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Abstract. Identification of long non-coding RNAs (lncRNAs) 
has provided a substantial increase in our understanding of 
the non-coding transcriptome. Studies have revealed a crucial 
function of lncRNAs in the modulation of cell autophagy 
in vitro and in vivo, further contributing to the hallmarks of 
disease phenotypes. These findings have profoundly altered 
our understanding of disease pathobiology, and may lead to the 
emergence of new biological concepts underlying autophagy-
associated diseases, such as the carcinomas. Studies on the 
molecular mechanism of the lncRNA-autophagy axis may 
offer additional avenues for therapeutic intervention and 
biomarker assessment. In this review, we discuss recent find-
ings on the multiple molecular roles of regulatory lncRNAs 
in the signaling pathways of cell autophagy. The emerging 
knowledge in this rapidly advancing field will offer novel 
insights into human diseases, especially cancers.
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1. Introduction

Autophagy is an evolutionarily conserved process in which 
cytoplasmic contents are degraded through the cell's own 

lysosomal machinery. Depending on how autophagic 
substrates are delivered to the lysosome, three different types 
of autophagy are identified: macroautophagy, microautophagy, 
and chaperone-mediated autophagy (CMA). As the principal 
pathway, macroautophagy is used primarily to sequester intact 
organelles and portions of the cytosol into the autophagosome, 
a double-membrane vesicle. After the completed autophago-
some matures via fusing with the lysosome, its contents are 
degraded by lysosomal hydrolases. Microautophagy occurs 
through the direct engulfment of material into the lysosome. 
CMA, a complex and specific pathway, involves the direct 
recognition of substrates with the assistance of a lysosomal 
chaperone (1). Although the above-mentioned classic 
autophagy pathways are generally considered to be non-selec-
tive, accumulating evidence has indicated that specific cargoes 
can also be degraded selectively (Fig. 1). The discovery and 
characterization of receptor proteins, such as p62/sequesto-
some 1 (SQSTM1), have provided pivotal mechanistic insights 
into this selective autophagic process (2,3).

Since being coined by de Duve in 1963, autophagy has 
been characterized as an adaptive catabolic process that plays 
a normal part in cell growth and development, helping to 
maintain cellular bioenergetic homeostasis (4). In addition, 
recent studies have revealed other roles for the autophagic 
machinery in regulating a wide variety of pathological condi-
tions, including tumorigenesis and cardiovascular diseases, 
suggesting autophagy modulation may have therapeutic 
value (5-7). However, in the development of human diseases, 
autophagy has been shown to be a double-edged sword. In 
some cases, autophagy is a cytoprotective mechanism, but in 
others, autophagy is a pro-death response to stresses, espe-
cially chemotherapy at the cellular and organic levels (8,9). 
Many autophagy-related genes (Atgs) have been implicated 
in controlling these complicated behaviors during autophagy, 
and approximately half of them are evolutionarily conserved 
from yeast to human (10). Clearly, the regulation of autophagy 
and the resulting downstream effects are complex and very 
likely to be cell- and disease type-specific.

Recently, non-coding RNAs, such as long non-coding 
RNAs (lncRNAs), were demonstrated to regulate cell 
autophagy in vitro and in vivo, further contributing to many 
of the hallmarks of disease phenotypes (11) (Fig.  2). The 
lncRNA highly upregulated liver cancer (HULC) was shown 
to significantly inhibit cell apoptosis by activating autophagy, 
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Figure 1. Different modes of cell autophagy. (A) The classic autophagy pathways, such as macroautophagy, microautophagy, and chaperone-mediated 
autophagy (CMA), are generally considered to be non-selective. (B) Selective autophagy can degrade specific cargoes in a selective manner.

Figure 2. The representative mechanism of lncRNAs on cellular autophagy regulation. The detailed mechanisms are explained in the relevant sections of 
the text.
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contributing to the malignant phenotype of gastric cancer (12). 
The lncRNA maternally expressed gene 3 (MEG3), a novel 
tumor suppressor, was shown to be downregulated in bladder 
cancer and negatively correlated with microtubule-associated 
protein 1A/1B-light chain 3 (Atg8/LC3), an autophagy marker. 
Inhibition of MEG3 by small-interfering RNA (siRNA) acti-
vated autophagy, increasing cell proliferation and suppressing 
cell apoptosis in human bladder cancer cell lines (13). However, 
in bacterial pathogen infection, the MEG3-autophagy axis has 
as an opposite effect. In Mycobacterium bovis BCG-infected 
human macrophages, MEG3 is clearly decreased. Specifically, 
in silico assays link MEG3 to protein kinase B (Akt) and 
mammalian target of rapamycin (mTOR) signaling pathways, 
which can both downregulate cell autophagy. Furthermore, 
knockdown of MEG3 resulted in the induction of autophagy, 
which helped to combat the intracellular BCG infection. Upon 
treatment with IFN-γ, increased autophagy led to sustained 
and significant MEG3 downregulation, reinforcing the effec-
tive eradication of mycobacteria (14). These investigations 
have identified a significant relationship between lncRNA 
and cell autophagy. This review mainly provides an overview 
of lncRNA biology in autophagy modulation and discusses 
specific studies that have provided new insight into the 
underlying mechanism of the lncRNA-autophagy axis for 
therapeutic intervention.

2. The lncRNA-miRNA axis and autophagy

LncRNA-miRNA axis and autophagy. Accumulating studies 
have highlighted the importance of the non-coding genome 
in autophagy. Based on length, non-coding RNA can be 
categorized into several types, such as microRNAs (miRNAs, 
approximately 22 nucleotides) and lncRNAs (>200 nucleo-
tides). miRNAs have emerged as critical mediators of gene 
expression through binding to targeted mRNA, including Atgs 
(15,16). As the dysregulated expression of Atgs has been shown 
to have a far reaching impact on human diseases, miRNAs are 
being examined as potential novel biomarkers or therapeutic 
targets (17). One particular example is the miR‑30a family, 
which is linked to autophagy and various pathophysiological 
conditions. miR‑30a negatively regulates BECN1/Atg6 stability 
via the predicted binding sequence in its 3' untranslated 
region (UTR). Downregulation of miRNA‑30a increased the 
mRNA and protein levels of BECN1, markedly initiating basal 
autophagy in mature adipocytes (18). Similarly, miR‑30a inhi-
bition alleviated ischemia/reperfusion-induced neurological 
dysfunction through enhancing BECN1-mediated autophagy 
(19). Additionally, miRNA‑30a-5p can target metadherin 
(MTDH) mRNA for cleavage or translational repression. By 
targeting MTDH, miRNA‑30a-5p downregulated activation of 
the Akt signaling pathway, which might regulate autophagy 
and apoptosis of cancer cells (20,21). In another study, iden-
tical recognition sites of miR‑137 were found at the 3'UTRs 
of the selective autophagy receptors NIX/BNIP3L (BCL2/
adenovirus E1B 19 kDa interacting protein 3-like) and FUN14 
domain containing 1 (FUNDC1). In response to hypoxia, 
miR‑137 reduced the expression of Nix and FUNDC1, thereby 
inhibiting mitophagy, a selective autophagy of impaired mito-
chondria, without affecting classic autophagy (22). However, 
the exact role of different miRNAs in regulating classic or 

selective autophagy must still be elucidated. Gibbings et al 
demonstrated that selective autophagy can in turn modulate 
miRNA homeostasis. The miRNA-processing enzyme Dicer 
and the miRNA effector Argonaute 2 (Ago2) are critical 
components responsible for miRNA synthesis. Under the 
control of the autophagy receptor nuclear dot protein 52 kDa 
(NDP52), Dicer and Ago2 were targeted for degradation by 
selective autophagy, which inhibited homeostasis and activity 
of the targeted miRNAs (23,24). These data have profound 
implications for the association of miRNA-levels with dysreg-
ulated autophagy.

The role of miRNAs in the regulation of autophagy by 
lncRNA. Bioinformatics analysis of molecular interactions has 
identified miRNA recognition elements (MREs) on lncRNA 
sequences, demonstrating the direct transcriptional regulation 
of miRNA by lncRNA (25). Furthermore, perturbation of 
lncRNA expression disrupted the balance of lncRNA-miRNA 
regulatory paradigms, contributing to the pathogenesis of 
various diseases, including cancers. To date, four forms of 
functional cross-regulation have been artificially identified 
(26,27) (Fig. 3). The stability of lncRNAs can be weakened 
through interaction with specific miRNAs. Yoon et al found 
that the stability of lncRNA p21 was controlled by the miRNA 
let-7b. Overexpression of precursor-let-7 decreased the half-life 
of lncRNA p21 and accelerated its degradation (28). Likewise, 
another lncRNA, HOX antisense intergenic RNA (HOTAIR), 
was shown to be enriched and stable after using an antagomir 
to inhibit endogenous let-7i in human cervical carcinoma 
HeLa cells (29). LncRNAs can function as miRNA decoys 
or sponges, also known as competitive endogenous RNAs 
(ceRNAs). The function of lncRNAs as ceRNAs significantly 
expands their regulatory capacity; ceRNAs can compete with 
mRNA for the binding of miRNA and thus repress the target 
gene at the post-transcriptional level. Furthermore, numerous 
lines of bioinformatics evidence from several well-known 
groups have supported the ceRNA function of lncRNAs, 
including the database of human long non-coding RNA 
acting as competing endogenous RNA (lnCeDB) (30), the 
lncRNA-associated competing triplet database (LncACTdb) 
(31) and the database of cancer somatic mutations altering 
microRNA-ceRNA interactions (SomamiR  2.0) (32). 
LncRNAs can compete with miRNAs for interaction with 
shared target mRNAs. Franklin et al revealed that the long 
non-coding N-ras functional RNA (ncNRFR) competes with 
let-7 and reverses the repression of let-7 site-bearing mRNAs 
(33). Faghihi et al found a miR‑485-5p binding site in the 
mRNA of β-site amyloid precursor protein cleaving enzyme 
1 (BACE1). By blocking access of miR‑485-5p, the lncRNA 
BACE1-antisense transcript prevented miRNA-induced 
suppression of BACE1 mRNA (34). LncRNAs are a source 
of miRNAs for inducing target mRNA silencing. Exon 1 of 
lncRNA H19 encodes two conserved miRNAs, miR‑675-3p 
and miR‑675-5p. Exogenous miR‑675-3p and miR‑675-5p both 
rescue abnormal skeletal muscle regeneration induced by H19 
depletion (35). In summary, the lncRNA-miRNA axis controls 
gene expression patterns driving many cellular processes, such 
as cell development, proliferation, and cell autophagy.

It is well known that mTOR, a central negative-regulator 
of cell autophagy, plays a key role in regulating the balance 
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between cell growth and death in response to stress signals. 
Modulating abnormal mTOR signaling is important for 
numerous physiological and pathological conditions (36). 
After treatment with doxorubicin, mTOR activation via 
suppression of ELK3 impaired autophagy, and thus enhanced 
cell viability in the breast cancer cell line MDA-MB-231 
(37). Using molecular docking prediction, Ge et al identi-
fied a novel mTOR activator, 3-benzyl-5-((2-nitrophenoxy)
methyl)-dihydrofuran-2(3H)-one (3BDO). They found that 
activation of mTOR induced by 3BDO increased phosphoryla-
tion of T-cell-restricted intracellular antigen-1 (TIA1), which 
is responsible for processing FLJ11812, a nuclear lncRNA 
derived from the 3'UTR of transforming growth factor β2 
(TGFβ2). Acting as a ceRNA, FLJ11812 competed for binding 

with miR‑4459, resulting in the increase of its target Atg13 and 
promotion of autophagy (38). Apart from miR‑4459, FLJ11812 
also acts as the molecular decoy of miR‑3960 and miR‑4488, 
elevating the expression of miRNA targets ceramide synthase 
1 (CERS1) and N-acetyltransferase 8-like (NAT8L), respec-
tively, two molecules participating in mitophagy (39). In 
addition, phospholipase D (PLD) inhibitor stimulates cell 
autophagy and exhibits attractive antitumorigenic effects by 
destabilizing mTOR. The lncRNA antisense non-coding RNA 
in the INK4 locus (ANRIL) has been shown to be responsible 
for the functions of PLD inhibitor (40). In sleeping beauty 
(SB)-baculovirus  (BV) systems, ectopic expression of the 
lncRNA phosphatase and tensin (PTEN) homolog pseudo-
gene 1 (PTENP1) in hepatocellular carcinoma suppressed 

Figure 3. Schematic of the major forms of interactions between lncRNAs and miRNAs.
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the Akt/mTOR signaling pathway by promoting PTEN 
transcription, thus inducing autophagic associated cell death. 
Moreover, PTENP1 also acted as a decoy for miR‑17, miR‑19b, 
and miR‑20a, which enhanced autophagy of their target genes 
Atg7 and Unc-51 like autophagy activating kinase 1 (ULK1) 
(41). While most current studies mainly focus on the function 
of lncRNAs in the nucleus, Liu et al recently uncovered a 
function of the cytoplasmic lncRNA neighbor of BRCA1 gene 
2 (NBR2). Energy stress could promote the colocalization of 
NBR2 and AMPK in the cytoplasm, potentiating AMPK acti-
vation. Finally, knockdown of NBR2 attenuated stress-induced 
mTOR inactivation by repressing the AMPK kinase signal, 
thus altering the autophagy response and increasing tumor 
development (42). Together, these results indicate that mTOR 
activation can inhibit cell autophagy via lncRNA-miRNA 
signaling, leading to participation in autophagy-mediated 
processes, such asembryogenesis (43), atherosclerosis (44), and 
tumorigenesis (41).

Apart from mTOR, the lncRNA-miRNA axis also directly 
affects Atgs modulation. As a direct target of miR‑21, the 
lncRNA growth arrest-specific 5 (GAS5) is upregulated 
during osteoarthritis. Overexpression of GAS5 inhibited cell 
autophagy, as indicated by downregulation of the LC3-II/LC3-I 
ratio and BECN1, and stimulated the death of articular 
chondrocytes (45). Recently, Liu et al defined another growth-
promoted lncRNA in hepatocellular carcinoma, HNF1A-AS1 
(antisense transcript of HNF1A). Oncogenic HNF1A-AS1 
sequestered miR‑30b in a ceRNA-dependent manner and 
stimulated autophagy flux via promoting the formation of the 
Atg12 complex, thus contributing to hepatocarcinogenesis (46). 
In ischemia/reperfusion-induced myocardial infarction, Atg7, 
a specific target of miR‑188-3p, is upregulated, leading to 
autophagic cell death. Through lncRNA array analysis, 
Wang et al reported a novel lncRNA, autophagy promoting 
factor (APF). APF regulated the expression of Atg7 and the 
consequent autophagy by sponging miR‑188-3p (47). Together, 
these data indicate critical roles of lncRNAs in cell autophagy 
as well as autophagic-associated diseases.

3. Other lncRNAs on autophagy regulation

The human PVT1 gene is a lncRNA on chromosome 8q24 and 
is critical in the regulation of cell growth, and differentiation. 
Many studies have demonstrated that the biological function 
of PVT1 mainly depends on two mechanisms. First, PVT1 
inhibits gene promoter activity. Zhang et al found PVT1 was an 
oncogenic gene in cervical cancer. Ectopic expression of PVT1 
recruited enhancer of zeste homolog 2 (EZH2), a member of 
the polycomb-group (PcG) family, to the miR‑200b promoter 
and repressed miR‑200b expression by methylating Lys-27 
(H3K27me) of histone H3 on the miR‑200b promoter (48). 
Similarly, PVT1 repressed large tumor suppressor kinase 2 
(LATS2) transcription by recruiting EZH2 to the LASTS2 
promoter, facilitating cell proliferation in non-small cell lung 
cancer (49). Secondly, PVT1 regulates protein stability. As the 
PVT1 locus is adjacent to the c-Myc locus, PVT1 is required for 
high Myc protein levels in cancer cells. According to a study 
by Tseng et al, PVT1 controlled Myc levels through regulation 
of protein stability (50). Furthermore, knockdown of PVT1 by 
RNA interference led to inhibition of cancer cell proliferation 

by suppressing the Myc protein level (51). Additionally, another 
group studied PVT1-mediated autophagy in cognitive impair-
ment of diabetes mellitus. They found that autophagy inhibitor 
3-methyladenine (3-MA) could significantly induce apoptotic 
cell death by decreasing hippocampal PVT1 expression, 
which subsequently heightened cognitive impairment  (52). 
This was the first time that lncRNA homeostasis was shown to 
be controlled by cell autophagy, but the specific mechanisms 
need to be further elucidated.

BRAF-activated lncRNA (BANCR), a 693-bp transcripton 
chromosome 9, is a useful biomarker or future therapeutic 
target in various cancers, including melanoma (53), papillary 
thyroid carcinoma (54), and lung cancer (55). Flockhart et al 
and Wajapeyee et al performed massively parallel cDNA 
sequencing (RNA-seq) and found that the expression of 
BANCR was regulated by mutant BRAFV600E protein, the 
most prevalent mutation of the BRAF gene in the circulating 
tumor DNA of a patient (56,57). A recent study demonstrated 
that the autophagy inhibitors VATG-027 and VATG-032, 
which are acridine and tetrahydroacridine derivatives of 
the antimalarial agent chloroquine, significantly enhanced 
the sensitivity of cancer cells to the BRAF V600E inhibitor 
vemurafenib (58). Moreover, selective BRAFV600E inhibitors 
induced autophagy by activating AMPK signaling in colorectal 
cancer cells (59). As BANCR is shown to be strongly linked 
with BRAFV600E mutation, BANCR may have a possible 
role in autophagy modulation. As expected, overexpression of 
BANCR in papillary thyroid carcinoma enhanced the ratio of 
LC3-II/LC3-I, a marker for autophagy, resulting in increased 
cell proliferation and inhibited apoptosis (60).

Concerning cardiac remodeling, Viereck and colleagues 
performed global lncRNA expression profiling and identi-
fied the lncRNA cardiac hypertrophy-associated transcript 
(Chast) as a potential influence on cardiomyocyte hypertrophy 
in vivo. GapmeR-mediated Chast silencing upregulates Atg5 
and increases the LC3-II/LC3-I ratio, driving cell autophagy 
capacity and impeding the pathologic remodeling processes. 
Bioinformatics analysis of gene sequence revealed partial 
overlaps between Chast and the antisense strand of pleckstrin 
homology domain-containing protein family M member 1 
(plekhm1), a regulator of autophagy, suggesting that Chast 
might downregulate cell autophagy by a plekhm1-dependent 
mechanism (61).

4. Conclusions and future directions

Advances in sequencing technologies have identified numerous 
lncRNAs. Though previously considered ‘junk sequences’ in 
our genomes, the epigenetic role of lncRNAs promises to be 
another exciting frontier for disease research and therapy. 
The discovery of lncRNAs and their functions has shed light 
on novel molecular mechanisms of autophagy regulation, 
potentially improving the diagnosis and treatment of human 
autophagy-associated diseases (Table I). Although the precise 
cellular mechanism of lncRNA is not completely understood, 
recent studies have revealed the existence of stable lncRNAs 
protected from endogenous RNases in blood and other bodily 
fluids of patients, the so-called circulating lncRNAs (62). Due 
to growing interest in the function of lncRNAs as diagnostic 
and prognostic biomarkers, lncRNAs are increasingly gaining 
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the attention of scientists and clinicians. However, two critical 
issues must still be solved: uniformity of sample preparation 
and data normalization (63). In addition, lncRNAs in extracel-
lular vesicles, such as exosomes, could offer a novel, enriched 
source of lncRNAs. These exosomes have been found to 
harbor disease-derived specific lncRNAs, which were signifi-
cantly different between patients and normal controls (64). Qu 
et al found that the exosome-transmitted lncRNA activated 
in renal cell carcinoma with sunitinib resistance (ARSR) 
potentially affects the chemosensitivity of cancer cells (65). 
In addition, the regulation of cell autophagy by circulating 
lncRNAs under pathophysiological conditions needs to be 
discussed. The exciting potential of these emerging lncRNAs 
as biomarkers could be an important advance in disease 
management.

Autophagy, a tightly regulated catabolic process of cellular 
self-digestion, can be activated by several stresses, especially 
pharmacological action, and constitutes a potential target for 
disease therapy (66,67). Studies have indicated that autophagy 
appears to serve as either a pro-survival or pro-death response 
to therapeutic treatment (68). However, the precise role of 
autophagy in modulating cell biological behavior is highly 
dependent on the cellular context and its extent. A recent 
study found that lncRNAs can also influence drug-sensitivity 
by modulating cell autophagy. Overexpression of the lncRNA 
regulator of insulin sensitivity and autophagy (Risa) in hepa-
tocytes or myotubes significantly decreased autophagy, thus 
attenuating insulin resistance. Knockdown of Atg7 or Atg5 
by siRNAs inhibited the effect of Risa on insulin resistance 
in  vivo  (69). These findings show a potentially attractive 
approach to improving the curative effect: modulating the 
lncRNA-autophagy axis. Thus, further investigation of 
lncRNAs in autophagy regulation may identify novel strategies 

to enhance the benefits of pharmacotherapy in the treatment of 
human diseases.
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