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Abstract. Methotrexate (MTX) is widely used as both an anti-
cancer and anti-rheumatoid arthritis drug. Although MTX has 
been used to inhibit the growth of many cancer cells, it cannot 
effectively inhibit growth of triple-negative breast cancer cells 
(TNBC cells). Vitamin C is an antioxidant that can prevent 
oxidative stress. In addition, vitamin C has been applied as 
adjunct treatment for growth inhibition of cancer cells. Recent 
studies indicated that combined treatment with vitamin C and 
MTX may inhibit MCF-7 and MDA-MB-231 breast cancer cell 
growth through G2/M elongation. However, the mechanisms 
remain unknown. The aim of the present study was to deter-
mine whether combined treatment with low-dose vitamin C 
and MTX inhibits TNBC cell growth and to investigate the 
mechanisms of vitamin C/MTX-induced cytotoxicity. Neither 
low-dose vitamin C alone nor MTX alone inhibited TNBC 
cell growth. However, combined low-dose vitamin C and 
MTX had synergistic anti-proliferative/cytotoxic effects on 

TNBC cells. In addition, co-treatment increased H2O2 levels 
and activated both caspase-3 and p38 cell death pathways.

Introduction

Approximately 15-20% of breast cancer cells are triple-
negative (TNBC cells) (1,2), lacking estrogen receptors (ERs), 
progesterone receptors (PRs) and epidermal growth factor 
receptor 2 (EGFR2). Expression of these receptors allows 
for treatment with endocrine or targeted therapies in clinical 
cases (3-5), which are not useful for clinical TNBC cell treat-
ment (6-8). Therefore, it is important to develop new methods 
for suppressing TNBC cell growth and survival. Methotrexate 
(MTX) is a well-known antagonist of folic acid (9,10) and has 
been used widely for rheumatoid arthritis treatment (11,12). 
In addition, MTX has been applied for clinical cancer treat-
ment (13,14). Previous studies demonstrated that MTX can 
inhibit the growth of various cancer cells, including hepa-
toma, leukemia, lymphoma and gastric cancer cells (15-17). 
Nevertheless, MTX alone is not effective for breast cancer 
treatment. In order to enhance the anticancer activities of MTX 
on breast cancer cells, combining MTX with other agents has 
been considered. Currently, combined chemotherapy with 
MTX and other anticancer drugs, such as mitomycin C, cyclo-
phosphamide and 5-fluorouracil, is used to treat breast cancer 
(18-20). However, serious side-effects of these chemicals have 
been reported (21-25). Therefore, drugs that can promote the 
anticancer activities of MTX with reduced side-effects are 
urgently needed.

Vitamin C, a common nutrient, has anti-oxidative (26,27) 
and anticancer activities (28,29). Previous studies have also 
demonstrated that combined treatment with vitamin C and 
conventional anticancer agents can enhance anticancer activi-
ties (15,30,31). Currently, vitamin C supplements are being 
applied for clinical cancer therapy (32-34). However, vitamin C 
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actually inhibits tamoxifen-induced cell death in ER-positive 
breast cancer (35). Alternatively, high-dose vitamin C alone 
can inhibit cancer cell growth, though the mechanisms remain 
elusive (36-38). One study also showed that vitamin C can 
attenuate the incidence of ER-positive breast cancer cells (39). 
However, there is no evidence demonstrating that vitamin C 
alone is useful for TNBC treatment.

A recent study reported that vitamin C (30 µM to 4 mM) plus 
MTX can inhibit the growth of MCF-7 cells (an ER-positive 
breast cancer cell line) and MDA-MB-231 cells (a  type of 
TNBC) through G2/M elongation and PI3K activation (30). 
However, the mechanisms of vitamin C/MTX-induced cyto-
toxicity on breast cancer cells are still unclear. Therefore, 
whether combined treatment with low-dose vitamin C (5 µM) 
and MTX can inhibit TNBC cell growth and the mechanisms 
of vitamin C/MTX-induced cytotoxicity were examined in the 
present study.

Materials and methods

Materials. Vitamin C, Luminol, Lucigenin and Hoechst 33342 
were purchased from Sigma-Aldrich (St. Louis, MO, USA). 
Anti-tubulin (1:1,000; cat. no. BS1699), anti-p38 (1:400; cat. 
no. BS3567) and anti-p-p38 (1:400; cat. no. BS4766) primary 
rabbit polyclonal antibodies were acquired from Bioworld 
Technology, Inc., (Louis Park, MN, USA). Anti-cleaved PARP 
(1:2000; cat. no. 9544) and anti-caspase-3 (1:1000; cat. no. 
9965) primary rabbit polyclonal antibodies and horseradish 
peroxidase (HRP)-conjugated goat anti-rabbit IgG secondary 
antibody (1:2,000, cat. no. 7074) were from Cell Signaling 
Technology (Danvers, MA, USA). Tarceva (Erlotinib) was 
purchased from Roche Ltd. (Kaiseraugst, Switzerland). An 
MTT assay kit was obtained from Bio Basic Inc. (Markham, 
ON, Canada). Fetal bovine serum (FBS), Dulbecco's modi-
fied Eagle's medium (DMEM), non-essential amino acids, 
L-glutamine and penicillin/streptomycin were obtained from 
Gibco-BRL (Invitrogen Life Technologies, Carlsbad, CA, 
USA).

Cell lines and culture. Triple-negative breast cancer cell lines 
(MDA-MB-231 and MDA-MB-468) were purchased from 
the Bioresource Collection and Research Center (Hsin-chu, 
Taiwan). Tarceva-resistant MDA-MB-231 cells (MDA‑MB‑231 
TR) were kindly provided by Dr Yung-Luen Yu (Graduate 
Institute of Biomedical Sciences, China Medical University, 
Taichung, Taiwan). These cells were maintained in a humidi-
fied atmosphere containing 5% CO2 at 37˚C and cultured with 
DMEM supplemented with 10% fbs, 0.1 mM non-essential 
amino acids, 2 mM L-glutamine and 100 IU/ml penicillin/
streptomycin. In addition, 100 µM tarceva was added to the 
media for MDA-MB-231 TR culture.

Determination of cell viability. Cell viability was measured by 
the MTT assay described in previous studies (40,41). Briefly, 
cells were cultured into 96-well plates (5x103 cells/well). Every 
24 h, the control and experimental groups were treated with 
MTT. After incubation for 3 h at 37˚C, the formazan product 
was dissolved and absorbance measured at 570 nm (A570) 
using a Multiskan™ FC microplate photometer (Molecular 
Devices, Sunnyvale, CA, USA). The viable cell count (%) was 

calculated as (A570 experimental group)/(A570 control group) 
x 100%.

Measurements of intracellular H2O2 and O2
-. Intracellular 

H2O2 and O2
- were measured using the lucigenin-amplified 

chemiluminescence method (40,42). The samples (200 µl) 
were added to 0.2 mmol/ml of luminol solution (100 µl) for 
H2O2 measurement or to 0.1  mmol/ml lucigenin solution 
(500 µl) for O2

- measurement. Next, all samples were analyzed 
using a chemiluminescence analyzing system (CLA-FSI; 
Tohoku Electronic Industrial, Co., Ltd., Sendai, Japan). The 
H2O2 and O2

- were observed and incubated for 5 min.

Observation of DNA fragmentation and nuclear condensa-
tion. Nuclear condensation and DNA fragmentation, cardinal 
characteristics of apoptotic cells, were observed using Hoechst 
33342 nuclear staining (40,41). Control and experimental 
(MTX and/or vitamin C-treated) cells were incubated in 
Hoechst 33342 (10 µg/ml) for 5 min. DNA fragmentation 
and nuclear condensation were observed under an Olympus 
DP71 fluorescence microscope (excitation, 352 nm; emission, 
450 nm; Olympus Corp., Tokyo, Japan).

SDS electrophoresis and western blotting. Cells were lysed 
in radio-immunoprecipitation assay (RIPA) buffer (cat. no. 
20-188; EMD Millipore, Billerica, MA, USA). Proteins were 
collected from the supernatant layer after centrifugation 
(16,000 x g; 4˚C) for 20 min. The protein concentration was 
measured using a protein assay kit (cat. no. 23200; Thermo 
Fischer Scientific, Inc., Waltham, MA, USA). Equal quantities 
(40 µg) of protein were separated by SDS-PAGE using 13.3% 
gels (80 volts) and transferred onto polyvinylidene difluoride 
membranes (EMD Millipore). The membranes were blocked 
with 5% non-fat milk at room temperature for 2 h then washed 
with phosphate-buffered saline (PBS). After the incubation 
with primary antibodies for 4 h, the membranes were washed 
with PBS and treated with anti-rabbit HRP-conjugated 
secondary antibodies at room temperature for 1 h. Finally, 
the immunolabeled proteins were treated with Western 
Lightning® chemiluminescence Plus reagent (Perkin-Elmer, 
Inc., Waltham, MA, USA) and observed with a Luminescence 
Image Analysis system (LAS-4000; FujiFilm Electronic 
Materials Taiwan, Co., Ltd., Tainan, Taiwan).

Statistical analysis. All data were obtained from four indepen-
dent experiments and presented as the mean ± SE. Means were 
compared by Student's t-test using Microsoft Excel (http://
microsoft-excel-2010.updatestar.com/zh-tw). A P<0.05 was 
considered statistically significant.

Results

Combined treatment with low-dose vitamin C and MTX effec-
tively inhibits TNBC cell proliferation and viability. We first 
examined the effects of various concentrations of MTX on 
TNBC cell (MDA-MB-231) growth and survival. Low-dose 
MTX alone (0.1 and 0.01 µM) did not inhibit TNBC cell 
growth after 96-h treatment, and cell viability as measured 
by MIT assay was maintained at ~75-100% of control from 
24 to 96  h (Fig.  1). Only 10  µM MTX reliably inhibited 
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TNBC cell growth at 96 h, with cell viability <50% (Fig. 1). 
Next, combined treatment with low-dose vitamin C (5 µM) 
and MTX was examined. As shown in Fig.  2, compared 
to MTX-treated and vitamin C-treated groups, the MTX 
plus vitamin C-treated group exhibited significantly lower 
cell viability at 24 and 48 h. Cell viability was >70% in all 
MTX-treated and vitamin C-treated groups (Fig. 2), but <40% 
at 48 h in the 0.1 µM MTX plus vitamin C-treated group and 

10 µM MTX plus vitamin C-treated group (Fig. 2). Overall, 
these data demonstrate that combined treatment with low-dose 
vitamin C and MTX effectively inhibits TNBC cell prolifera-
tion and survival.

Vitamin C enhances MTX-induced intracellular H2O2 accu-
mulation. MTX can increase reactive oxygen species (ROS) 
accumulation in cells with ensuing cytotoxicity (15,43). In 
contrast, vitamin C is an anti-oxidant against ROS increase 
(26,27). Both H2O2 and O2

- are major ROS species in cells. 
Intracellular H2O2 and O2

- were compared among the control 
group, MTX-treated group, vitamin C-treated group, and 
MTX plus vitamin C-treated group (Fig. 3A). Intracellular 
H2O2 levels were increased in 0.1 and 10 µM MTX groups, in 
accordance  with a previous study (15). Surprisingly, vitamin C 
did not reduce H2O2 levels in MTX-treated groups. Compared 
to MTX-treated groups, H2O2 levels were increased signifi-
cantly in the vitamin C plus MTX-treated group. In contrast, 
O2

- levels did not differ among treatment groups (Fig. 3B). Our 
data suggest that increased intracellular H2O2 may contribute 
to the decrease in cell viability induced by MTX plus vitamin 
co-treatment.

MTX-treatment and combined MTX plus vitamin C treat-
ment induce apoptosis and caspase-3 activation. Induction 
of apoptosis by these treatments was assessed by nuclear 
staining. As shown in Fig.  4, nuclear condensation and 

Figure 1. Effects of MTX alone on TNBC cell viability. MDA-MB-231 cells 
were treated with 0.1, 0.1 or 10 µM MTX for 96 h and viability measured by 
MTT assay. Cell viability was calculated as A570 experimental group/A570 
control group x 100%. Data are from four independent experiments and pre-
sented as mean ± SD. the *P<0.05, compared to 0.01 µM MTX-treated group.

Figure 2. Effects of MTX plus low-dose vitamin C on TNBC cell viability. 
(A) MDA-MB-231 cells were treated with 0.1 µM MTX, 5 µM vitamin C, 
or 0.1 µM MTX plus 5  µM vitamin C. (B) MDA-MB-231 cells were treated 
with 10 µM MTX, 5 µM vitamin C, or 10  µM MTX plus 5 µM vitamin C. 
Cell viability was measured with MTT. Data are from four independent 
experiments and presented as mean ± SD. *P<0.05, compared to MTX alone 
group.

Figure 3. Effects of MTX plus low-dose vitamin C on intracellular H2O2 and 
O2

-. (A) H2O2 fluorescence emission counts and (B) O2
- counts in the control 

group (Con), 10 µM MTX group (M10), 0.1 µM MTX group (0.1M), 5 µM 
vitamin C group (VITC), 10 µM MTX plus 5 µM vitamin C group (M10 
+ VITC), and 0.1 µM MTX plus 5 µM vitamin C group (M0.1 + VITC). 
Data are from four independent experiments and presented as mean ± SD. 
*P<0.05, compared to control group. #P<0.05, compared to 10 µM MTX 
group. $P<0.05, compared to 0.1 µM MTX group.
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DNA fragmentation were observed in MTX-treated and 
MTX plus vitamin C-treated groups. Apoptosis can be 
initiated by caspase-dependent and caspase-independent 
pathways (44,45). Therefore, caspase-3 activation was exam-
ined by western blotting. As shown in Fig. 5, compared to 
the control group, the ratio of cleaved (activated) caspase-3 
to native caspase-3 was increased significantly in both 
the MTX-treated and MTX plus vitamin C-treated group. 
PARP is a downstream substrate of caspase-3, thus, cleaved 
PARP is a sign of caspase-3 activation. Indeed, cleaved 
PARP level was also increased in both MTX-treated and 
MTX plus vitamin C-treated groups. Taken together, these 
results indicate that combined MTX/vitamin C induces 
caspase‑3-dependent apoptosis in TNBC cells.

p38 phosphorylation in MTX-treated and MTX plus 
vitamin C-treated cells. The MAPK family kinases ERK, 
JNK and p38 are involved in cell death, cell differentiation, 
and cell proliferation (46-48). In the present study, expression 
levels of EKR, JNK, p38 and their phosphorylated (activated) 
forms (p-ERK, p-JNK and p-p38) were estimated by western 
blotting. The ratio of p-p38 to p38 was significantly increased 
in both MTX-treated and MTX plus vitamin C-treated 
groups (Fig. 7), while ERK and JNK expression levels did 
not differ significantly among groups (data not show). Thus, 
MTX/vitamin C-induced cytotoxicity of TNBC cells is associ-
ated with p38 activation.

Combined treatment with vitamin C and MTX inhibits growth 
of tarceva-sensitive, but not tarceva-resistant TNBC cells. As 

Figure 4. Induction of nuclear condensation and DNA fragmentation by MTX plus low-dose vitamin C. (A) Control cells, (B) 10 µM MTX-treated cells, 
(C) 5 µM vitamin C-treated cells, (D) 10 µM MTX plus 5 µM vitamin C-treated cells. MDA-MB-231 cells were treated for 72 h. Nuclear condensation and 
DNA fragmentation were observed by Hoechst 33342 staining. Nuclear condensation is indicated by arrow heads and DNA fragmentation by arrows.

Figure 5. Caspase-3 activation by MTX plus low-dose vitamin C. (A) Western 
blot analysis and (B) cleaved caspase-3/caspase-3 intensity ratio were deter-
mined after 72 h in the control group (C), 10 µM MTX group (M10), 0.1 µM 
MTX group (0.1M), 5 µM vitamin C group (VITC), 10 µM MTX plus 5 µM 
vitamin C group (M10 + VITC), and 0.1 µM MTX plus 5 µM vitamin C 
group (M0.1 + VITC). Data from four independent experiments are pre-
sented as mean ± SD. *P<0.05, compared to control group.

Figure 6. PARP cleavage by MTX plus low-dose vitamin C. (A) Western 
blot analysis and (B) cleaved PARP/tubulin intensity ratio determined after 
72 h in the control group (C), 10 µM MTX group (M10), 0.1 µM MTX group 
(0.1M), 5 µM vitamin C group (VITC), 10 µM MTX plus 5 µM vitamin C 
group (M10 + VITC) and 0.1 µM MTX plus 5 µM vitamin C group (M0.1 + 
VITC). Data from four independent experiments are presented as mean ± SD. 
*P<0.05, compared to control group.
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shown in Fig. 2, combined treatment with vitamin C and MTX 
effectively inhibited MDA-MB-231 cell growth. However, it is 
unclear whether MTX plus vitamin C is useful against other 

TNBC cells, thus, we examined the cell viability of TNBC 
cell lines MDA-MB-468 and MDA-MB-231 TR during MTX, 
vitamin C and combined treatment. Compared to the 10 µM 
MTX-treated group, the combined treatment group exhibited 
lower viability at 48, 72 and 96 h (Fig. 8B). Importantly, cell 
viability was <50% at 72 and 96 h in the 10 µM MTX plus 
vitamin C-treated group (Fig. 8B). Alternatively, cell viability 
did not differ among the control, 0.1 µM MTX-treated, and 
0.1 µM MTX plus vitamin C-treated groups (Fig. 8A). These 
data indicate that 1 µM MTX plus vitamin C can effectively 
inhibit MDA-MB-468 proliferation/survival compared to 
MTX treatment. However, in similar assays of tarceva-resis-
tant MDA-MB-231 TR cells, the MTX plus vitamin C-treated 
group exhibited significantly lower cell viability only at 96 h 
and was >60% for all other groups (Fig. 9). That is, neither 
MTX alone nor MTX plus vitamin C inhibited the growth of 
tarceva-resistant TNBC cells as effectively as tarceva-sensitive 
TNBC cells. Taken together, these findings (Figs. 2, 8 and 9) 
suggest that MTX plus vitamin C treatment can inhibit the 
growth of tarceva-responsive, but not tarceva-resistant TNBC 
cells.

Discussion

MTX alone is not useful for breast cancer treatment, but a 
recent study found that high-dose vitamin C (30 µM to 4 mM) 
enhanced the anticancer activities of MTX on breast cancer 
cells, including MCF-7 cells (ER-positive breast cancer) 

Figure 7. Phospho-activation of p38 by MTX plus low-dose vitamin C. 
(A) Western blot analysis and (B) phosphorylated p38/p38 intensity ratio 
determined at 30 min in the control group (C), 10 µM MTX group (M10), 
0.1 µM MTX group (0.1M), 5 µM vitamin C group (VITC), 10 µM MTX 
plus 5 µM vitamin C group (M10 + VITC), and 0.1 µM MTX plus 5 µM 
vitamin C group (M0.1 + VITC). Data from four independent experiments 
are presented as mean ± SD. *P<0.05, compared to control group.

Figure 8. Effects of MTX plus low-dose vitamin C on other TNBC cell lines. 
(A) MDA-MB-468 cells were treated with 0.1 µM MTX, 5 µM vitamin C, 
and 0.1 µM MTX plus 5 µM vitamin C. (B) MDA-MB-468 cells were treated 
with 10 µM MTX, 5 µM vitamin C, and 10 µM MTX plus 5 µM vitamin C. 
Cell viability were measured with MTT assays. Data from four independent 
experiments are presented as mean ± SD. *P<0.05, compared to MTX alone 
group.

Figure 9. Effects of MTX plus low-dose vitamin C on tarceva-resistant 
TNBC cells. (A) MDA-MB-231 TR cells were treated with 0.1 µM MTX, 
5 µM vitamin C, and 0.1 µM MTX plus 5 µM vitamin C. (B) MDA-MB-
231 TR cells were treated with 10 µM MTX, 5 µM vitamin C, and 10 µM 
MTX plus 5 µM vitamin C. Cell viability measured with MTT assays. Data 
from four independent experiments are presented as mean ± SD. *P<0.05, 
compared to MTX alone group. 
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and MDA-MB-231 cells (30). That study also found G2/M 
elongation and PI3K pathway activation associated with 
vitamin C/MTX-induced cytotoxicity. The present study found 
that MTX had anti-proliferative/cytotoxic effects on TNBC 
cells only when combined with low-dose vitamin C (5 µM). 
The present study further suggests that increased intracellular 
H2O2 levels and activation of caspase-3 and p38 pathways are 
involved in vitamin C/MTX-induced cytotoxicity. In addi-
tion, combined treatment with low-dose vitamin C and MTX 
inhibited cell growth not only of MDA-MB-231 cells but also 
of MDA-MB-468 cells. Therefore, this study suggests that 
vitamin C plus MTX treatment may be effective for clinical 
suppression of TNBC cell growth.

Although a previous study  (30) and the present study 
(Figs.  2 and  8) demonstrated that vitamin C plus MTX 
effectively inhibits TNBC cell growth, vitamin C plus MTX 
treatment did not effectively inhibit tarceva-resistant TNBC 
cells (Fig. 9). Tarceva (erlotinib) is an EGFR tyrosine kinase 
inhibitor (49,50) and has been applied for clinical treatment of 
lung and breast cancers (51-54). These findings suggest that 
EGFR signaling may be involved in vitamin C/MTX-induced 
cytotoxicity.

Apoptosis can be induced via caspase-dependent and 
caspase-independent pathways (44,45). Vitamin C treatment 
can induce apoptosis of breast cancer cells and lung cancer 
cells via the caspase-independent pathway  (36,55,56). On 
the other hand, vitamin C treatment can induce apoptosis of 
melanoma cells and hepatoma cells via the caspase-dependent 
pathway (15,57). In the present study, vitamin C plus MTX 
treatment activated caspase-3 in TNBC cells. Thus, whether 
apoptosis occurs via caspase-dependent or caspase-indepen-
dent pathways may depend on the specific cancer cell type.

At low doses, vitamin C has anti-oxidant activities (26,27), 
and many studies have demonstrated that vitamin C supple-
ments can decrease oxidative stress (15,58,59). However, 
high-dose (millimolar) vitamin C treatment can increase 
oxidative stress  (60-62), and previous studies showed that 
high-dose vitamin C can enhance intracellular H2O2, resulting 
in cancer cell death (37,63,64). Surprisingly, another study 
reported that low-dose (micromolar) vitamin C attenuated 
H2O2 levels but enhanced the anticancer activities of MTX 
on hepatoma cells  (15). In addition, vitamin C/MTX only 
enhances H2O2 levels but not O2

- levels in TNBC cells. These 
results indicated vitamin C/MTX does not inhibit the function 
of superoxide dismutase, while vitamin C/MTX may influence 
GSH levels or activity of glutathione peroxidase.

As shown in fig. 9, the cell viability was not significantly 
different before 72 h between MTX alone group and MTX plus 
vitamin C group. The cell viability was significant different 
only at 96 h between MTX alone group and MTX plus vitamin 
C group. The results indicated that vitamin C is not efficient 
in enhancing MTX-induced cytotoxicity in tarceva-resistant 
TNBC cells. Previously, many studies showed that tarceva-
resistant cells have EGFR gene mutations or additional bypass 
signaling pathways to activate downstream of EGFR (65,66). 
These mutation genes and bypass pathways are important 
factors for cell proliferation with EGFR inhibitor treatment. 
These factors may cause the vitamin C/MTX inefficiency 
in inducing cytotoxicity in tarceva-resistant cells. However, 
many bypass signals are related to tarceva-resistant cells, such 

as SOS1, NF-κB and Fas receptor, signals of which influence 
vitamin C/MTX-induced cytotoxicity, however, this remains 
to be studied in the future.

Collectively, we found that combined treatment with 
low-dose vitamin C and MTX enhanced intracellular H2O2 
accumulation and suppressed TNBC cell growth. Therefore, 
we suggest that both vitamin C dose and cell type may influ-
ence cellular H2O2 levels during treatment.
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