Mismatch repair gene mutation spectrum in the Swedish Lynch syndrome population

KRISTINA LAGERSTEDT-ROBINSON¹, ANNA ROHLIN^{2,3}, CHRISTOS ARAVIDIS⁴, BEATRICE MELIN⁵, MARGARETA NORDLING^{2,3}, MARIE STENMARK-ASKMALM^{6,9}, ANNIKA LINDBLOM¹ and MEF NILBERT^{7,8}

 ¹Department of Molecular Medicine and Surgery, Karolinska Institute and Department of Clinical Genetics, Karolinska University Hospital, Solna, SE-17176 Stockholm; ²Department of Clinical Pathology and Genetics, Sahlgrenska University Hospital, SE-41345 Gothenburg; ³Department of Clinical Genetics, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, SE-40530 Gothenburg; ⁴Department of Immunology, Genetics and Pathology, Uppsala University, SE-75185 Uppsala; ⁵Department of Radiation Sciences, Division of Oncology, Umeå University, SE-90187 Umeå; ⁶Department of Oncology, Linköping University, SE-58183 Linköping;
 ⁷Department of Clinical Sciences, Division of Oncology and Pathology, Lund University, SE-22381 Lund, Sweden; ⁸Clinical Research Centre, Hvidovre Hospital, Copenhagen University, DK-2650 Hvidovre, Denmark

Received April 15, 2016; Accepted May 31, 2016

DOI: 10.3892/or.2016.5060

Abstract. Lynch syndrome caused by constitutional mismatch-repair defects is one of the most common hereditary cancer syndromes with a high risk for colorectal, endometrial, ovarian and urothelial cancer. Lynch syndrome is caused by mutations in the mismatch repair (MMR) genes i.e., MLH1, MSH2, MSH6 and PMS2. After 20 years of genetic counseling and genetic testing for Lynch syndrome, we have compiled the mutation spectrum in Sweden with the aim to provide a population-based perspective on the contribution from the different MMR genes, the various types of mutations and the influence from founder mutations. Mutation data were collected on a national basis from all laboratories involved in genetic testing. Mutation analyses were performed using mainly Sanger sequencing and multiplex ligation-dependent probe amplification. A total of 201 unique disease-predisposing MMR gene mutations were identified in 369 Lynch syndrome families. These mutations affected MLH1 in 40%, MSH2 in 36%, MSH6 in 18% and PMS2 in 6% of the families. A large variety of mutations were identified with splice site mutations being the most common mutation type in MLH1 and frameshift mutations predominating in MSH2 and MSH6.

Correspondence to: Dr Kristina Lagerstedt-Robinson, Department of Clinical Genetics L5:03, Karolinska University Hospital, Solna, SE-17176 Stockholm, Sweden E-mail: kristina.lagerstedt@ki.se

Present address: ⁹Department of Clinical Genetics, Lund University Hospital, SE-22185 Lund, Sweden

Large deletions of one or several exons accounted for 21% of the mutations in MLH1 and MSH2 and 22% in PMS2, but were rare (4%) in MSH6. In 66% of the Lynch syndrome families the variants identified were private and the effect from founder mutations was limited and predominantly related to a Finnish founder mutation that accounted for 15% of the families with mutations in MLH1. In conclusion, the Swedish Lynch syndrome mutation spectrum is diverse with private MMR gene mutations in two-thirds of the families, has a significant contribution from internationally recognized mutations and a limited effect from founder mutations.

Introduction

A growing number of disease-predisposing genes are identified and contribute to the complex hereditary colorectal cancer landscape (1). An identifiable cause of cancer predisposition can be demonstrated in 5% of colorectal cancer. Lynch syndrome is the most common hereditary colorectal cancer subtype with an estimated incidence of 1/1,200-1/660 (2). Germline mismatch-repair (MMR) gene mutations give rise to two phenotypic syndromes, i.e., the autosomal dominant, adult-onset Lynch syndrome and the recessive, childhood-onset constitutional mismatch repair deficiency (CMMRD) syndrome (3). Worldwide, more than 1,300 disease-predisposing MMR gene sequence variants have been reported (4). The estimated contribution from the different MMR genes to Lynch syndrome is ~50% MLH1, ~40% MSH2 (5), 7-20% MSH6 (5-8) and <5% PMS2 (9). Mutations in the EPCAM gene, located upstream of MSH2, represent an additional cause that is estimated to contribute to 1-3% of the disease-predisposing mutations (10-12). Founder effects, i.e., mutations that are overrepresented within a geographically or ethically isolated population, have been described in several populations, such as in the different Scandinavian populations (8,13,14) and in the Ashkenazi Jewish population (15-18).

Key words: HNPCC, MLH1, MSH2, MSH6, EPCAM, hereditary colorectal cancer, Lynch syndrome

2824

Lynch syndrome is a multi-tumor syndrome and although the highest risks of cancer apply to colorectal, endometrial, ovarian and urinary tract cancer, a number of less common tumor types, such as cancer of the small bowel, brain tumors and skin tumors, have been linked to the syndrome (19). Different disease characteristics have been ascribed to mutations in the different MMR genes with a predominance of colorectal cancer in MLH1 and PMS2 mutation carriers, a high risk of extracolonic cancer in MSH2 mutation carriers and a high risk of gynecologic cancer in MSH6 mutation carriers. Compared to MLH1 and MSH2 mutation carriers, a later age at onset and a reduced penetrance has been described in MSH6 (20,21) as well as in PMS2 mutation carriers (9,22). The overall life-time risk of cancer at age 70 is estimated to be 70% (23). Age at onset is on average 20 years earlier than sporadic tumors, although the different tumor types show characteristic peak ages and phenotypes are highly variable, also within Lynch syndrome families. Identification of individuals and families with Lynch syndrome is challenging since family history has suboptimal sensitivity and the syndrome includes a broad tumor spectrum and variable penetrance and age at onset. However, reflex testing for MMR status is increasingly applied in colorectal cancer and is also discussed for endometrial cancer and will increase the likelihood of identifying individuals at increased risk in the future (24).

After 20 years of molecular diagnostics for Lynch syndrome, we compiled mutation data from the Swedish Lynch syndrome population with the aim to define the mutation spectrum, clarify the contribution from the different MMR genes, identify potential founder mutations and contribute to the world-wide data on Lynch syndrome mutations.

Patients and methods

In Sweden, general guidelines for referral of cases with suspected hereditary colorectal cancer to genetic counseling include families/individuals with three or more cases of colorectal cancer or other Lynch syndrome-associated tumors with one family member diagnosed before the age of 50 (in line with the Amsterdam criteria except for the requirement of two first-degree relatives) or a single case of colorectal cancer diagnosed before the age of 50. In addition, clinicians have referred families suspected of Lynch syndrome based on the development of Lynch syndrome-associated tumor types. Reflex testing for MMR defects in colorectal cancer has not been implemented in Swedish pathology laboratories. Targeted analysis for MMR status, typically using four-protein immunohistochemical MMR staining and/or analysis for microsatellite instability (MSI) were applied for pre-screening in most cases.

All individuals/families genetically tested and found to carry MMR gene alterations classified as disease-predisposing genetic variants or a variant of uncertain significance between January 1994 and December 2014 were eligible for the study. Mutation data were collected from the six laboratories and/or oncogenetic clinics at the University hospitals in Umeå, Uppsala, Stockholm, Linköping, Gothenburg and Lund, responsible for genetic diagnostics. The Ethics Committee at Karolinska Institutet approved the study, which followed the tenets of the Declaration of Helsinki. All patients provided oral or written informed consent for genetic diagnostics. Genetic screening of the proband/affected family member was performed using mainly Sanger DNA sequencing or massive parallel sequencing and the analyses were combined with multiplex ligation-dependent probe amplification (MLPA, P003 and P072; MRC-Holland, Amsterdam, The Netherlands) for the detection of large deletions or duplications.

All variants reported were classified at the nucleotide and protein levels according to the Human Genome Variation Society (HGVS) nomenclature (25). As reference sequences NM_000249, NM_000251, NM_000179 and NM_000535 were used. All sequence variants were then adjusted to the classification used in the InSiGHT database (http://insight-group.org/variants/database/). Variants previously not described in the InSiGHT database were, whenever possible, classified according to the InSiGHT VIC rules (4). Frequency data for certain variants were obtained from the ExAc database using the Alamut software (Alamut Visual, v. 2.7, Interactive Biosoftware, Rouen, France). Variants with a classification of 1 (benign) or 2 (likely benign) are not included (4).

Results

In Sweden, the Lynch syndrome cohort consisted of 369 families with disease-predisposing mutations. These families were found to carry mutations in MLH1 (n=149), MSH2 (n=132, including one family with a deletion of the EPCAM gene), MSH6 (n=67) and PMS2 (n=21) (Table I). The contributions from the different MMR genes were MLH1 40%, MSH2 36%, MSH6 18% and PMS2 6% (Fig. 1A). In total, 201 unique alterations were identified, including 48 missense sequence variants, 31 nonsense variants, 43 insertions/deletions, 35 splice site variants and 36 whole exon/exons deletions/duplications. Splice site alterations were the most common mutation type in MLH1, frameshift mutations predominated in MSH2 and MSH6 and missense variants were most frequent in PMS2 (Fig. 1B). Copy number variations, i.e., deletions or duplications of whole exon/exons, constituted 21% of the mutations in MLH1, 22% in MSH2 including EPCAM, 4% in MSH6 and 22% in PMS2 (Fig. 1B).

The Swedish Lynch syndrome sequence variant spectrum is broad with 133 of the 201 (66%) alterations being private, i.e., observed in a single family, 26% observed in 2-3 families, and 18 variants observed in \geq 4 families (Table II). In relation to the different genes, private mutations accounted for 46/71 *MLH1* variants, 49/76 *MSH2* variants (including the *EPCAM* deletion), 31/45 *MSH6* variants and 6/9 *PMS2* variants. Of the 201 unique variants, 137 were present in the InSiGHT LOVD with a classification made by an expert panel for 136 of these variants (4) (http://insight-group.org/variants/database/). For the remaining 64 sequence variants, 31 could, based on the predicted protein consequence from the sequence alteration, be classified as class 3-5 according to the five tier system (4).

Alterations observed in 4 or more families (Table II), i.e., recurrent alterations, included the *MLH1* sequence variations c.62C>T, c.131C>T, deletion of exon 6 (c.454-?_545+?del), c.546-2A>G, deletion of exon 11 (c.885-?_1038+?del), deletion of exon 16 (c.1732-?_1896+?del) and the c.2059C>T variation. These variants have previously been recognized in Lynch syndrome families and are classified as disease-predisposing. In *MSH2*, recurrent alterations included deletion of exons 1-6

282	25
-----	----

Table I I ist of a survey as a survive to in Grandish formilies with I survey and and	
Table I List of sequence variants in Swedish families with Lynch syndro	me

Variant no.	Gene	Sequence variant	Type of variant/ comment	Change at protein level	InSiGHT classification	Refs.
1	MLH1	c7C>T	Other		Class 3	
2	MLH1	c.1-?_306+?del	Deletion exons 1-3		Class 5	
3	MLH1	c.1-?_306+?del	Deletion exons 1-3		Class 5	
4	MLH1	c.1-?_306+?del	Deletion exons 1-3		Class 5	
5	MLH1	c.1-?_1731+?del	Deletion exons 1-15		Class 5	(26)
6	MLH1	c.1-?_2271+?del	Whole gene deletion		Class 5	
7	MLH1	c.1-?_2271+?del	Whole gene deletion		Class 5	
8	MLH1	c.1-?_2271+?del	Whole gene deletion		Class 5	
9	MLH1	c.19G>T	Missense	p.(Val7Phe)		
10	MLH1	c.62C>T	Missense	p.(Ala21Val)	Class 4	(27)
11	MLH1	c.62C>T	Missense	p.(Ala21Val)	Class 4	
12	MLH1	c.62C>T	Missense	p.(Ala21Val)	Class 4	
13	MLH1	c.62C>T	Missense	p.(Ala21Val)	Class 4	
14	MLH1	c.104T>G	Missense	p.(Met35Arg)	Class 5	(26)
15	MLH1	c.117-? 207+?del	Deletion exon 2	p.(Cvs39*)	Class 5	
16	MLH1	c.117-? 207+?del	Deletion exon 2	p.(Cvs39*)	Class 5	
17	MLH1	c.117-? 207+?del	Deletion exon 2	p.(Cvs39*)	Class 5	
18	MLH1	c.131C>T	Missense	p.(Ser44Phe)	Class 5	(26)
19	MLH1	c.131C>T	Missense	p.(Ser44Phe)	Class 5	(26)
20	MLH1	c.131C>T	Missense	p.(Ser44Phe)	Class 5	(26)
21	MLH1	c.131C>T	Missense	p.(Ser44Phe)	Class 5	()
22	MLH1	c.131C>T	Missense	p.(Ser44Phe)	Class 5	
23	MLH1	c 199G>A	Missense	p (Glv67Arg)	Class 5	(26)
23 24	MLH1	c 202dup	Frameshift	p(Ule68Asnfs*11)	(Class 5)	(20)
25	MLH1	c 203T>A	Missense	p (Ile68Asn)	Class 4	(27)
25	MLH1	c 203T>A	Missense	p.(Ile68Asn)	Class 4	(27)
20	MI H1	c 208-16>A	Aberrant splicing	p.(neoor un)	Class 5	
28	MLH1	c 208-2A>G	Aberrant splicing		Class 5	(26)
20	MI H1	c 298C>T	Nonsense	n (Arg100*)	Class 5	(26)
30	MLIII MIH1	c 306+1G>A	Aberrant splicing	p.(Iug100) p.(Iug100)	Class 4	(20)
31	MLIII MLH1	c 306+1G>A	Aberrant splicing	$p.(Lys70_Glu102del)$ $p.(Lys70_Glu102del)$	Class 4	
32	MLIII MIH1	$c 306 \pm 34 > C$	Aberrant splicing	p.(Lys/0_Olu102del)	Class 4	(26)
32	MLIII MLH1	$c 307 2 1038 \pm 2del$	Deletion exons 4 11	p (Ala103 Arafe*8)	Class 5	(26)
34	MLIII MLH1	c 307 ? 545+2del	Deletion exons 4.6	p.(Ala103Alg18-0)	Class 5	(20)
35		c.307 ? 677 . 2del	Deletion exons 4.8	p.(Alatos valis 3)	(Class 5)	
36		c.307 - c.077 + 2001 = 24C > T	Missense	$p(\Lambda_{op}12T_{vr})$	(Class 5)	
27		0.340 > 1	Missense	p.(Asp121y1) $p.(Thr117Mat)$	Class 5	
38		C.350C>T	Missense	p.(Thr117Met)	Class 5	
20		c.550C>1	Missense	p.(11117 Met)	Class J	
39 40		c.409G>A	Missense	p.(Ala137Thr)		
40		C.409G>A	Deletion energy	p.(Alars/Thr)	Class 5	
41		$c.434-?_343+?del$	Deletion exon 6	p.(Glu153Phels*8)	Class 5	
42	MLHI	c.454-?_545+?del	Deletion exon 6	p.(Glu153Phe1s*8)	Class 5	20
45		$c.434-?_343+?del$	Deletion exon 6	p.(Glu153Phels*8)	Class 5	20)
44	MLHI	c.454-?_545+?del	Deletion exon 6	p.(Glu153Phers*8)	Class 5	
45 46	MLHI	C.454-13A>G	Aberrant splicing	= (C115201	Class 3	(26)
40	MLHI	c.454-1G>A	Aberrant splicing	$p.(Glu153Phets*\delta)$	Class 5	
4/	MLHI	c.454-1G>A	Aberrant splicing	p.(Glu153Phets*8) $(A = 1929 + 5 \pm 6)$	Class 5	(26)
48	MLHI	c.546-2A>G	Aberrant splicing	p.(Arg182Serfs*6)	Class 5	(26)
49	MLHI	c.546-2A>G	Aberrant splicing	p.(Arg182Serts*6)	Class 5	
50	MLH1	c.546-2A>G	Aberrant splicing	p.(Arg182Serfs*6)	Class 5	

Table I. Continued.

Variant		Sequence	Type of variant/	Change at	InSiGHT	
no.	Gene	variant	comment	protein level	classification	Refs.
51	MLH1	c.546-2A>G	Aberrant splicing	p.(Arg182Serfs*6)	Class 5	
52	MLH1	c.546-2A>G	Aberrant splicing	p.(Arg182Serfs*6)	Class 5	
53	MLH1	c.546-2A>G	Aberrant splicing	p.(Arg182Serfs*6)	Class 5	
54	MLH1	c.546-2A>G	Aberrant splicing	p.(Arg182Serfs*6)	Class 5	
55	MLH1	c.546-2A>G	Aberrant splicing	p.(Arg182Serfs*6)	Class 5	
56	MLH1	c.546-2A>G	Aberrant splicing	p.(Arg182Serfs*6)	Class 5	
57	MLH1	c.546-2A>G	Aberrant splicing	p.(Arg182Serfs*6)	Class 5	
58	MLH1	c.546-2A>G	Aberrant splicing	p.(Arg182Serfs*6)	Class 5	
59	MLH1	c.546-2A>G	Aberrant splicing	p.(Arg182Serfs*6)	Class 5	
60	MLH1	c.588+1del	Aberrant splicing		Class 4	
61	MLH1	c.589-? 790+?dup	Duplication exons 8-9			
62	MLH1	c.665del	Frameshift	p.(Asn222Metfs*7)	Class 5	(26)
63	MLH1	c.665del	Frameshift	p.(Asn222Metfs*7)	Class 5	
64	MLH1	c.676C>T	Nonsense	p.(Arg226*)	Class 5	
65	MLH1	c.677+1G>T	Aberrant splicing	r (8)	Class 5	(26)
66	MLH1	c 677G>A	Aberrant splicing	n (Gln197Arofs*8)	Class 5	(==)
67	MLH1	c.679_689del	Frameshift	p.(Glu227Asnfs*4)	(Class 5)	
68	MLH1	c 790+1G>C	Aberrant splicing	p(Glu227) Ser295del)	Class 4	
69	MLH1	c 790+1G>C	Aberrant splicing	p.(Glu227_Ser295del)	Class 4	
70	MIH1	c 793C>T	Aberrant splicing	p.(Glu227_Ger233der)	Class 5	(26)
70	MIH1	c 793C>T	Aberrant splicing	p.(His264Leufs*2)	Class 5	(20)
71	MILIII MIH1	c 793C>T	Aberrant splicing	p.(His264Leufs*2) p.(His264Leufs*2)	Class 5	
72	MILIII MIHI	c 885 2 1038+2del	Deletion evon 11	p. (1113204) Lettis 2) p. $(Ser295 \Delta rafs*21)$	Class 5	(26)
73		c.885 2 1038+2del	Deletion exon 11	$p.(Ser295Arg1s^{-21})$	Class 5	(20)
74		c.885 2 1038+2del	Deletion exon 11	$p.(Ser295Arg1s^{-21})$	Class 5	
75		2.885 - 2.1038 + 2021	Deletion exen 11	p.(Ser295 Argfs*21)	Class 5	
70		$2.885 \cdot 2.1400 + 2d_{2}$	Deletion exons 11 12	p.(3e1293Aigis*21)	(Class 5)	
79		$2.885 - 2.1409 + 2d_{2}$	Deletion exons 11-12		(Class 5)	
70		$c.003-?_1409+?def$	Missonas	$p(C_{1})(210I_{1})$	(Class 3)	
79 80		0.9500>A	Nanaanaa	p.(Glu319Lys)	(Class 5)	
0U 01		c.9360>1	From ashift	$p.(Glu320^{+})$ $p.(Clu251A cmfs*16)$	(Class 3)	
81 82		- 1210C T	Framesnit	p.(GIy33TASp1s*10)	Class 5	
82 82		c.1219C>1	Nonsense	p.(GIn407*)	(Class 5)	(26)
83	MLHI	1200 121011	Nonsense	p.(Gin409*)	Class 5	(20)
84	MLHI	c.1309_1310del	Framesnitt	p.(Pro43/Cysis*2)	(Class 5)	
85	MLHI	c.13/9A>C	Missense	p.(Glu460Ala)		
80	MLHI	c.13/9A>C	Missense	p.(Glu460Ala)		
8/	MLHI	c.13/9A>C	Missense	p.(Glu460Ala)		
88	MLHI	c.1459C>1	Nonsense	p.(Arg48/*)	Class 5	(26)
89	MLHI	c.1559-?_1730+?del	Deletion exons 14-15	p.(Val520Glyfs*/)	Class 5	(26)
90	MLHI	c.1559-?_22/1+?del	Deletion exons 14-19	(4 500 -	Class 5	
91	MLHI	c.1564C>1	Missense	p.(Arg522Trp)		
92	MLHI	c.1609C>1	Nonsense	p.(Gln537*)	Class 5	
93	MLHI	c.1667+2_1667+8delinsA1111	Aberrant splicing		Class 5	
94	MLHI	c.1667+2_1667+8delinsATTT	Aberrant splicing		Class 5	
95	MLHI	c.1668-1G>T	Aberrant splicing	(G)	Class 4	
96 9 5	MLHI	c.1730C>T	Missense	p.(Ser577Leu)		
97	MLH1	c.1730C>T	Missense	p.(Ser577Leu)		
98	MLH1	c.1731G>A	Aberrant splicing	p.(Ser556Argfs*14)	Class 5	
99	MLH1	c.1732-?_1896+?del	Deletion exon 16	p.(Pro579_Glu633del)	Class 5	(27)
100	MLH1	c.1732-?_1896+?del	Deletion exon 16	p.(Pro579_Glu633del)	Class 5	(26)
101	MLH1	c.1732-?_1896+?del	Deletion exon 16	p.(Pro579_Glu633del)	Class 5	(26)

Variant		Sequence	Type of variant/	Change at	InSiGHT	
no.	Gene	variant	comment	protein level	classification	Refs.
102	MLH1	c.1732-?_1896+?del	Deletion exon 16	p.(Pro579_Glu633del)	Class 5	(26)
103	MLH1	c.1732-?_1896+?del	Deletion exon 16	p.(Pro579_Glu633del)	Class 5	(26)
104	MLH1	c.1732-?_1896+?del	Deletion exon 16	p.(Pro579_Glu633del)	Class 5	(26)
105	MLH1	c.1732-?_1896+?del	Deletion exon 16	p.(Pro579_Glu633del)	Class 5	(26)
106	MLH1	c.1732-?_1896+?del	Deletion exon 16	p.(Pro579_Glu633del)	Class 5	
107	MLH1	c.1732-?_1896+?del	Deletion exon 16	p.(Pro579_Glu633del)	Class 5	
108	MLH1	c.1732-?_1896+?del	Deletion exon 16	p.(Pro579_Glu633del)	Class 5	
109	MLH1	c.1732-?_1896+?del	Deletion exon 16	p.(Pro579_Glu633del)	Class 5	
110	MLH1	c.1732-?_1896+?del	Deletion exon 16	p.(Pro579_Glu633del)	Class 5	
111	MLH1	c.1732-?_1896+?del	Deletion exon 16	p.(Pro579_Glu633del)	Class 5	
112	MLH1	c.1732-?_1896+?del	Deletion exon 16	p.(Pro579_Glu633del)	Class 5	(26)
113	MLH1	c.1732-?_1896+?del	Deletion exon 16	p.(Pro579_Glu633del)	Class 5	
114	MLH1	c.1732-?_1896+?del	Deletion exon 16	p.(Pro579_Glu633del)	Class 5	
115	MLH1	c.1732-?_1896+?del	Deletion exon 16	p.(Pro579_Glu633del)	Class 5	
116	MLH1	c.1732-?_1896+?del	Deletion exon 16	p.(Pro579_Glu633del)	Class 5	
117	MLH1	c.1732-? 1896+?del	Deletion exon 16	p.(Pro579 Glu633del)	Class 5	
118	MLH1	c.1732-? 1896+?del	Deletion exon 16	p.(Pro579 Glu633del)	Class 5	
119	MLH1	c.1732-? 1896+?del	Deletion exon 16	p.(Pro579 Glu633del)	Class 5	
120	MLH1	c.1732-? 1896+?del	Deletion exon 16	p.(Pro579 Glu633del)	Class 5	
121	MLH1	c.1732-? 1896+?del	Deletion exon 16	p.(Pro579 Glu633del)	Class 5	
122	MLH1	c.1732-? 2271+?del	Deletion exons 16-19	1 (_ /	Class 5	
123	MLH1	c.1732-2A>T	Aberrant splicing	p.(Pro579 Glu633del)	Class 5	
124	MLH1	c.1769del	Nonsense	p.(Leu590*)	Class 5	(26)
125	MLH1	c.1769del	Nonsense	p.(Leu590*)	Class 5	~ /
126	MLH1	c.1772 1775del	Frameshift	p.(Asp591Valfs*24)	Class 5	(26)
127	MLH1	c.1772 1775del	Frameshift	p.(Asp591Valfs*24)	Class 5	
128	MLH1	c.1812dup	Frameshift	p.(Glu605Argfs*5)	Class 5	
129	MLH1	c.1852 1854del	Other	p.(Lys618del)	Class 5	(27)
130	MLH1	c.1852 1854del	Other	p.(Lys618del)	Class 5	
131	MLH1	c.1896+1G>T	Aberrant splicing	1	Class 4	
132	MLH1	c.1939G>A	Missense	p.(Val647Met)	Class 3	
133	MLH1	c.1943C>T	Missense	p.(Pro648Leu)	Class 5	
134*	MLH1	c.1989G>A	Aberrant splicing	1 \ /	Class 4	
135	MLH1	c.2038T>C	Missense	p.(Cys680Arg)	Class 5	
136	MLH1	c.2059C>T	Missense	p.(Arg687Trp)	Class 5	(26)
137	MLH1	c.2059C>T	Missense	p.(Arg687Trp)	Class 5	. ,
138	MLH1	c.2059C>T	Missense	p.(Arg687Trp)	Class 5	
139	MLH1	c.2059C>T	Missense	p.(Arg687Trp)	Class 5	(26)
140	MLH1	c.2059C>T	Missense	p.(Arg687Trp)	Class 5	. ,
141	MLH1	c.2059C>T	Missense	p.(Arg687Trp)	Class 5	
142	MLH1	c.2059C>T	Missense	p.(Arg687Trp)	Class 5	
143	MLH1	c.2059C>T	Missense	p.(Arg687Trp)	Class 5	
144	MLH1	c.2059C>T	Missense	p.(Arg687Trp)	Class 5	
145	MLH1	c.2059C>T	Missense	p.(Arg687Trp)	Class 5	
146	MLH1	c.2076dup	Nonsense	p.(Glu693*)	(Class 5)	
147	MLH1	c.2103+1G>A	Aberrant splicing	- · · /	Class 5	
148	MLH1	c.2104-11_2104-10delinsA	Aberrant splicing		Class 3	(26)
149	MLH1	c.2141G>A	Nonsense	p.(Trp714*)	Class 5	. /
150	MSH2	c.1-?_1076+?del	Deletion exons 1-6	/	Class 5	
151	MSH2	c.1-?_1076+?del	Deletion exons 1-6		Class 5	
152	MSH2	c.1-?_1076+?del	Deletion exons 1-6		Class 5	

Variant		Sequence	Type of variant/	Change at	InSiGHT	
no.	Gene	variant	comment	protein level	classification	Refs.
153	MSH2	c.1-?_1076+?del	Deletion exons 1-6		Class 5	
154	MSH2	c.1-?_1076+?del	Deletion exons 1-6		Class 5	(26)
155	MSH2	c.1-? 1076+?del	Deletion exons 1-6		Class 5	(26)
156	MSH2	c.1-? 1076+?del	Deletion exons 1-6		Class 5	
157	MSH2	c.1-? 1076+?del	Deletion exons 1-6		Class 5	
158	MSH2	c.1-? 1076+?del	Deletion exons 1-6		Class 5	
159	MSH2	c.1-? 1076+?del	Deletion exons 1-6		Class 5	
160	MSH2	c.1-? 1276+?del	Deletion exons 1-7		Class 5	(26)
161	MSH2	c.1-? 1276+?del	Deletion exons 1-7		Class 5	
162	MSH2	c.1-? 1386+?del	Deletion exons 1-8		Class 5	
163	MSH2	c.1-? 1386+?del	Deletion exons 1-8		Class 5	(26)
164	MSH2	c.1-? 1386+?del	Deletion exons 1-8		Class 5	()
165	MSH2	c.1-? 1386+?del	Deletion exons 1-8		Class 5	
166	MSH2	c.1-? 1386+?del	Deletion exons 1-8		Class 5	
167	MSH2	c.1-? 1386+?del	Deletion exons 1-8		Class 5	
168	MSH2	c.1-? 1386+?del	Deletion exons 1-8		Class 5	
169	MSH2	c.1-? 1661+?del	Deletion exons 1-11		Class 5	
170	MSH2	c.17 20del	Frameshift	p.(Lys6Argfs*57)	(Class 5)	
171	MSH2	c.138C>G	Missense	p.(His46Gln)	Class 3	
172	MSH2	c 183G>T	Missense	p (Gln61His)	Class c	
173	MSH2	c 187del	Nonsense	p.(Val63*)	Class 5	
174	MSH2 MSH2	c 204del	Frameshift	p.($Pro69Argfs*15$)	Class 5	(26)
175	MSH2	c 212-? 366+?del	Deletion exon 2	p (Ala72Phefs*9)	Class 5	(26)
176	MSH2	c 212-? 366+?del	Deletion exon 2	p (Ala72Phefs*9)	Class 5	(20)
177	MSH2	c 212-? 1276+?del	Deletion exons 2-7	p(Ala72 Glv426del)	Class 5	
178	MSH2	c 366+1G>C	Aberrant splicing	p.(Ala72Phefs*9)	Class 4	
179	MSH2 MSH2	c 416delA	Frameshift	p.(Asn139Metfs*35)	Class 5	
180	MSH2 MSH2	c 499G>C	Missense	p.(Asn167His)	Class 3	
181	MSH2	c 508C>T	Nonsense	p(Gln170*)	Class 5	
182	MSH2	c 518 519del	Frameshift	p(Leu173Arofs*4)	(Class 5)	
183	MSH2	c 557A>G	Missense	p (Asn186Ser)	Class 3	
184	MSH2	c 646-? 1076+?del	Deletion exons 4-6	p (Ile217Glufs*28)	Class 5	
185	MSH2	c.646-? 1076+?del	Deletion exons 4-6	p.(Ile217Glufs*28)	Class 5	
186	MSH2	c.646-1G>A	Aberrant splicing	p.(11021) (01410 20)	Class c	
187	MSH2	c.793-? 1076+?del	Deletion exons 5-6	p.(Val265Ilefs*29)	Class 5	
188	MSH2	c.793-1G>A	Aberrant splicing	p.((***********************************	Class c	
189	MSH2	c.811 814del	Frameshift	p.(Ser271Argfs*2)	Class 5	(26)
190	MSH2	c 892C>T	Nonsense	$p_{1}(Gln 298*)$	Class 5	(26)
191	MSH2	c.942+1G>T	Aberrant splicing	p.(Gin2)0)	Class 4	(20)
192	MSH2	c.942+3A>T	Aberrant splicing	p.(Val265 Gln314del)	Class 5	(26)
193	MSH2	c 942+3A>T	Aberrant splicing	p (Val265_Gln314del)	Class 5	(26)
194	MSH2	c 942+3A>T	Aberrant splicing	p (Val265_Gln314del)	Class 5	(==)
195	MSH2	c 942+3A>T	Aberrant splicing	p (Val265_Gln314del)	Class 5	
196	MSH2	c.942+3A>T	Aberrant splicing	p.(Val265 Gln314del)	Class 5	
197	MSH2	c.942+3A>T	Aberrant splicing	p.(Val265 Gln314del)	Class 5	
198	MSH2	c.942+3A>T	Aberrant splicing	p.(Val265 Gln314del)	Class 5	
199	MSH2	c.942G>A	Aberrant splicing	p.(Val265 Gln314del)	Class 5	
200	MSH2	c.989T>C	Missense	p.(Leu330Pro)	Class 4	
201	MSH2	c.997T>A	Missense	p.(Cys333Ser)		
202	MSH2	c.1077-? 1276+?del	Deletion exon 7	p.(Leu360Lysfs*16)	Class 5	
203	MSH2	c.1077-? 1276+?del	Deletion exon 7	p.(Leu360Lysfs*16)	Class 5	

Variant no.	Gene	Sequence variant	Type of variant/ comment	Change at protein level	InSiGHT classification	Refs.
204	MSH2	c 1077-? 1386+?dup	Duplication exons 7-8		Class 3	(26)
205	MSH2	c 1077-? 1386+?dup	Duplication exons 7-8		Class 3	(20)
205	MSH2 MSH2	c 1077-? 1661+?del	Deletion exons 7-10	n (Arg359 Asn553del)	Class 5	(27)
200	MSH2	c 1077-? 1661+?del	Deletion exons 7-10	p.(Arg359 Asn553del)	Class 5	(27)
207	MSH2 MSH2	c 1077-? 1661+?del	Deletion exons 7-10	p.(Arg359 Asn553del)	Class 5	
200	MSH2 MSH2	c 1077-? 1661+?del	Deletion exons 7-10	p.(Arg359 Asn553del)	Class 5	
210	MSH2	c 1077-? 1661+?del	Deletion exons 7-10	p.(Arg359 Asn553del)	Class 5	
210	MSH2	c 1077 ? 1661+?del	Deletion exons 7 10	p.(Arg359 Asn553del)	Class 5	
211	MSH2 MSH2	c.1077-1C>A	Aberrant splicing	p.(Algooy_Asiloodul)	Class J	
212	MSH2 MSH2	c.1077-1G>A	Aberrant splicing			
213	MS112 MSU2	c.1077-102A	Framashift	$p(Db_{2}66L_{out}*2)$	Class 5	
214	MSH2 MSH2	c.1097_1098insA	Frameshift	$p.(Phe366Leurs^23)$	Class 5	(26)
215	MS112 MSU2	c.1097_1098insA	Frameshift	$p.(The 300 Let Is^2 23)$	Class 5	(20)
210		c.1097_10901118A	Nanconso	p.(File300Leuis ² 23)	Class 5	
217		C.114/C>1 a 1147C>T	Nonsense	$p.(Arg303^{+})$	Class 5	
210	MSH2 MSH2	C.114/C>1	Deletion energy 11 16	p.(Arg585*)	Class 3	
219	MSH2 MSH2	$c.1162-?_2805+?det$	Deletion exons 11-16		(Class 5)	
220	MSH2 MSH2	C.1104C>G	Nissense	p.(Asn388Lys)	<u>C</u> 1	
221	MSH2	c.1165C>1	Nonsense	p.(Arg389*)	Class 5	
222	MSH2	c.1165C>1	Nonsense	p.(Arg389*)	Class 5	
223	MSH2	c.1204del	Frameshift	p.(Gln402Lysfs*10)	Class 5	
224	MSH2	c.1204del	Frameshift	p.(Gln402Lysts*10)	Class 5	
225	MSH2	c.1216C>T	Nonsense	p.(Arg406*)	Class 5	(26)
226	MSH2	c.1225C>1	Nonsense	p.(Gln409*)	(Class 5)	
227	MSH2	c.1226_1227del	Frameshift	p.(Gln409Argfs*7)	Class 5	(26)
228	MSH2	c.1237del	Frameshift	p.(Gln413Asnfs*25)	(Class 5)	
229	MSH2	c.1275A>G	Aberrant splicing	p.(=, Ile411_Gly426del)	Class 3	
230	MSH2	c.1277-?_1386+?del	Deletion exon 8	p.(Lys427Glyfs*4)	Class 5	(26)
231	MSH2	c.1277-?_1386+?del	Deletion exon 8	p.(Lys427Glyfs*4)	Class 5	
232	MSH2	c.1373T>G	Nonsense	p.(Leu458*)	Class 5	(26)
233	MSH2	c.1387-?_1661+?del	Deletion exons 9-10	p.(Val463Glnfs*7)	Class 5	
234	MSH2	c.1447_1448del	Frameshift	p.(Glu483Asnfs*4)	Class 5	(26)
235	MSH2	c.1447_1448del	Frameshift	p.(Glu483Asnfs*4)	Class 5	
236	MSH2	c.1447G>T	Nonsense	p.(Glu483*)	Class 5	(26)
237	MSH2	c.1447G>T	Nonsense	p.(Glu483*)	Class 5	
238**	MSH2	c.1484C>T	Missense	p.(Thr495Ile)		
239	MSH2	c.1490_1492del	Other	p.(Ile497del)		
240	MSH2	c.1520del	Frameshift	p.(Pro507Leufs*19)	(Class 5)	
241	MSH2	c.1587del	Frameshift	p.(Glu530Lysfs*13)	Class 5	
242	MSH2	c.1587del	Frameshift	p.(Glu530Lysfs*13)	Class 5	
243	MSH2	c.1587del	Frameshift	p.(Glu530Lysfs*13)	Class 5	
244	MSH2	c.1661+5G>C	Aberrant splicing	p.(Gly504Alafs*3)	Class 3	
245	MSH2	c.1662-?_2805+?del	Deletion exons 11-16		Class 5	
246	MSH2	c.1703C>G	Missense	p.(Thr568Arg)		
247	MSH2	c.1759G>C	Aberrant splicing	p.(Ser554Argfs*11)	Class 5	
248	MSH2	c.1777C>T	Nonsense	p.(Gln593*)	Class 5	
249	MSH2	c.1777C>T	Nonsense	p.(Gln593*)	Class 5	
250	MSH2	c.1786_1788del	Other	p.(Asn596del)	Class 5	
251	MSH2	c.1786_1788del	Other	p.(Asn596del)	Class 5	
252	MSH2	c.1786_1788del	Other	p.(Asn596del)	Class 5	
253	MSH2	c.1786_1788del	Other	p.(Asn596del)	Class 5	
254	MSH2	c.1786_1788del	Other	p.(Asn596del)	Class 5	

Variant		Sequence	Type of variant/	Change at	InSiGHT	
no.	Gene	variant	comment	protein level	classification	Refs.
255	MSH2	c.1786 1788del	Other	p.(Asn596del)	Class 5	
256	MSH2	c.1807G>A	Missense	p.(Asp603Asn)	Class 3	
257	MSH2	c.1858 1859dup	Frameshift	p.(Arg621Tyrfs*15)	Class 5	
258	MSH2	c.1881dup	Frameshift	p.(Gly628Argfs*16)	(Class 5)	
259	MSH2	c.1906G>C	Missense	p.(Ala636Pro)	Class 5	
260	MSH2	c.1906G>C	Missense	p.(Ala636Pro)	Class 5	
261	MSH2	c.1906G>C	Missense	p.(Ala636Pro)	Class 5	
262	MSH2	c.1943T>A	Missense	p.(Ile648Asn)		
263	MSH2	c.1982 1985del	Frameshift	p.(Lvs661Argfs*23)	Class 5	
264	MSH2	c.1986 1987del	Frameshift	p.(Gln662Hisfs*13)	Class 5	
265	MSH2	c.1986del	Frameshift	p.(Met663Cvsfs*22)	Class 5	(27)
266	MSH2	c.2006-? 2634+?del	Deletion exons 13-15	F.((Class 5)	(26)
267	MSH2	c.2038C>T	Nonsense	p.(Arg680*)	Class 5	(26)
268	MSH2	c.2038C>T	Nonsense	p.(Arg680*)	Class 5	()
269	MSH2	c.2131C>T	Nonsense	p.(Arg711*)	Class 5	(26)
270	MSH2	c 2131C>T	Nonsense	p.(Arg711*)	Class 5	(==)
271	MSH2	c 2164G>A	Missense	p.(Val722Ile)	Not classified	
272	MSH2	c 2228 2231del	Nonsense	p.(Var/22110)	Class 5	(26)
272	MSH2 MSH2	c 2234_2236del	Other	p.(Je747del)	Clubb 5	(20)
273	MSH2 MSH2	c 2234_2236del	Other	p.(Ile747del)		
275	MSH2 MSH2	c 2275G>T	Nonsense	p.(Glv759*)	Class 5	
276	MSH2 MSH2	c 2420C>G	Missense	p.(Cly757) p.(Thr807Ser)	Class 3	
270	MSH2 MSH2	c 2635-1G>A	Aberrant splicing	p.(Gln879Valfs*12)	Class 4	
277	MSH2 MSH2	c 2635-1G>A	Aberrant splicing	p.(Gln879Valls*12)	Class 4	
270	MSH2 MSH2	c 2680dup	Frameshift	p.($Met894\Delta snfs*5$)	C1055 4	
280	MSH2 MSH2	c.2680dup	Frameshift	p.(Met $894\Delta \text{ snfs}^*5$)		
281	FPCAM	c_{185-7} 945+7del	Deletion exons 3-9	p.(141010) +/ (Sill's 5)		
282	MSH6	$c 261_{-}^{2} 457_{+}^{2}$ dun	Duplication exon 2		Class 3	
283	MSH6	c 463A>G	Missense	n (Lys155Glu)	C1055 5	
283	MSH6	c 773T>C	Missense	p.(Ile258Thr)		
285	MSH6	c 900dun	Frameshift	p.(Ite2301flufs*11)	(Class 5)	
285	MSH6	c 1346T>C	Missense	p.(LyssorOtaris Tr) p.(Leu449Pro)	Class 5	(27)
287	MSH6	c 1346T>C	Missense	p(Leu449Pro)	Class 5	(27)
288	MSH6	c 1346T>C	Missense	p.(Leu (19170))	Class 5	
289	MSH6 MSH6	c 1346T>C	Missense	p.(Leu449Pro)	Class 5	
202	MSH6 MSH6	c 1407T>A	Nonsense	p.(Eeu+1)110) p.(Tvr469*)	(Class 5)	
290	MSH6 MSH6	c 1444C>T	Nonsense	p.(1y1403)	Class 5	
291	MSH6	c 1483C>T	Nonsense	p.(Arg405*)	Class 5	
292	MSH6 MSH6	c 1499dun	Frameshift	p.(Hig495) p.(Hig501Thrfs*6)	(Class 5)	
293	MSH6	c 1649del	Frameshift	p.(111350111113 0) $p.(Ser5501 eufs*21)$	(Class 5)	
295	MSH6	c 1691C>G	Nonsense	p.(Ser564*)	(Class 5)	
295	MSH6	c 1691C>G	Nonsense	p.(Ser564*)	(Class 5)	
297	MSH6	c 1857A>C	Missense	p.(Glu619Asn)	(Class 3)	
298	MSH6	c 1943del	Frameshift	p.(Onto1)/Asp) p.(Ser648Metfs*6)	(Class 5)	
299	MSH6	c 2062 2063del	Frameshift	p.(Val688I eufs*9)	Class 5	
300	МСНК	c 2194C\T	Nonsense	n(Arg732*)	Class 5	
301	МСНК	c 22994 T	Missense	$\frac{P(T_{12}, 32)}{n(T_{12}, 767Ser)}$	C1855 J	
302	МСНК	c 2302 2304dal	Other	p(Pro768del)	Class 3	(26)
303	МСНК	c 2302_2304del	Other	n (Pro768del)	Class 3	(20)
304	МСНК	c 2302_2304del	Other	n (Pro768del)	Clase 3	
305	МСНК	c 26084 \G	Missense	p(I v s 870 Gh)	C1055 5	
202	110110		1110001100			

Variant no.	Gene	Sequence variant	Type of variant/ comment	Change at protein level	InSiGHT classification	Refs.
				1		
306	MSH6	c.2732G>A	Missense	p.(Arg911Gln)		
307	MSH6	c.2732G>A	Missense	p.(Arg911Gln)		
308	MSH6	c.2779dup	Frameshift	p.(Ile927Asnfs*8)	(Class 5)	
309	MSH6	c.2779dup	Frameshift	p.(Ile927Asnfs*8)	(Class 5)	
310	MSH6	c.2780_2781insA	Frameshift	p.(Thr928Tyrfs*7)	(Class 5)	
311	MSH6	c.2780_2781insA	Frameshift	p.(Thr928Tyrfs*7)	(Class 5)	
312	MSH6	c.2780_2781insA	Frameshift	p.(Thr928Tyrfs*7)	(Class 5)	
313	MSH6	c.2780_2781insA	Frameshift	p.(Thr928Tyrfs*7)	(Class 5)	
314	MSH6	c.2851_2858del	Frameshift	p.(Leu951Ilefs*12)	Class 5	(26)
315	MSH6	c.2851_2858del	Frameshift	p.(Leu951Ilefs*12)	Class 5	
316	MSH6	c.2931C>G	Nonsense	p.(Tyr977*)	Class 5	(27)
317	MSH6	c.2931C>G	Nonsense	p.(Tyr977*)	Class 5	(27)
318	MSH6	c.2931C>G	Nonsense	p.(Tyr977*)	Class 5	
319	MSH6	c.2931C>G	Nonsense	p.(Tyr977*)	Class 5	
320	MSH6	c.2962C>T	Missense	p.(Arg988Cys)		
321	MSH6	c.3053_3054del	Frameshift	p.(Leu1018Hisfs*4)	Class 5	(26)
322	MSH6	c.3103C>T	Nonsense	p.(Arg1035*)	Class 5	
323	MSH6	c.3173-?_3556+?del	Deletion exons 5-6		(Class 5)	
324	MSH6	c.3195 3199del	Frameshift	p.(Asn1065Lysfs*5)	(Class 5)	
325	MSH6	c.3226C>T	Missense	p.(Arg1076Cvs)	Class 3	
326	MSH6	c.3261del	Frameshift	p.(Phe1088Serfs*2)	Class 5	
327	MSH6	c.3261del	Frameshift	p.(Phe1088Serfs*2)	Class 5	
328	MSH6	c.3261del	Frameshift	p.(Phe1088Serfs*2)	Class 5	
329	MSH6	c.3261dup	Frameshift	p.(Phe1088Leufs*5)	Class 5	
330	MSH6	c.3268_3274del	Frameshift	p.(Glu1090Lvsfs*23)	Class 5	
331	MSH6	c 3299C>G	Missense	p.(Thr1100Arg)	Chubb 5	
332	MSH6	c 3312del	Frameshift	p (Phe1104Leufs*11)	Class 5	
333	MSH6	c 3554_3556+2del	Other	p.(Ser1185 Glv1186deliu	nsCvs)	
334	MSH6	c 3554_3556+2del	Other	p.(Ser1185_Gly1186deliu	nsCys)	
335	MSH6	c 3619_3620del	Frameshift	p.(His1207Phefs*7)	(Class 5)	
336	MSH6	c 3647-24 \C	Aberrant splicing	p.(Arg1217I vsfs*13)	Class 5	
337	MSH6	c 3674C>T	Missense	p.(Thr1225Met)	Class 3	(26)
338	MSH6	c 3674C>T	Missense	p.(Thr1225Met)	Class 3	(20)
330	MSH6	c 3801+1del	Aberrant splicing	p.(111122514100)	Class 5	
340	MSH6	c.3848_3850dup	Aber Aber	n (Ile1283dun)		
340	MSH6	c.3848_3850dup	Other	p.(He1283dup)		
242	MSH0 MSH6	c.3848_38300up	Missonso	p.(11e1203uup) p.(A1e1203Gly)		
242 242	MSH0 MSH6	c.3876C>0	Framashift	p.(A1a1295O1y) p.(Sar1220A apfa*15)	(Class 5)	
243	MSH0 MSH6	c.3974_3983dup	Frameshift	p.(Ser1329Aspis*13)	(Class 5)	
544 245	MSH0 MSH4	c.5974_5965dup		p.(Ser1529Aspis*15)	(Class 5)	
343 246	MSH0 MSHC	C.5991C>1	Aberrant splicing	p.(Ala1208GlyIs*6)	Class 5	
340	MSH0 MCHC	C.3991C>1	Aberrant splicing	p.(Ala1268GlyIs*6)	Class 5	
34/	MSHO	c.4001+21>C	Aberrant splicing	p.(Ala1268Glyfs*6)	Class 5	
348	MSHO	c.400IG>A	Missense	p.(Arg1334Gln)	Class 5	
349	PMS2	c.1-?_2586+?del	Whole gene deletion		Class 5	
350	PMS2	c.24-?_988+?del	Deletion exons 2-9		(Class 5)	
351	PMS2	c.24-?_988+?del	Deletion exons 2-9		(Class 5)	
352	PMS2	c.24-?_988+?del	Deletion exons 2-9		(Class 5)	
353	PMS2	c.24-?_988+?del	Deletion exons 2-9		(Class 5)	
354	PMS2	c.686_687del	Frameshift	p.(Ser229Cysfs*19)	(Class 5)	
355	PMS2	c.736_741delins11	Frameshift	p.(Pro246Cysfs*3)	Class 5	(26)
356	PMS2	c.736_741delins11	Frameshift	p.(Pro246Cysfs*3)	Class 5	(26)

Variant no.	Gene	Sequence variant	Type of variant/ comment	Change at protein level	InSiGHT classification	Refs.
357	PMS2	c.736_741delins11	Frameshift	p.(Pro246Cysfs*3)	Class 5	
358	PMS2	c.736_741delins11	Frameshift	p.(Pro246Cysfs*3)	Class 5	
359	PMS2	c.1437C>G	Missense	p.(His479Gln)	Class 3	
360	PMS2	c.1556A>G	Missense	p.(Tyr519Cys)		
361	PMS2	c.1559C>T	Missense	p.(Ala520Val)		
362	PMS2	c.2113G>A	Missense	p.(Glu705Lys)	Class 3	
363	PMS2	c.2113G>A	Missense	p.(Glu705Lys)	Class 3	
364	PMS2	c.2113G>A	Missense	p.(Glu705Lys)	Class 3	
365	PMS2	c.2113G>A	Missense	p.(Glu705Lys)	Class 3	(26)
366	PMS2	c.2113G>A	Missense	p.(Glu705Lys)	Class 3	
367	PMS2	c.2113G>A	Missense	p.(Glu705Lys)	Class 3	
368	PMS2	c.2113G>A	Missense	p.(Glu705Lys)	Class 3	
369	PMS2	c.2520dup	Frameshift	p.(Trp841Leufs*47)	(Class 5)	

Table I. Continued.

Variants marked with * and ** represent variants detected in one individual respectively. Classifications made by the authors are listed in parentheses.

Figure 1. (A) Schematic view of the distribution of the total number of sequence variants in the *MLH1*, *MSH2*, *MSH6*, *PMS2* and *EPCAM* genes from a total of 369 families. (B) Percentage of different sequence variants observed in the *MLH1*, *MSH2*, *MSH6* and *PMS2* genes from a total of 201 variants. The single variant detected in the *EPCAM* gene is not included. The different changes at the amino acid level are shown in different colors: missense variations are shown in blue, nonsense in red, frameshift variants in green, variants affecting splicing in lilac, whole exon deletions/duplications in turquoise and other changes in orange.

(c.1-?_1076+?del), deletion of exons 1-8 (c.1-?_1386+?del), c.942+3A>T, deletion of exons 7-10 (c.1077-?_1661+?del) and the c.1786_1788del. These variants have previously been reported in Lynch syndrome families from different countries and are classified as disease-predisposing. The deletion of *MSH2* exons 1-6 was the most common recurrent variant identified in a total of 10 families. *MSH6* had a high number of private mutations with only the c.1346T>C, c.2780_81insA and the c.2931>G pathological variants identified in ≥4 families. In *PMS2*, the sequence variant of unknown significance c.2113G>A was the most common variant found in 7/21 families. The deletions of exons 2-9 (c.24-?_988+?del) and c.736_741delins11 were both identified in 4 families. All of the recurrent sequence variants in *MHS6* and *PMS2* have previously been reported.

No recurrent mutation suggestive of a Swedish founder mutation was identified. We did, however, recognize a contribution from other Scandinavian founder mutations in the Swedish population. The Finnish founder mutation *MLH1* c.1732-?_1896+?del was found in 6% of the Swedish Lynch syndrome families and constituted 15% of the *MLH1* families. The Danish founder mutation *MLH1* c.1667+2_1667+8delinsATTT was observed in two families.

Discussion

This study is the first compiled data on the Swedish Lynch syndrome cohort and demonstrates mutations in MLH1 in 40%, MSH2 in 36%, MSH6 in 18% and PMS2 in 6% of the families (Fig. 1A). The Swedish mutation spectrum is

Gene	DNA variant	Protein effect	No. of families	InSiGHT class
MLH1	c.62C>T	p.(Ala21Val)	4	4
	c.131C>T	p.(Ser44Phe)	5	5
	c.454-?_545+? del	p.(Glu153Phefs*8)	4	5
	c.546-2A>G	p.(Arg182Serfs*6)	12	5
	c.855-?_1038+?del	p.(Ser295Argfs*21)	4	5
	c.1732-?_1896+?del	p.(Pro579_Glu633 del)	23	5
	c.2059C>T	p.(Arg687Trp)	10	5
MSH2	c.1-?_1076+?del	p.?	10	5
	c.1?_1386+?del	p.?	7	5
	c.942+3A>T	p.(Val265_Gln314del)	7	5
	c.1077-?_1661+?del	p.(Arg359_Asn553del)	6	5
	c.1786_1788del	p.(Asn596del)	6	5
MSH6	c.1346T>C	p.(Leu449Pro)	4	5
	c.2780_2781insA	p.(Thr928Tyrfs*7)	4	5
	c.2931C>G	p.(Tyr977*)	4	5
PMS2	c.24-?_988+?del	p.?	4	-
	c.736_741delins11	p.(Pro246Cysfs*3)	4	5
	c.2113G>A	p.(Glu795Lys)	7	3

Table II. List of mutations occurring four or more times in Swedish families with Lynch syndrome.

broad with a total of 201 different mutations of which 66% were private and 9% were classified as recurrent, i.e., found in \geq 4 families (Table II). The contribution from the different MMR genes is in line with international reports, which are mainly based on Western populations (4). The predominant types of alterations in MSH2 and MSH6 were small insertions/deletions and in MLH1 splice site variants (Fig. 1B). Whole-exon deletions significantly contributed and accounted for 20-22% of the mutations in MLH1, MSH2 and PMS2, but were rare (4%) in MSH6 (Table I, Fig. 1B). Our data support evidence on a significant contribution from whole-exon deletions in MSH2 and PMS2, and demonstrate a higher rate of large deletions than previously reported in MLH1 (28,29). Of the 201 sequence variants reported, 137 are available in the InSiGHT database, whereas 64 have not previously been reported.

In Sweden, 80% of the population is of Swedish origin and 20% were either born in another country or born in Sweden by two parents from another country. Among non-Swedish ethnic groups, Finns represent the largest group and during recent decades Sweden has received immigrants from a large number of countries with particularly large contributions from Denmark, Norway, Germany, Chile, former Yugoslavia, Iran, Irak, Eritrea, Somalia and Syria. Strong founder effects have been reported in Finland where two MLH1 mutations account for 63% of the families with Lynch syndrome (13). The Finnish founder mutation MLH1 c.1732-?_1896+?del, which leads to deletion of MLH1 exon 16, was identified in 6% of our Lynch syndrome families and constituted 15% of the MLH1 families, which is in line with the Finnish ancestry in 5% of the Swedish population. Two families in Sweden carried the Danish founder mutation MLH1 c.1667+2_1667+8delinsATTT (8). Two of the most frequent mutations in the Swedish population, i.e., the *MLH1* c.546-2A>G and *MSH2* c.1-?_1076+?del (deletion of exons 1-6), have been described as founder mutations in the US (30,31). From the mid 1800's until the early 1920's, 1.5 million Swedes migrated to US and it is therefore plausible that this US founder mutation is of Swedish origin. Regarding the deletion of exons 1-6, the common haplotype found in the US was analyzed in two Swedish samples with the same mutation although the results cannot confirm a common ancestry (30). The *MLH1* c.2059C>T pathogenic variant is also common in the Swedish population.

Several recurrent mutations identified in *MSH2*, e.g. the c.1-?_1076+?del, c.942+3A>T and c.1786_1788del have also been reported from Denmark and in Norway (8). Also several of the *MSH6* mutations identified, such as c.1444C>T, c.1483C>T, c.2302_2304del, c.3647-2A>C, c.3991C>T and c.4001+2T>C have also been observed in several families from Norway and/or Denmark and these mutations may be of Scandinavian origin. In *PMS2* the c.736_741delins11 mutations have been reported from Denmark and Norway and the c.2113G>A transition (class 3) has also been identified in families from Norway.

We did not detect any individuals with CMMRD in our cohort. Two families harbored more than one MMR gene variants. Both of these families did fulfill the Amsterdam criteria. One family of Arabic origin had a *MLH1* c.1989G>A (class 4) variant that affects splicing and a concomitant *MSH6* c.773T>C variant, which has not been reported in the ExAc database. Another family had a *MSH6* c.1649del frameshift variant and a concomitant *MSH2* c.1484C>T variant of unknown significance according to ClinVar. In these families, the *MSH6* c.773T>C and the *MSH2* c.1484C>T variants may represent benign variants.

Identification of individuals with Lynch syndrome is cost effective with significant positive effects on morbidity and mortality from colorectal cancer (32). In Sweden, Lynch syndrome diagnostics have traditionally been based on individual or physician suspicion of hereditary cancer in which case families have been referred for genetic counseling followed by genetic diagnostics. In total, 369 Lynch syndrome families have been identified. Assuming a carrier frequency in the lower range (1/1,200), at least 8,000 individuals would be estimated to be mutation carriers in the Swedish population of 9.8 million. Though the absolute number of mutation carriers in Sweden is not known, it can be estimated that no more than one-quarter of the mutation carriers have at present been identified. Comparison is also possible with our neighboring country Denmark where Lynch syndrome families are registered on a national basis. Denmark has, relative to the size of the population, identified an additional 60% of Lynch syndrome families (data not shown).

In summary, the Swedish Lynch syndrome cohort with 369 families carries 201 unique alterations, of which 64 have not been previously reported. The mutation spectrum shows the expected contribution from the different MMR genes, underscores the roles of *MSH6* and *PMS2*, which caused 18% and 6% of the mutations in the families, respectively. The cohort reveals a higher contribution from large deletion in *MLH1* than previously reported. An overlap with mutations identified in the other Nordic countries is identified and our data suggest that US founder mutations in *MLH1* and *MSH2* may be of Scandinavian origin.

Acknowledgements

Financial support was granted from the Swedish Cancer Society. We would like to thank Pål Møller, Oslo, Norway and Christina Therkildsen at the Danish HNPCC register, in Copenhagen for information on mutation spectra in their respective countries. We would also like to acknowledge Eva Rambech and Inger Malmberg for their excellent technical performance.

References

- 1. Carethers JM and Stoffel EM: Lynch syndrome and Lynch syndrome mimics: The growing complex landscape of hereditary colon cancer. World J Gastroenterol 21: 9253-9261, 2015.
- 2. de la Chapelle A: The incidence of Lynch syndrome. Fam Cancer 4: 233-237, 2005.
- Sijmons RH and Hofstra RM: Review: Clinical aspects of hereditary DNA Mismatch repair gene mutations. DNA Repair (Amst) 38: 155-162, 2016.
- 4. Thompson BA, Spurdle AB, Plazzer JP, Greenblatt MS, Akagi K, Al-Mulla F, Bapat B, Bernstein I, Capellá G, den Dunnen JT, *et al*; InSiGHT: Application of a 5-tiered scheme for standardized classification of 2,360 unique mismatch repair gene variants in the InSiGHT locus-specific database. Nat Genet 46: 107-115, 2014.
- Peltomäki P: Role of DNA mismatch repair defects in the pathogenesis of human cancer. J Clin Oncol 21: 1174-1179, 2003.
- Miyaki M, Konishi M, Tanaka K, Kikuchi-Yanoshita R, Muraoka M, Yasuno M, Igari T, Koike M, Chiba M and Mori T: Germline mutation of *MSH6* as the cause of hereditary nonpolyposis colorectal cancer. Nat Genet 17: 271-272, 1997.
- Berends MJ, Wu Y, Sijmons RH, Mensink RG, van der Sluis T, Hordijk-Hos JM, de Vries EG, Hollema H, Karrenbeld A, Buys CH, *et al*: Molecular and clinical characteristics of *MSH6* variants: An analysis of 25 index carriers of a germline variant. Am J Hum Genet 70: 26-37, 2002.
- Nilbert M, Wikman FP, Hansen TV, Krarup HB, Orntoft TF, Nielsen FC, Sunde L, Gerdes AM, Cruger D, Timshel S, *et al*: Major contribution from recurrent alterations and *MSH6* mutations in the Danish Lynch syndrome population. Fam Cancer 8: 75-83, 2009.

- Senter L, Clendenning M, Sotamaa K, Hampel H, Green J, Potter JD, Lindblom A, Lagerstedt K, Thibodeau SN, Lindor NM, *et al*: The clinical phenotype of Lynch syndrome due to germ-line *PMS2* mutations. Gastroenterology 135: 419-428, 2008.
- Niessen RC, Hofstra RM, Westers H, Ligtenberg MJ, Kooi K, Jager PO, de Groote ML, Dijkhuizen T, Olderode-Berends MJ, Hollema H, *et al*: Germline hypermethylation of *MLH1* and *EPCAM* deletions are a frequent cause of Lynch syndrome. Genes Chromosomes Cancer 48: 737-744, 2009.
- 11. Goel A, Nguyen TP, Leung HC, Nagasaka T, Rhees J, Hotchkiss E, Arnold M, Banerji P, Koi M, Kwok CT, et al: De novo constitutional MLH1 epimutations confer early-onset colorectal cancer in two new sporadic Lynch syndrome cases, with derivation of the epimutation on the paternal allele in one. Int J Cancer 128: 869-878, 2011.
- 12. Kuiper RP, Vissers LE, Venkatachalam R, Bodmer D, Hoenselaar E, Goossens M, Haufe A, Kamping E, Niessen RC, Hogervorst FB, *et al*: Recurrence and variability of germline *EPCAM* deletions in Lynch syndrome. Hum Mutat 32: 407-414, 2011.
- Nyström-Lahti M, Kristo P, Nicolaides NC, Chang SY, Aaltonen LA, Moisio AL, Järvinen HJ, Mecklin JP, Kinzler KW, Vogelstein B, *et al*: Founding mutations and Alu-mediated recombination in hereditary colon cancer. Nat Med 1: 1203-1206, 1995.
- 14. Grindedal EM, Aarset H, Bjørnevoll I, Røyset E, Mæhle L, Stormorken A, Heramb C, Medvik H, Møller P and Sjursen W: The Norwegian *PMS2* founder mutation c.989-1G > T shows high penetrance of microsatellite instable cancers with normal immunohistochemistry. Hered Cancer Clin Pract 12: 12, 2014.
- 15. Foulkes WD, Thiffault I, Gruber SB, Horwitz M, Hamel N, Lee C, Shia J, Markowitz A, Figer A, Friedman E, *et al*: The founder mutation *MSH2*1906G→C* is an important cause of hereditary nonpolyposis colorectal cancer in the Ashkenazi Jewish population. Am J Hum Genet 71: 1395-1412, 2002.
- 16. Sun S, Greenwood CM, Thiffault I, Hamel N, Chong G and Foulkes WD: The HNPCC associated MSH2*1906G→C founder mutation probably originated between 1440 CE and 1715 CE in the Ashkenazi Jewish population. J Med Genet 42: 766-768, 2005.
- 17. Goldberg Y, Porat RM, Kedar I, Shochat C, Galinsky D, Hamburger T, Hubert A, Strul H, Kariiv R, Ben-Avi L, *et al*: An Ashkenazi founder mutation in the *MSH6* gene leading to HNPCC. Fam Cancer 9: 141-150, 2010.
- Raskin L, Schwenter F, Freytsis M, Tischkowitz M, Wong N, Chong G, Narod SA, Levine DA, Bogomolniy F, Aronson M, *et al*: Characterization of two Ashkenazi Jewish founder mutations in *MSH6* gene causing Lynch syndrome. Clin Genet 79: 512-522, 2011.
- Tiwari AK, Roy HK and Lynch HT: Lynch syndrome in the 21st century: Clinical perspectives. QJM 109: 151-158, 2015.
- 20. Hendriks YM, Wagner A, Morreau H, Menko F, Stormorken A, Quehenberger F, Sandkuijl L, Møller P, Genuardi M, Van Houwelingen H, *et al*: Cancer risk in hereditary nonpolyposis colorectal cancer due to *MSH6* mutations: Impact on counseling and surveillance. Gastroenterology 127: 17-25, 2004.
- 21. Plaschke J, Engel C, Krüger S, Holinski-Feder E, Pagenstecher C, Mangold E, Moeslein G, Schulmann K, Gebert J, von Knebel Doeberitz M, et al: Lower incidence of colorectal cancer and later age of disease onset in 27 families with pathogenic MSH6 germline mutations compared with families with MLH1 or MSH2 mutations: The German Hereditary Nonpolyposis Colorectal Cancer Consortium. J Clin Oncol 22: 4486-4494, 2004.
- 22. ten Broeke SW, Brohet RM, Tops CM, van der Klift HM, Velthuizen ME, Bernstein I, Capellá Munar G, Gomez Garcia E, Hoogerbrugge N, Letteboer TG, *et al*: Lynch syndrome caused by germline *PMS2* mutations: Delineating the cancer risk. J Clin Oncol 33: 319-325, 2015.
- 23. Stoffel E, Mukherjee B, Raymond VM, Tayob N, Kastrinos F, Sparr J, Wang F, Bandipalliam P, Syngal S and Gruber SB: Calculation of risk of colorectal and endometrial cancer among patients with Lynch syndrome. Gastroenterology 137: 1621-1627, 2009.
- 24. Moreira L, Balaguer F, Lindor N, de la Chapelle A, Hampel H, Aaltonen LA, Hopper JL, Le Marchand L, Gallinger S, Newcomb PA, *et al*; EPICOLON Consortium: Identification of Lynch syndrome among patients with colorectal cancer. JAMA 308: 1555-1565, 2012.
- 25. den Dunnen JT and Antonarakis SE: Mutation nomenclature. Curr Protoc Hum genet 37: 7.13.1-7.13.8., 2003.

- 26. Lagerstedt Robinson K, Liu T, Vandrovcova J, Halvarsson B, Clendenning M, Frebourg T, Papadopoulos N, Kinzler KW, Vogelstein B, Peltomäki P, *et al*: Lynch syndrome (hereditary nonpolyposis colorectal cancer) diagnostics. J Natl Cancer Inst 99: 291-299, 2007.
- 27. Cederquist K, Emanuelsson M, Göransson I, Holinski-Feder E, Müller-Koch Y, Golovleva I and Grönberg H: Mutation analysis of the *MLH1*, *MSH2* and *MSH6* genes in patients with double primary cancers of the colorectum and the endometrium: A population-based study in northern Sweden. Int J Cancer 109: 370-376, 2004.
- 28. Charbonnier F, Olschwang S, Wang Q, Boisson C, Martin C, Buisine MP, Puisieux A and Frebourg T: *MSH2* in contrast to *MLH1* and *MSH6* is frequently inactivated by exonic and promoter rearrangements in hereditary nonpolyposis colorectal cancer. Cancer Res 62: 848-853, 2002.
- 29. Smith MJ, Urquhart JE, Harkness EF, Miles EK, Bowers NL, Byers HJ, Bulman M, Gokhale C, Wallace AJ, Newman WG, *et al*: The contribution of whole gene deletions and large rearrangements to the mutation spectrum in inherited tumor predisposing syndromes. Hum Mutat 37: 250-256, 2016.

- 30. Clendenning M, Baze ME, Sun S, Walsh K, Liyanarachchi S, Fix D, Schunemann V, Comeras I, Deacon M, Lynch JF, et al: Origins and prevalence of the American founder mutation of MSH2. Cancer Res 68: 2145-2153, 2008.
- 31. Tomsic J, Liyanarachchi S, Hampel H, Morak M, Thomas BC, Raymond VM, Chittenden A, Schackert HK, Gruber SB, Syngal S, et al: An American founder mutation in *MLH1*. Int J Cancer 130: 2088-2095, 2012.
- 32. Snowsill T, Huxley N, Hoyle M, Jones-Hughes T, Coelho H, Cooper C, Frayling I and Hyde C: A systematic review and economic evaluation of diagnostic strategies for Lynch syndrome. Health Technol Assess 18: 1-406, 2014.