been reported, the impact of more rare or non-significant 
SNPs is underestimated and this may partly contribute to 
ʻmissing heritability’ (16). Lack of a detailed inspection of 
gene-gene (SNP-SNP) interactions is one of the most common 
reasons of ̒ missing heritability’ effects (17). For example, several 
SNPs were reported to be unassociated with diseases and cancers 
without considering the SNP-SNP interaction (18-20). Recently, 
the analyses of gene-gene interactions in association studies 
have been developed in terms of SNP-SNP interactions (21-30). 
alternatively, a multifactor dimensionality reduction (MDR) is a 
data mining technique to provide a non-linear model associated 
with disease (31). It introduces a strategy with data reduction to 
identify both high- and low-disease risk associated multiple SNP 
genotype combinations for SNP-SNP interactions. Biologically 
meaningful results can be detected without a big sample popula-
tion because MDR uses a k-fold cross-validation (CV). The CV 
can be regarded as a replication data set technique. The advan-
tage of CV over the repeated random sub-sampling is that all 
samples are used for training and each sample is used only once 
for validation. Moreover, MDR has been successfully applied to 
identify SNP-SNP interactions in various diseases, e.g., atrial 
fibrillation (32) and coronary artery disease (33). However, 
MDR cannot quantitatively evaluate the disease susceptibility of 
genotype combinations (34). Recently, improved MDR methods 
such as MDR-ER (35) and weighted risk score-based MDR (34) 
were developed to solve this problem. Moreover, MDR-ER 
introduces two functions to improve the classification step and 
an evaluation of error rate in MDR, and it can be applied to the 
data set of imbalanced numbers of cases and controls.

In our previous investigation (15), we focused on the deter-
mination of SNP genotypes of seven SNPs of CXCL12-related 
genes in terms of PCR-restriction fragment length poly-
morphism (RFLP) analysis for cases and controls. The SNP 
barcode method was used to investigate the association of 
potentially combined SNP genotypes of CXCL12-related 
genes. A significant number of genotype combinations of the 
selected SNPs were reported to be protective against breast 
cancer and a low risk population of breast cancer patients with 
these specific combinations was identified. However, their 
possible SNP-SNP interactions were less investigated (15). 
This would be important especially for the understanding of 
a multifactorial interaction in the risk assessment of breast 
cancer.

In this study, we used the MDR-ER strategy to identify 
the best breast cancer-associated model for seven SNPs in 
SNP-SNP interaction of CXCL12/CXCR4-related genes, 
including CXCL12 (rs1801157, G801a), CXCR4 (rs2228014, 
I142I), VEGF (rs3025039, C936T, 3'-untranslated region), 
KITLG (rs10506957, intron 1), MMP2 (rs2287074), CD4 
(rs12812942, intron 3), and CCR7 (rs3136685, intron 1) which 
have been reported in several non-MDR disease association 
studies (15,36-38). The results show that MDR-ER may effec-
tively identify the significant SNP‑SNP interaction models of 
breast cancer susceptibility for imbalanced data sets.

Materials and methods

MDR. MDR is a model-free and non-parametric method 
for the detection of complex disease/cancer-associated 
gene-gene (SNP-SNP) interactions (31). The principle of MDR 
is accomplished by classification to reduce more attributes 
(loci) into a single attribute (locus). Thus, high-order SNP-SNP 
interactions can be detected statistically where the data space 
is transformed into a two-way contingency table.

The MDR procedure is illustrated in Fig. 1. N SNPs are 
considered in a case-control data set, and M is the maximum 
order of SNP-SNP interactions we want to explore, i.e., M≤N. 
Let m be the number of order SNP-SNP interactions (m≤M). 
The procedures to perform the MDR for detecting the best 
m-way SNP-SNP interaction model are explained in two parts 
as follows:

1. Run k-fold (usually k=10) cross-validation (CV) to detect the 
best m-way interaction (SNP-SNP interaction) model. For each 
CV fold, steps 1-7 are repeated successively:

Step 1. Select a ith part data set for the test data set and the 
remaining as the training data set.

Step 2. The pool of all SNPs consists of a set of m SNPs.
Step 3. m SNPs and their possible multifactor cells are 

presented in m-dimensional space (label 3, Fig. 1):
Equation 1 shows the possible multifactor cells 

in the m-dimensional space:

The value of m is dependent on the number of considerable 
factors. Subsequently, a set of m genetic and/or environmental 
factors is chosen.

Step 4. Each multifactor cell is labelled as high-risk when 
the case/control ratio is higher than or equal to the threshold T 
(T=1), otherwise the cell is labelled as a low-risk.

The total number of cases and controls are respectively 
counted in the multifactor cell, and the case/control ratio is 
calculated by Equation 2.

where

where P is the case data set; N, the control data set; P*, the 
number of case groups in a training set; N*, the number of 
control groups in a training set; L, a vector of variable combina-
tions. The function u() determines a score of 1̒’ if all elements l 
in L match the cases or controls; otherwise given a score of ʻ0’.

The high/low risk in each multifactor cell is determined. 
Each multifactor cell is labelled as ʻH’ or ʻL’ symbol. Label 
ʻH’ indicates that ratio in the multifactor cell meets or 
exceeds a threshold (high-risk group); otherwise, the label is 
ʻL’ (low‑risk group). The threshold is equal to the one in a 
balanced data set.

Step 5. Repeat steps 2-5 until all possible sets of m SNPs 
are evaluated.

L = {l1, l2, l3, ..., lm}                            (1)
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Step 6. Evaluate all possible combinations of m SNPs, 
build contingency tables, and correspondingly get

training error rates. The model with the minimum training 
error rate (classification error rate) is selected in each CV, and 
the prediction error rate of the model is evaluated using the 
independent test data set.

Step 4 reduces the possible combinations in n-loci into 
a two-way contingency table [true positive (TP), false posi-
tive (FP), true negative (TN), and false negative (FN)]. TP 
is the total number of labeled ʻH’ in the case data. FP is the 
total number of labeled ʻH’ in the control data. FN is the total 
number of labeled ʻL’ in the case data. TN is the total number 
of labeled ʻL’ in the control data. Thus, statistical analysis can 
be used to evaluate the n-loci effect. Equation 3 is used to eval-
uate model classification error rate and prediction error rate.

where C is the possible combination of m SNPs.
Step 7. Repeat steps 1-7 until k=10.

2. Collect CV to create cross-validation consistency (CVC) and 
select the highest frequency with CVC as the best SNP-SNP 
interaction models. The classification error rate of the best 
model is calculated as the averaged classification error rates in 
those CVC included k models, and the prediction error rate is 
calculated as the averaged prediction error rates in those CVC 
included k models.

After classification error rate evaluates all the possible 
SNP-SNP interaction models, the model with minimum error 
rate is regarded as the best SNP-SNP interaction model of 
training data at ith-fold CV. This best SNP-SNP interaction 
model is then evaluated by testing the data for evaluating 
the prediction error rate. Thus, the aforementioned steps 1-7 
are repeated in each fold CV. The best SNP-SNP interaction 
model with a minimum classification error rate is chosen at 

each CV, and the ten best SNP-SNP interaction models of 
ten‑fold CV are classified by the same model. The number of 
best models in a classified group are counted and named CVC. 
Finally, a nSNP-SNP interaction model of CVC with highest 
occurrence frequency results is regarded as the best model. If 
the equal frequency of CVC occurs in two or more models, 
then the model found first is the best SNP‑SNP interaction 
model. The classification error rate of the final selected best 
model is calculated from averaged k classification error rates 
of models included in highest frequency with CVC.

Improved MDR for an imbalanced data set (MDR‑ER). 
MDR-ER was proposed previously (35). MDR-ER introduced 
the percentage concept to improve Equations 2 and 3 for imbal-
anced data. Equation 2 of MDR is modified as Equation 4 which 
evaluates the ratio of the percentages of cases and controls.

where

where P is the case data set; N, the control data set; P*, the 
number of case groups in a training set; N*, the number of 
control groups in a training set; L, a vector of variable combi-
nations.

The function u() determines a score of ʻ1’ if all elements l 
in L match the cases or controls; otherwise it is given a score 
of ʻ0’. As in the classification of MDR, label ʻH’ is the ratio 
in the multifactor cell meeting or exceeding a threshold (=1); 
otherwise the label is ʻL’.

MDR-ER modifies the classification/prediction error 
rate function of MDR (Equation 3). Equation 5 is the 
adjusted classification/prediction error rate function based 

Figure 1. MDR flowchart.
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on the arithmetic mean of sensitivity and specificity. The 
adjusted classification/prediction error rate is algebraically 
identical to the error rate if the case and the control data 
sets are imbalanced.

where TP is the total number of labeled ʻH’ in the case data; 
FP, the total number of labeled ʻH’ in the control data; FN, 
the total number of labeled ʻL’ in the case data; TN, the total 
number of labeled ʻL’ in the control data.

Statistical analyses. Statistical analyses were evaluated by the 
two-way contingency table and its TP, FP, TN, and FN values 
were respective averages of TP, FP, TN, and FN in that CVC 
included the best SNP-SNP interaction models in the training 
models. The disease risks of SNPs were evaluated by SPSS 
version 19.0 (SPSS, Inc., Chicago, IL, USa), including the 
odds ratio (OR) or the bootstrap OR and its 95% confidence 
interval (CI). P‑values were used to define significant differ-
ences between the cases and the controls. The Power and 
Sample Size Calculations (PS) tool (39) was used to evaluate 
the power with statistical analysis. The Power can determine 
the null hypothesis (OR=1) with Type I error probability α 
(=0.05), i.e., the probability of rejecting the OR=1.

Results

Data set. a breast cancer data set containing breast cancer 
patients (n=220) and normal controls (n=334) was obtained from 
our previous study (15). The genotype information is available 
at http://bioinfo.kmu.edu.tw/brca-7SNP_all_BPSO.xls. Seven 
SNPs of CXCL12-related genes were included, such as CD4 
(rs12812942), CCR7 (rs3136685), CXCR4 (rs2228014), CXCL12 
(rs1801157), VEGFA (rs3025039), MMP2 (rs2287074), and 
KITLG (rs10506957). However, the data mining strategy-based 
SNP-SNP interaction was not addressed. In the present study, 
we applied the MDR-ER to detect the best SNP-SNP interac-
tion model with a significant difference between breast cancer 
(cases) and normal (controls) groups.

Single SNP analysis. Table I shows the OR, bootstrap OR and 
its 95% CI of each single SNP in the breast cancer associa-
tion. The distribution of genotypes for most SNPs showed no 
significant difference between the case and the control groups.

SNP‑SNP interaction analysis ‑ the determination of the 
best model in CVC. although many 2-loci models exist, 
only the significant 2‑loci SNP‑SNP interaction models are 
provided in Table Ⅱ. The best model in CVC was defined by 
the model which has the minimum classification error rate. 

Table I. The performance of eight individual SNPs for the case and the control groups.

  Cases Controls   
  (n=220) (n=334)  Bootstrap Bootstrap
Locus Genotypes n (%) n (%) Odds ratioa odds ratiob 95% CIc

CD4 gene rs12812942 aa 128 (58.2) 174 (52.1)   
 aT 76 (34.5) 141 (42.2) 0.733 0.746 (0.521, 1.064)
 TT 16 (7.3) 19 (5.7) 1.145 1.228 (0.540, 2.361)
CCR7 gene rs3136685 GG 77 (35.0) 107 (32.0)   
 Ga 114 (51.8) 180 (53.9) 0.880 0.897 (0.590, 1.293)
 aa 29 (13.2) 47 (14.1) 0.857 0.887 (0.474, 1.464)
CXCR4 gene rs2228014 CC 151 (68.6) 254 (76.0)   
 CT 63 (28.6) 73 (21.9) 1.452 1.451 (0.863, 2.137)
 TT 6 (2.7) 7 (2.1) 1.442 1.790 (0.369, 5.641)
CXCL12 gene rs1801157 GG 106 (48.2) 175 (52.4)   
 Ga 98 (44.5) 136 (40.7) 1.190 1.209 (0.818, 1.669)
 aa 16 (7.3) 23 (6.9) 1.148 1.198 (0.534, 2.216)
VEGFA gene rs3025039 CC 155 (70.5) 211 (63.2)   
 CT 59 (26.8) 117 (35.0) 0.686 0.680 (0.438, 0.976)
 TT 6 (2.7) 6 (1.8) 1.361 1.626 (0.340, 4.889)
MMP2 gene rs2287074 GG 113 (51.4) 164 (49.1)   
 Ga 93 (42.3) 139 (41.6) 0.971 0.976 (0.677, 1.392)
 aa 14 (6.4) 31 (9.3) 0.655 0.676 (0.293, 1.278)
KITLG gene rs10506957 TT 133 (60.5) 182 (54.5)   
 TC 69 (31.4) 133 (39.8) 0.710 0.721 (0.475, 1.037)
 CC 18 (8.2) 19 (5.7) 1.296 1.390 (0.608, 2.645)

aData from our previous results (15). bBootstrap odds ratio: odds ratio is adjusted by deviation which is calculated by bootstrap results based on 
1,000 bootstrap samples. cBootstrap results are based on 1,000 bootstrap samples.
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among 2-loci SNP-SNP interaction models, the minimum 
classification error of the best 2‑loci model (CD4 + VEGFA) 
in CVC is 0.413. Fig. 2 shows the details of the 2-loci inter-
action (CD4 + VEGFA) based on a MDR-ER method in a 
breast cancer study. The percentages of genotypes for the 
CD4 and the VEGFA genes in the cases and the controls are 
shown (Fig. 2a). Cells with a SNP combination of higher risk 
of breast cancer are marked with a gray background, i.e., the 
percentages of the cases were higher than those of the controls. 
Fig. 2B provides the ratios of each 2-loci SNP-SNP interac-
tion. SNP combinations of breast cancer risk (OR>1) are 
identified (marked in gray colors). Fig. 2C shows that genotype 
effects (CC, CT, and TT) of the VEGFA gene were not addi-
tive to the genotypes (aa, aT, and TT) of the CD4 gene - it 
indicates an interaction between these two genes. Similarly, all 

the best models in CVC in terms of 3-7-loci SNP-SNP inter-
action models were selected (see details in Table Ⅲ). In the 
4-loci SNP-SNP interaction, the interactions (CD4 + CCR7 + 
VEGFA + KITLG), (CD4 + VEGFA + MMP2 + KITLG), and 
(CD4 + CXCL12 + VEGFA + KITLG) had an equal frequency 
in CVC, indicating that they have the same importance in 
breast cancer. Table Ⅲ shows the first identified model, i.e., 
CD4 + CXCL12 + VEGFA + KITLG.

SNP‑SNP interaction analysis ‑ error rates. Table Ⅲ shows the 
best 2-7-loci SNP-SNP interaction models using MDR-ER anal-
ysis. When the loci number was increased, the best SNP-SNP 
interaction training models showed higher consistency of 
breast cancer and lower classification error rates (ranging from 
41.3 to 21.0). The prediction error rates of the best SNP-SNP 

Table Ⅱ. 2‑Loci SNP‑SNP interactions among seven SNPs assessed by MDR‑ERa.

2-Loci Odds ratio (95% CI) Bootstrap 95% CI P-value Error rate

CD4 + CCR7 1.519 (1.04, 2.23) (1.04, 2.25) 0.032 0.454
CD4 + CXCR4 1.549 (1.06, 2.26) (1.07, 2.27) 0.022 0.449
CD4 + VEGFA 2.069 (1.44, 2.98) (1.40, 2.90) 1.71E-04 0.413
CD4 + KITLG 2.000 (1.28, 3.14) (1.24, 3.24) 0.002 0.441
CCR7 + VEGFA 1.537 (1.06, 2.24) (1.06, 2.27) 0.025 0.450
CCR7 + KITLG 1.491 (1.04, 2.14) (1.04, 2.25) 0.027 0.452
CXCR4 + CXCL12 1.520 (1.05, 2.21) (1.05, 2.17) 0.005 0.451
CXCR4 + VEGFA 1.714 (1.14, 2.57) (1.03, 2.54) 0.009 0.448
CXCR4 + KITLG 1.781 (1.19, 2.67) (1.19, 2.74) 0.005 0.440
CXCL12 + KITLG 1.506 (1.05, 2.17) (1.04, 2.18) 0.027 0.449
VEGFA + MMP2 1.537 (1.05, 2.24) (1.07, 2.23) 0.026 0.450
VEGFA + KITLG 1.732 (1.21, 2.49) (1.19, 2.44) 0.003 0.432
MMP2 + KITLG 1.808 (1.25, 2.62) (1.28, 2.67) 0.002 0.430

aAll 2‑loci SNP‑SNP interactions with significant testing accuracy were identified by the MDR‑ER method. The minimum error rate is marked 
in bold type.

Figure 2. The best 2-loci interactions are analyzed by MDR-ER. The SNP-SNP interaction between CD4 and VEGFA genes was used as an example. (a) The 
joint distribution of the genotypes of the CD4 and VEGFA genes. High- and low-risks are expressed under the grey and white backgrounds, respectively. The 
left bar (black color) in a cell represents the frequency of counting cases and the right bar (white color) represents the frequency of counting controls. (B) The 
ratio between the cases and the controls in each cell. The gray and white bars represent the high- and low-risks, respectively. (C) The deviation with pattern of 
the odds ratio from two-way interaction models. The reference for the odds ratio is the combination of the major genotypes of these two genes.
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interaction training models in 2-7-loci are the region between 
47.4 and 55.3. The 7‑loci model shows a minimum classifica-
tion error rate of 21.0% and the 3-loci model shows a minimum 
prediction error rate of 47.4, which are observed by chance in 
randomized data based on the null hypothesis of no association. 
In addition, the frequency differences between the case and the 
control groups of the best MDR-ER-generated 2-7-loci models 
were significant (P<0.01). The 2‑7‑loci models suggest that all 
SNPs of CD4, CCR7, CXCR4, CXCL12, VEGFA, MMP2, and 
KITLG genes are associated with breast cancer.

SNP‑SNP interaction analysis ‑ OR, P‑value, and power anal‑
ysis. In Table Ⅲ, the OR values in the 2‑7‑loci models were 
increased from 2.069 to 15.282 and the 95% CI was 1.44-24.14. 
The bootstrapping in 1,000 samples with the adjustments 
of 95% CI of OR (95% bootstrap CI) values were adjusted 
from 1.40 to 23.87 for the 2-7-loci models. The P-values of 
the 2-7-loci models decreased from 1.71E-04 to 4.03E-31. The 
P-values were decreased and 95% bootstrap CI values were 
increased when the loci numbers increased, indicating that 
the risk for breast cancer was increased by a combined effect 
of SNPs. In the example of the 7-loci SNP-SNP interaction 
model, the power analysis in the case data set showed that the 
probability of exposure among controls was 0.231 (77/334, 77 
is FP). The powers in the 2-7-loci, ranging from 0.978 to 1.000, 
showed that occurrence probability in all models was >0.9. 
These findings suggest that all these seven SNPs are highly 
associated with breast cancer.

SNP‑SNP interaction analysis ‑ SNP‑SNP interaction 
network. Fig. 3 shows an SNP-SNP interaction network of 
a 7-loci SNP-SNP interaction model associated with breast 
cancer susceptibility. The epistasis networks were constructed 
by integrating 13 significant 2-loci SNP-SNP interaction 
models (Table Ⅱ) where the non‑significant interactions are 
not shown. The susceptibility to breast cancer can be explained 

by showing the details of a two-factor interaction based on the 
MDR-ER method in the example of CD4 + VEGFA (Fig. 2) 
as well as other two-factor interactions (data not shown). 
In Fig. 3, genes (SNPs) involved in one or more significant 
interactions are represented as nodes, and the pairs of genes 
(SNPs) with significant interactions are connected by lines. 
Each line is labeled with the corresponding OR value and the 
thickness of the lines represent the stronger OR values. Thus, 
Fig. 3 can clearly illustrate how combined effects are associ-
ated with SNP (genes) to generate the overall effect.

Discussion

Many breast cancer studies have reported several breast 
cancer-associated genes, including CD4 (15), CCR7 (13,15), 
CXCR4 (15), CXCL12 (36,40), VEGF (41), and MMP2 (10). 
In the individual SNP analysis (Table I), only the SNP of the 
VEGFA gene was found to be breast cancer-associated but 
it was still not significant after Bonferroni's correction. In 
general, these rare and non‑significant SNPs are commonly 
ignored and we propose that they may partly solve the problem 
of missing heritability. However, epistasis of rare SNPs is 
not the only way to address missing heritability of common 
complex traits. Without the help of computation, rare SNPs 
could hardly explain missing heritability in asthma (42). 
To improve the sensitivity of association, these hitherto 
non‑significant SNPs were further combined and the possible 
combined effects associated with breast cancer were exam-
ined in this study. Likewise, some SNPs may have additive 
SNP-SNP interactions or non-additive effects for genomic 
monitoring and prediction of complex traits (43).

Based on imbalanced cases and controls, the MDR-ER 
algorithm explored six multiple SNP loci with significant asso-
ciations with breast cancer in terms of the 2-7-loci with OR 
values (Table Ⅲ). If the true OR of the best model for breast 
cancer in exposed subjects relative to unexposed subjects is 

Table Ⅲ. Analysis results of the best 2‑ to 7‑loci SNP‑SNP interaction models using MDR‑ER.

Loci number  Classification Prediction  OR Bootstrap 
(gene combination) Consistency error (%) error (%) Power (95% CI) 95% CI P-value

2-Loci (CD4, VEGFA) 8/10 41.3 47.5 0.978 2.069 (1.44, 2.98) (1.40, 2.90) 1.71E-04
3-Loci (CD4, VEGFA, 8/10 39.1 47.4 1.000 2.652 (1.81, 3.90) (1.75, 3.77) 1.58E-06
KITLG)       
4-Loci (CD4, CXCL12, 2/10 35.8 52.5 1.000 3.318 (2.27, 4.86) (2.22, 4.74) 1.36E-09
VEGFA, KITLG)       
5-Loci (CD4, CCR7, 8/10 31.1 47.8 1.000 5.008 (3.38, 7.42) (3.40, 7.46) 8.47E-16
VEGFA, MMP2, KITLG)       
6-Loci (CD4, CCR7,  9/10 25.6 52.2 1.000 8.900 (5.82, 13.61) (5.69, 13.29) 1.54E-23
CXCL12, VEGFA, MMP2,       
KITLG)
7-Loci (CD4, CCR7, CXCR4, 10/10 21.0 55.3 1.000 15.282 (9.67, 24.14) (9.54, 23.87) 4.03E-31
CXCL12, VEGFA, MMP2,       
KITLG)       

aBootstrap results are based on 1,000 bootstrap samples.
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15.282 (OR value of 7-loci SNP-SNP interaction model), we 
can reject the null hypothesis that OR=1 with the probability 
(power) 1.000. The type I error probability associated with 
the test of this null hypothesis was 0.05. Furthermore, the OR 
values in the 2-7-loci showed a gradual increase, suggesting 
that all genes (SNPs) in the 2-7-loci were additive and highly 
associated with breast cancer.

The key evaluations in MDR‑ER represent a classification 
error rate and prediction error rate which aim to correctly 
evaluate the proportion of an incorrect prediction. The incor-
rect prediction error in MDR-ER is a measurement for internal 

validation that avoids finding an association by chance in the 
test sample. When the error rate is <50%, the associations by 
chance are significantly reduced. Thus, in Table Ⅲ, the 4‑, 
6- and 7-loci results (prediction error rates >50%) cannot be 
considered as the predictive models. While the 2-, 3- and 5-loci 
results showed prediction error rates ~47%, and the 3-loci had 
the lowest prediction error rate. Therefore, these MDR-ER 
generated SNP-SNP interaction models are very effective 
for classification of the disease risk, and suggest that SNP 
combination of CD4, VEGFA, and KITLG genes provide the 
best predictive models. Moreover, a SNP combination of CD4 

Figure 3. SNP-SNP interaction network. The epistasis networks of 7-loci models for SNP-SNP interaction were found to be associated with breast cancer. 
Significant SNP‑SNP interactions (P<0.05) in these multi‑foci models are connected by lines, and the strength of interaction is labeled with OR values. The 
thicker and thinner lines represent the higher and lower interactions, respectively.

Figure 4. Comparison difference between MDR and MDR-ER in the imbalanced data set using the 2-loci SNP-SNP interaction. (a and B) The numbers of 
high- and low-risk groups in the algorithm implementation, respectively. The distribution differences between the numbers of high- and low-risk groups are 
shown. (C and D) The frequencies of TP and TN, and the classification error rate in algorithm implementation, respectively. The left and right scales of the 
vertical axis show the log10 value for the total numbers of TP and TN, and the classification error rate, respectively. The top solid line in (C) indicates the 
adjusted error rate based on Equation 5. The horizontal axis indicates the 100 models of the 2-loci SNP-SNP interaction. all models are sorted by the clas-
sification error rate and selected by systematic sampling.
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and VEGFA genes is included in all the best 2-7 loci models, 
suggesting that it is really driving the associations in breast 
cancer.

For example in Fig. 3, CXCL12 was only significantly 
associated with CXCR4 and KITLG (OR=1.520 and 1.506, 
respectively) but it had an overall effect by integrating KITLG 
with CD4, CCR7, VEGFA, and MMP2. all lines in Fig. 3 were 
found to connect to KITLG, indicating that all SNPs from all 
the listed genes were joined together with the SNP of KITLG 
which is the main connector of this network. The breast cancer 
associated effect of KITLG has been less mentioned previ-
ously, however, the importance of KITLG was detectable using 
a MDR-ER algorithm-based SNP-SNP interaction.

according to the performance of OR values, the CD4 
and VEGFA (2.069) were the best models in the 2-loci and 
CD4 and KITLG (2.000) were subsequently integrated with 
this best 2-loci model, where the difference was very small 
(0.069). They showed a strong interaction in breast cancer, but 
CD4 and VEGFA were more highly associated with breast 
cancer than KITLG. Thus, an order of SNPs with breast cancer 
association can be suggested as follows: CD4 = VEGFA > 
KITLG > CXCL12 > CCR7 = MMP2 > CXCR4. This combined 
effect order can detect the overall effect of the impact of a 
gene (SNP) on breast cancer. Therefore, we suggest that CD4, 
VEGFA, KITLG, CXCL12, CCR7, MMP2, and CXCR4 genes 
have an overall effect with breast cancer susceptibility.

In the 2-loci SNP-SNP interaction model, the comparison 
between MDR and MDR-ER faced with the imbalanced data 
set are shown in Fig. 4. When using MDR, the large number of 
the group (either the cases or the controls) of the imbalanced 
data set can affect the high‑ or low‑risk classification and the 
evaluation for classification error rate compared to that of 
MDR-ER. Using MDR analysis in the present study (220 cases 
and 334 controls), the number of low-risk groups was greater 
than the high-risk groups in 100 selected models (Fig. 4a). 
MDR‑based classification error rates were 0.37‑0.4 and TPs 
were always higher than TNs (Fig. 4C). However, the averages 
of sensitivity and specificity in the 100 models were 0.07 and 
0.96, respectively. This result suggests that this low classifica-
tion error rate and high OR value using MDR are generated by 
its high TN but low TP values implying a low sensitivity for 
disease detection.

In contrast, MDR-ER showed balanced frequencies 
between the numbers of high- and low-risk groups in each 
model (Fig. 4B). Its TN values were not always higher than its 
TP values and classification error rates were also improved in 
MDR‑ER (Fig. 4D). The averages of sensitivity and specificity in 
the 100 models using MDR-ER were 0.589-0.511, respectively.

MDR-ER is designed to combine two improved functions to 
measure the low- and high-risk groups and it evaluates the clas-
sification error to select the best model. Thus, MDR‑ER allows 
for gene-gene interaction detection studies on imbalanced 
data sets without the balanced study population technologies. 
Moreover, MDR-ER holds the original MDR characteristics, 
including a non-parametric method and assumes no particular 
genetic model. Therefore, it can provide strong detecting ability 
to imbalanced data sets for analyzing the possible gene-gene 
and gene-environment interactions. When imbalanced data 
sets are used, MDR-ER has several advantages which are as 
follows: i) MDR‑ER improves the classification function to 

effectively classify cells into low- and high-risk groups; thus 
the number of TPs can be increased; ⅱ) the final best model 
has a low error rate and a high sensitivity for disease predic-
tion; ⅲ) MDR‑ER only adjusts and improves two formulas 
and therefore the number of procedures and parameters are 
not increased; and ⅳ) MDR‑ER is based on the quantitative 
value of the ratios representing better classifications results.

The MDR and MDR-ER can be limited by the overall 
running time due to the rapidly growing total number of SNP 
combinations when the number of SNPs, order, and sample 
size are increased. Substantial time requirements may limit the 
multiple tests in finding more complex interactions between 
genes related to diseases.

In conclusion, we demonstrated that MDR-ER can effec-
tively and correctly identify the best SNP-SNP interaction 
models in an imbalanced data set. The joint effect of SNP-SNP 
interactions of chemokine CXCL12/CXCR4 pathway genes in 
breast cancer susceptibility was also identified. MDR‑ER has  
potential to apply to many other associated studies with imbal-
anced data sets.
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