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Abstract. Hepatocarcinogenesis is a complex and multistep 
process that involves the accumulation of genetic and epigenetic 
alterations in regulatory genes. To understand the develop-
ment of hepatocellular carcinoma (HCC), current research 
has utilized improved array technologies. The identification 
of cancer-related molecules could lead to the development 
of novel molecular targets for treatment and biomarkers for 
predicting prognosis. However, prognostic prediction is 
insufficient when considering only tumor factors, since hepa-
tocarcinogenesis is also greatly influenced by the status of the 
background liver. Clinical background liver factors, such as 
the presence of chronic active hepatitis or cirrhosis, are well 
known as risk factors for developing HCC. In contrast, genetic 
or epigenetic background liver factors remain unknown, albeit 
those are important to understand the developing process of 
HCC. Investigating background liver factors could contribute 
to the development of carcinogenic markers of HCC and to the 
prevention of the development of HCC. In the present study, we 
review the currently identified tumor factors and background 
liver factors from a molecular biological viewpoint and also 
introduce our combination array analysis.
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1. Introduction

Hepatocellular carcinoma (HCC) is one of the most common 
causes of cancer-related death worldwide. HCC is associated 
with a high recurrence rate after curative resection. There is 
currently no effective adjuvant chemotherapy available for 
HCC, and treatment options for advanced or recurrent HCC 
are limited. Additionally, the current tumor markers for 
HCC, α-fetoprotein and prothrombin induced by vitamin K 
absence or antagonist-2, are not ideal owing to their relatively 
low sensitivity and specificity. Thus, identification of novel 
molecular targets for treating recurrence and biomarkers for 
predicting prognosis are urgently required.

Investigation of the genetic and epigenetic alterations in 
the hepatocarcinogenic stage which lead to the activation of 
oncogenes and the inactivation or loss of tumor-suppressor 
genes may further our understanding of the development of 
HCC. Many HCC-related molecules have been recently identi-
fied as tumor factors, in part as a result of the improvement of 
the array technology that was first established by Grunstein 
and Hogness in 1975 (1). The genes that are upregulated or 
downregulated in HCC tissue may become the novel molecular 
targets for treatment or biomarkers for predicting prognosis.

HCC recurs in residual liver in 80% of patients who 
undergo curative resection (2). Postoperative recurrence in the 
residual liver arises from either a monoclonal origin caused by 
intrahepatic metastasis (IM) or multicentric occurrence (MO). 
IM develops from tumor cells that spread into the remnant 
liver via the portal vein before or during hepatic resection. 
MO is a unique recurrence pattern from the background liver 
status such as liver cirrhosis secondary to infection with hepa-
titis B virus or hepatitis C virus, alcoholic liver disease and 
non-alcoholic steatohepatitis. Several studies from developed 
countries have shown that MO recurrence is more common 
than IM recurrence (3-7). However, other studies have shown 
that IM recurrence is more common than MO recurrence (8,9). 
The incidence of IM and MO recurrence may depend on the 
balance of tumor malignancy and background liver status (10). 
For example, advanced stage primary HCC lesions may have 
more accumulated epigenetic alterations and the rate of IM rate 
increases. Pervasion of HCC screening for high-risk patients 
increases the number of patients diagnosed in the early stage. 
HCC diagnosed at an early stage may be cured by surgical 
procedures, in which case MO recurrence becomes the major 
issue. This may be one of the reasons why the incidence of 

Search for useful biomarkers in hepatocellular carcinoma, 
tumor factors and background liver factors (Review)

DAI SHIMIzu,  YOSHIKuNI INOKAwA,  FuMINORI SONOHARA,  KENICHI INAOKA  and  SHujI NOMOTO

Department of Surgery, Aichi Gakuin university School of Dentistry, Chikusa-ku, Nagoya 464-8651, japan

R Received December 21, 2016;  Accepted February 9, 2017

DOI: 10.3892/or.2017.5541

Correspondence to: Dr Shuji Nomoto, Department of Surgery, 
Aichi Gakuin university School of Dentistry, 2-11 Suemori-dori, 
Chikusa-ku, Nagoya 464-8651, japan
E-mail: snomoto@dpc.agu.ac.jp

Key words: hepatocellular carcinoma, microarray, oncogene, 
tumor-suppressor gene, background liver



SHIMIzu et al:  BIOMARKERS IN HCC, TuMOR FACTORS AND BACKGROuND LIVER FACTORS2528

MO recurrence is more common than IM recurrence in devel-
oped countries. Although the incidence of HCC is highest in 
eastern Asia and Africa, the incidence is steadily increasing 
in western countries. Thus, epigenetic understanding of MO 
is critical. However, most epigenetic studies concerning HCC 
have mostly focused only on tumor factors. Recent studies 
have initiated the investigation of background liver factors in 
HCC, and we also pursued the detection of background liver 
factors using combination array analysis. In the present review, 
we review the recent literature regarding tumor factors as well 
as background liver factors in HCC patients from a genetic and 
epigenetic viewpoint.

2. Tumor factors

Numerous studies have revealed the genetic and epigenetic 
alterations in HCC tissue. The ongoing development and 
improvement in array technology have contributed to the steady 
increase in these findings. Furthermore, some researchers have 
combined existing array technologies to establish combination 
array analysis to effectively extract tumor factors. Moreover, 
it is expected that the establishment of next-generation 
sequencing may accelerate the identification of HCC-related 
factors. The investigation into tumor factors is necessary for 
the discovery of novel molecular targets for treatment and 
biomarkers for predicting prognosis. In the present study, we 
review the upregulated molecules in HCC as oncogene candi-
dates and downregulated molecules as tumor-suppressor gene 
(TSG) candidates. Oncogenes have the potential to become 
therapeutic targets directly or tumor markers for liquid biopsy, 
thus the exploitation of oncogenes is very important. TSGs are 
not conducive for use as direct therapeutic targets, although 
novel therapeutic strategies can be developed by investigating 
the suppression mechanism of a TSG and the downstream 
pathway of the TSG. We also review the current findings on 
microRNAs (miRNAs), which are often reported as negative 
regulators in post-transcriptional processes.

Oncogenes in HCC. Oncogenes are frequently upregulated in 
HCC tissues and their expression levels correlate with poor 
prognosis or malignant phenotypes of HCC cells. In gener-
ally, oncogenes function to resist apoptosis, drive cell cycle 
progression and inhibit TSG expression or activities, enabling 
the acquirement of enhanced proliferation, migration and/or 
invasion ability by neoplastic cells. The identification of critical 
oncogenes in HCC could lead to the development of treat-
ment targets for these unfavorable phenomenon. Additionally, 
when the protein encoded by an oncogene is overexpressed in 
serum, it may be a useful tumor marker. we listed the recently 
reported oncogenes in HCC in Table I (11-43) and below we 
discuss the current findings.

Catenin  delta-1. Catenin delta-1 (CTNND1) encodes a 
member of the Armadillo protein family, which functions 
in cell adhesion and signal transduction. CTNND1 
was reported to participate in epithelial-mesenchymal 
transition (EMT) (44,45), and a large amount of data 
have implicated CTNND1 in the regulation of cancer 
development and progression (46). CTNND1 was reported 
as an oncogene that drives migration and metastasis (47,48). 
Overexpression of CTNND1 has been observed in lung (49) 

and cervical cancer (50), pancreatic adenocarcinoma (51) and 
gastric cancer (52). Tang et al (16) showed that CTNND1 
expression was significantly upregulated in HCC tissue, and 
the CTNND1 expression level was associated with shorter 
overall survival. Inhibition of CTNND1 expression promoted 
migratory and invasive capacities of HCC cells in vitro and 
metastasis in vivo. Additionally, the authors reported that 
CTNND1 plays an important role in regulating the EMT to 
mesenchymal-epithelial transition (MET) plasticity of HCC 
cells by interacting with E-cadherin, α-catenin, N-cadherin 
and vimentin and by enhancing wnt/β-catenin signaling. 
These studies demonstrate that CTNND1 functions as a novel 
tumor oncogene in HCC and may be a potential therapeutic 
target for HCC management.

Galectin-1. Galectin-1 (Gal-1) is a member of the family of 
β-galactoside-binding proteins implicated in modulating cell-
cell and cell-matrix interactions and regulated by HIF-1. Gal-1 
has vital protumorigenic roles within the tumor microenviron-
ment and plays a role in regulating apoptosis, cell proliferation 
and cell differentiation (53). Dysregulation of Gal-1 expression 
was found to be associated with resistance to chemotherapy 
through ERK pathway activation (54). Gal-1 overexpression 
also mediated migration and invasion in cancer cells via 
increased phosphorylation of AKT, mTOR and p70 kinases. 
Moreover, sorafenib response was impaired in HCC with 
dysregulated p-ERK and p-AKT activation. zhang et al (22) 
found that Gal-1 elevated αvβ3-integrin expression, leading to 
AKT activation, and that Gal-1 overexpression induced HCC 
cell EMT via PI3K/AKT cascade activation. This led Gal-1 to 
promote HCC cell invasion in vitro and lung metastasis in vivo. 
Clinically, this study also revealed a correlation between Gal-1 
overexpression and poor HCC survival outcome. Moreover, 
Gal-1 expression was inversely correlated with HCC sensi-
tivity to sorafenib in vitro. Thus, targeting Gal-1 in a subset of 
HCCs may be an optimal therapeutic strategy, and Gal-1 may 
be a biomarker for predicting the responsiveness to sorafenib 
treatment and for personalized treatment.

Meprin A subunit α. Meprin A subunit α (MEP1A) encodes 
Meprin α, a metalloprotease that belongs to the metzincin 
superfamily. MEP1A cleaves a wide variety of substrates, 
such as basement membrane proteins, protein kinases and 
cytokines. Abnormal MEP1A expression has been implicated 
in several diseases, such as inflammatory bowel disease, 
nephritis and Alzheimer's disease (55). MEP1A expression 
has been previously observed in only colorectal cancer (56); 
however, the mechanisms and function of MEP1A have not 
been reported. OuYang et al (34) revealed that expression 
levels of MEP1A were markedly elevated in HCC tumor 
tissues compared with matched adjacent non-neoplastic 
tissues and nonmalignant liver tissues. Clinical analysis indi-
cated that the expression level of MEP1A in tumor tissues 
was correlated with tumor size, microvascular invasion, 
portal vein tumor thrombus (PVVT), differentiation grade, 
BCLC stage, TNM stage and patient survival. MEP1A over-
expression increased cell migration and cell invasion in vivo 
and enhanced tumor metastasis in vitro. The authors also 
investigated the mechanism of oncogenic activity of MEP1A. 
Overexpression of MEP1A markedly enhanced the levels of 
zEB1, vimentin and matrix MMP2 and MMP9, and concomi-
tantly reduced the expression of E-cadherin. Together these 
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studies indicate that MEP1A is a novel prognostic predictor 
in HCC and plays an important role in the development and 
progression of HCC.

Serine/threonine kinase 33. Serine/threonine kinase 33 
(STK33) is a serine/threonine protein kinase that belongs 
to the calcium/calmodulin-dependent family of kinases and 
is weakly expressed in the liver (57). Recently, STK33 was 
found to be critical for the survival of KRAS-dependent 
hematopoietic cancer cell lines and epithelial cancer cell lines. 
The kinase activity of STK33 was inferred to be required 
for the survival of KRAS-dependent cancer cell lines using 
mutations in the ATP-binding loop (58,59). Yang et al (39) 
investigated the function and mechanism of STK33 in HCC, 
and STK33 expression was found to be frequently upregulated 
in HCC patients. Significant associations were found between 
increased expression of STK33 and advanced HCC staging 
and shorter disease-free survival of patients. Overexpression 
of STK33 increased HCC cell proliferation both in vitro and 
in vivo, whereas suppression of STK33 inhibited this effect. 
The authors also demonstrated that STK33 binds directly to 
c-Myc and increases its transcriptional activity. In particular, 
the C-terminus of STK33 blocked the STK33/c-Myc associa-
tion, downregulated HCC cell proliferation, and reduced liver 
tumor cell number and tumor size. Together this suggests that 
STK33 plays an essential role in hepatocellular proliferation 
and liver tumorigenesis. The C-terminus of STK33 could be 
a potential therapeutic target in the treatment of patients with 
STK33-overexpressing HCC.

TTK protein kinase. The TTK protein kinase (TTK) gene 
encodes a dual specificity protein kinase that phosphorylates 
tyrosine, serine and threonine. TTK is essential for the mitotic 
checkpoint and improper chromosome attachments (60). 
Elevated TTK level leads to amplified centrosomes, hyperac-
tivated SAC and chromosome instability, thus, contributing 
to tumorigenesis (61). The diagnostic value of TTK has been 
reported in thyroid carcinoma (62), breast cancer (63) and lung 
cancer (64). Liu et al (41) investigated the clinical significance 
and prognostic value of TTK in HCC and the effects on cell 
function and signaling pathways. The authors found that TTK 
mRNA expression was frequently increased in HCC tissue. 
High expression of TTK was significantly correlated with 
AFP, tumor size, advanced stage, PVTT and distant metastasis, 
and shortened overall survival and disease-free survival. One 
of the regulatory mechanisms controlling TTK in HCC was 
the demethylation of the TTK promoter. Inhibition of TTK 
expression using siRNA led to a decrease in cell prolifera-
tion and migration in vitro. Further mechanistic studies have 
revealed that TTK activates the Akt/mTOR pathway. Together 
this shows that TTK contributes to HCC tumorigenesis by 
promoting cell proliferation and migration, and that TTK may 
serve as a novel biomarker and a potential target in HCC.

TSGs in HCC. TSGs are frequently downregulated in HCC 
tissue and suppressed expression levels of TSGs have been 
correlated with poor prognosis and malignant phenotypes 
of HCC cells. Although TSGs are less effective for use 
as target molecules due to their low levels of expression in 
cancerous tissue, TSG expression levels in tumor tissue are 
useful as biomarkers. Aberrant DNA methylation, one of the 
mechanisms for suppression of TSG gene transcription, was 
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reportedly detectable in plasma, and thus, the diagnostic signif-
icances are high (65). Additionally, TSGs serve as therapeutic 
targets with the use of DNA methyltransferase inhibitors or 
histone deacetylase inhibitors to reactivate TSGs. Moreover, 
downstream pathways of TSGs may provide therapeutic target 
candidates. we also reported several novel TSGs as poten-
tial biomarkers in HCC using a combination array analysis 
containing expression, single nucleotide polymorphism and 
methylation arrays. Table II (66-85) provides a list of putative 
TSGs and below we discuss several candidates.

Jumonji C domain-containing protein 5. The jumonji C 
domain-containing protein (jMjD) family includes histone 
demethylases that can remove all methylation modifications 
on the lysine residues of histones (86). jMjD5 demethyl-
ates Lys-36 of histone H3. Previous studies have shown that 
dysregulation of jMjD5 promotes cancer cell proliferation 
and migration (87,88). Huang et al demonstrated that jMjD5 
forms a complex with the tumor suppressor p53 by interacting 
with the p53 DNA-binding domain and negatively regulates its 
activity (89). wu et al (73) conducted an expression analysis on 
the JMJD family in HCC and found that the most significantly 
downregulated gene is the gene encoding jMjD5. The authors 
found that downregulation of jMjD5 was caused by altered 
epigenetic histone modifications on the jMjD5 promoter. 
jMjD5 knockdown promoted HCC cell proliferation and 
in vivo tumorigenicity by accelerating the G1/S transition of 
the cell cycle, and forced jMjD5 expression had the opposite 
effects. jMjD5 knockdown led to the downregulation of 
CDKN1A, and CDKN1A knockdown abrogated the effect of 
jMjD5 knockdown or overexpression on cell proliferation, 
suggesting that jMjD5 inhibits HCC cell proliferation mainly 
by activating CDKN1A expression. The authors concluded 
that jMjD5 is a TSG in HCC pathogenesis and that epigen-
etic silencing of jMjD5 promotes HCC cell proliferation by 
directly downregulating CDKN1A transcription.

Kallmann syndrome-1. The Kallmann syndrome-1 (KAL1) 
gene, also named anosmin-1, encodes an extracellular matrix 
related protein with a role in cellular adhesion. KAL1 promotes 
the migration of gonadotropin-releasing hormone expressing 
neurons during development (90). KAL1 also induces neurite 
outgrowth and cell migration through fibroblast growth factor 
receptor 1 pathways (91). Mutations in the KAL1 gene cause the 
X-linked Kallmann syndrome. Decreased KAL1 expression 
has been observed in colon, lung and ovarian cancers compared 
with corresponding adjacent normal tissues (92). Conversely, 
KAL1 overexpression promotes brain tumor malignancy 
through integrin signaling pathways (93). Tanaka et al (74) 
found that KAL1 was downregulated in HCC tissues in their 
microarray project. The authors examined the expression and 
methylation status of KAL1 in HCC to clarify the function of 
KAL1 in HCC. KAL1 mRNA expression was downregulated 
in HCC cell lines with promoter hypermethylation and was 
reactivated by demethylation by 5-aza-dC treatment. KAL1 
mRNA levels were inversely correlated with those of EzR, 
which is one of the key factors involved in tumor progres-
sion and metastasis in HCC (94). Downregulation of KAL1 
mRNA in HCC was significantly associated with elevated 
AFP and PIVKA-2, larger tumor size and vascular invasion. 
Patients with downregulation of KAL1 were more likely to 
have a shorter overall survival. Multivariate analysis identified 

downregulation of KAL1 as an independent prognostic factor 
in HCC. Hence, KAL1 may serve as a biomarker of malignant 
phenotype of HCC.

Ras association domain family member 10. The gene 
encoding Ras association domain family member 10 
(RASSF10) is located on chromosome 11p15.2, a region 
that shows frequent loss of heterozygosity (LOH) in several 
cancer types. Hypermethylation of the RASSF10 promoter 
region, which inactivates the gene, is common across several 
cancers (79). wang et al (95) examined RASSF10 expression 
in HCC and its role in hepatocarcinogenesis. The authors 
found that RASSF10 was epigenetically downregulated by 
promoter hypermethylation in human HCC tissue and HCC 
cell lines. Low RASSF10 expression was associated with poor 
differentiation, cirrhosis, tumor thrombus and BCLC stage 
and contributed to tumor recurrence and shortened patient 
survival. Overexpression of RASSF10 in HCC cell lines 
resulted in suppressed cell proliferation and apoptosis induced 
by Bcl-2 family proteins. In vivo, RASSF10 overexpression 
also reduced proliferation, migration and invasion of HCC 
cells by inhibiting EMT. Together, these findings indicate that 
RASSF10 may be a useful prognostic biomarker in HCC.

Synaptojanin-2-binding protein. Synaptojanin-2-binding 
protein (SYNj2BP) regulates endocytosis of activin 
type II receptors (ActRIIs) through a Ral/Ral-binding 
protein 1-dependent pathway (96). Expression of SYNj2BP 
enhances endocytosis of ActRIIs and suppresses activin-
induced transcription. Adam et al (97) demonstrated that 
SYNj2BP stabilizes Notch ligands and inhibits sprouting 
angiogenesis. Notch signaling contributes to the occurrence 
and development of many cancers (98). Brito et al (99) used 
gene expression profiling to show that SYNJ2BP expression 
was suppressed in clear cell renal carcinoma. Liu et al (81) 
indicated that SYNj2BP acted as a tumor suppressor in HCC 
by inhibiting tumor growth and metastasis via activation of the 
DLL4 pathway. To the best of our knowledge, no studies have 
pursued the clinical significance of SYNJ2BP in neoplasms. 
Liu et al further showed that SYNj2BP mRNA and protein 
were downregulated in human HCC tissues and HCC cell 
lines. Low expression of SYNj2BP in HCC tissues was associ-
ated with tumor size, tumor nodule number, vascular invasion, 
TNM stage and BCLC stage, and patients with low SYNj2BP 
expression had shorter overall survival and disease-free 
survival. Knockdown of SYNj2BP increased proliferation, 
migration and invasion activities of HCC cell lines in vitro, 
and increased tumor growth and metastasis. Additionally, 
knockdown of SYNj2BP decreased DLL4 expression in 
HCC cell lines, and forced expression of SYNj2BP elevated 
DLL4 expression. This suggests that SYNj2BP inhibited 
HCC growth and metastasis through activating DLL4. Hence, 
SYNj2BP can be used as a potential marker for HCC and may 
serve as a target for HCC treatment in the near future.

Combination array analysis. To detect cancer-related genes 
in HCC, we developed a new technique: a combination array 
analysis, consisting of a gene expression array, a methyla-
tion array and a single nucleotide polymorphism array (100). 
Nomoto et al previously developed the ‘double-combination 
array’ by combining expression array analysis and SNP array 
analysis to effectively gain whole genome information (101). 
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The gene expression profile provides a snapshot of the tran-
scriptional state of non-cancerous and tumor tissues. The SNP 
array is a useful tool for surveying LOH, a prominent charac-
teristic of many human cancers. The authors' combination of 
these two microarrays in one representative surgical sample 
enabled the identification of several, novel tumor-specific gene 
alterations (100-105). To further evaluate hypermethylation of 
promoter CpG islands, a methylation array can be added to 
complete the triple-combination array analysis, which thus, 
more efficiently searches for epigenetic alterations. We identi-
fied several genes as candidates for TSGs in HCC using this 
combination array analysis. we listed these putative TSGs 
detected by combination array analysis in Table III (100-112).

Dysregulated miRNAs in HCC. As a group of small non-coding 
RNAs, miRNAs negatively regulate post-transcriptional 
processes and can function as oncogenes or TSGs. miRNAs 
bind to complementary sequence in the target mRNA and, as a 
result, negatively regulates the target gene expression. miRNAs 
have been reported to be involved in many types of diseases 
particularly malignancies including HCC. miRNAs released 
from cancer cells into serum can be quantified by PCR tech-
nique. Some studies have demonstrated the potential value of 
miRNAs as prognostic or diagnostic markers. In the present 
review, we introduce newly identified miRNAs that potentially 
represent biomarkers for HCC in Table IV (113-139).

miR-192. Yang et al (140) reported the association between 
miR192 and HCC for the first time by genomic sequence. 
Previous studies have shown that miR-192 inhibited HCC 
growth by negatively regulating HOTTIP, and HCC patients 
with high HOTTIP expression had a much shorter overall 
survival (141). Lian et al (125) assessed the function and 
clinical significance of miR-192 in resected HCC specimens. 
miR-192 expression was decreased and negatively correlated 
with vascular invasion in HCC specimens. Low miR-192 
expression significantly contributed to short overall survival 
in HCC patients. miR-192 significantly suppressed metastasis 
of HCC cells in vitro and in vivo. SLC39A6, which promoted 
HCC cell migration and invasion, was identified as a direct and 
functional target of miR-192. Additionally, miR-192 decreased 
SLC39A6 expression, subsequently downregulating SNAIL 
and upregulating E-cadherin expression. Thus, miR-192 and 
SLC39A6 may be useful predictors for HCC patient prognosis, 
and the miR-192/SLC39A6/SNAIL pathway may be a thera-
peutic target for HCC treatment.

miR-211. miR-211 has been reported to be dysregulated in 
several carcinomas. miR-211 functions as an oncogenic miRNA 
in colorectal cancer (142), oral squamous cell carcinoma (143), 
breast (144) and lung cancer (145). In contrast, miR-211 acts as 
tumor suppressor in glioma (146), melanoma (147) and ovarian 
cancer (148). Deng et al (126) demonstrated that miR-211 is a 
tumor suppressor that is pathologically downregulated in HCC 
tissues and cell lines. miR-211 inhibited tumor cell growth, 
and overexpression of miR-211 suppressed HCC cell migration 
and invasion in vitro and in vivo. miR-211 downregulation is 
associated with vein invasion, TNM stage and poor overall 
survival of HCC patients. Moreover, SPARC was identified as 
a direct target of miR-211. The authors concluded that loss of 
miR-211 expression and thus uncontrolled SPARC overexpres-
sion may drive progression of HCC. Together, these findings 

may provide a novel therapeutic target for the treatment of 
HCC.

miR-379-5p. Chen et al (130) investigated the expression 
level of miR-379-5p in HCC tissues and found that down-
regulation of miR-379-5p was associated with advanced TNM 
stage. In addition, miR-379-5p expression levels were markedly 
lower in metastatic HCC tissues than in non-metastatic HCC 
tissues, indicating that miR-379-5p correlates with metastasis 
in HCC. Overexpression of miR-379-5p inhibited HCC cell 
migration, invasion, EMT and metastasis both in vitro and 
in vivo. Moreover, miR-379-5p was found to directly target 
FAK and was negatively correlated with FAK in HCC tissues. 
Together, this indicates that miR-379-5p may represent a novel 
potential therapeutic target and prognostic marker for HCC.

miR-519a. Previous studies have shown that miR-519a plays 
an oncogenic role in breast cancer (149) and ovarian epithelial 
tumors (150), and acts as a tumor suppressor in glioma (151). 
Shao et al (152) reported elevated expression of miR-519a in 
HCC tissues compared with adjacent non-cancerous tissues. 
The increased expression of miR-519a was significantly corre-
lated with adverse clinical features and was associated with a 
poorer overall survival and recurrence-free survival of HCC 
patients. upregulation of miR-519a reduced the expression 
of FOXF2 mRNA, promoted cell proliferation, and inhibited 
apoptosis in vitro. Tu et al (135) demonstrated that upregula-
tion of miR-519a was associated with poor prognostic features 
and reduced overall survival and disease-free survival of 
HCC patients. miR-519a promoted HCC cell proliferation and 
cell cycle progression. Additionally, PTEN and PI3K/AKT 
pathway were identified as direct targets of miR-519a. These 
data suggest that miR-519a may be a useful diagnostic and 
prognostic biomarker and a novel therapeutic target for HCC.

miR-1180. Recent studies have demonstrated that low 
expression of miR-1180 was associated with poor overall 
survival in patients with renal cell carcinoma (153). miR-1180 
had suppressive effects on cell proliferation and induced p21 
expression, which contributed to cycle arrest, in bladder cancer 
cells. Tan et al (139) investigated the molecular mechanisms 
of miR-1180 in apoptosis resistance in HCC. miR-1180 inhibi-
tion increased cell apoptosis, while miR-1180 directly targeted 
OTuD7B and TNIP2, which inhibited the NF-κB signaling 
pathway. zhou et al (154) also reported that miR-1180 
promoted the proliferation of HCC cells by repressing TNIP2 
expression. These studies indicate that miR-1180 may act as a 
tumor promoter by targeting TNIP2 and resisting apoptosis 
via activation of the NF-κB signaling pathway.

3. Background liver factors

unlike other carcinomas, HCC frequently recurs in residual 
liver after curative surgical resection. The recurrence in 
residual liver shows two patterns, IM and MO. IM occurs 
from tumor cells that spread into the remnant liver via the 
portal vein from the primary lesion. MO occurs from new 
HCC foci that develops due to the presence of HCC-relevant 
risk factors in non-cancerous liver tissue (155,156). Thus, 
hepatocarcinogenesis is greatly influenced by the state of 
the background liver. HCCs with MO recurrence vary in the 
differentiation degree and the epigenetic tumor factors in 
each nodule, even within a single case. However, there must 
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be some shared carcinogenic characteristics in the underlying 
epigenetic background of non-cancerous liver tissue in cases 
with MO. Identifying the mechanisms of MO may contribute 
to the development of carcinogenic markers for HCC and to 
the prevention of the development of HCC. Some researchers 
reported various molecular changes in the background liver 
of HCC patients (157-161). Okamoto et al stated that specific 
gene expression profiling in non-cancerous liver tissue 
may predict the risk of MO recurrence (157). Hoshida et al 
showed that gene expression profiles in non-cancerous 
liver tissue were associated with patient outcome (158). 
utsunomiya et al reported that specific molecular signatures, 
including miRNAs, in non-cancerous liver tissue contributed 
to hepatocarcinogenesis and recurrence of HCC (159-161). 
However, there are few studies that refer to individual 
molecules in the background liver tissue of HCC. Recently, we 
attempted to identify these background liver factors using our 
combination array analysis approach. In the present review, we 
summarize our methods and introduce potential background 
liver factors.

Methods. Control samples, termed supernormal (SN) liver, 
were obtained from the normal tissues of 11 patients with 
metastatic liver cancer who underwent liver resection. 
For comparison, non-neoplastic liver tissue, termed corre-
sponding normal (CN) liver, was obtained from a typical 
HCC case that resulted from chronic hepatitis C. This patient 
was a 58-year old man with liver cirrhosis who had undergone 
liver resection but experienced recurrence 3 years after the 
primary lesion resection. Genomic DNA and total RNA were 
extracted from the SN and CN tissues. Expression profiling 
and methylation array were performed to compare the SN and 

CN samples and identify genes with differential expression 
and the methylation rate.

Thimet oligopeptidase 1. Thimet oligopeptidase 1 (THOP1) 
was first identified as a molecule that was related to late-onset 
familial Alzheimer disease by Meckelein et al (162). 
Qi et al (163) later found that THOP1 expression was 
suppressed in non-small cell lung cancer and that low expres-
sion of THOP1 in cancerous tissue was correlated with poor 
prognosis. Nomoto et al (164) identified THOP1 as a back-
ground liver factor for hepatocarcinogenesis by combination 
array analysis. Expression array results showed that expres-
sion of THOP1 was decreased 4.119-fold in CN. Methylation 
array showed a higher value for CN (0.869) than SN (0.488). 
Downregulation of THOP1 was shown in HCV-positive 
background liver as well as in hepatitis B virus-positive 
and non-B non-C hepatitis virus background liver. The 
group with higher THOP1 expression than average showed 
significant correlations with prolonged survival. Strongly 
reduced THOP1 expression was shown to be an independent 
prognostic factor for overall survival. The authors concluded 
that expression of the THOP1 gene in the background liver 
of HCC is likely to be a good biomarker for the risk of HCC 
development.

Janus kinase 2. janus kinase 2 (jAK2), which functions in the 
jAK/STAT pathway, is a tyrosine kinase involved in various 
processes such as cell growth, development, differentiation 
and histone modifications. JAD2 was found to contribute to 
oncogenesis through activation of STAT3 in various human 
solid tumor cell lines (165). The activation of the jAK/
STAT pathway in HCC was previously demonstrated by 

Table III. Candidate tumor-suppressor genes detected by combination array analysis.

 Array method
Symbol -------------------------------------------------------------------------
(location) Expression SNP Methylation No. of Pts. Survival Relevant clinical factors Ref.

MT1G (16q13) Yes Yes - 48 - - (101)
EFEMP1 (2p16) Yes Yes - 48 OS Liver damage, AFP (102)
LIFR (5p13-p12) Yes Yes - 48 - - (103)
FBLN1 (22q13.31) Yes Yes - 48 - Tumor multiplicity, (104)
      tumor size, pStage
BLMH (17q11.2) Yes Yes Yes 48 - - (106)
RELN (7q22) Yes Yes - 48 DFS - (100)
AKAP12 (6q24-q25) Yes Yes - 48 OS - (105)
ESR1 (6q25.1) Yes Yes Yes 48 - - (107)
DNM3 (1q24.3) Yes Yes Yes 48 DSF Expansive growth (108)
DCDC2 (6p22.1) Yes Yes Yes 48 OS - (109)
COL1A1 (17q21.33) Yes Yes Yes 48 OS Liver damage, (110)
      capsule formation
PTK7 (6p21.1-p12.2) Yes Yes Yes 48 OS Age, PIVKA-II (111)
CCNj (10q23.33) Yes Yes Yes 85 OS - (112)

SNP, single nucleotide polymorphism; No. of Pts., number of patients; OS, overall survival; AFP, serum α-fetoprotein; pStage, uICC pathological 
stage; DFS, disease-free survival; DSF, disease-specific survival; PIVKA-II, protein induced by vitamin K absence or antagonist-2.
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Table IV. Dysregulated miRNAs in hepatocellular carcinoma.

miRNA Sample N Relevant clinical factors Functional analysis Interacting molecules In vivo Ref.

miR-7 Tissue 18 - Proliferation NF90-NF45, - (113)
     EGFR, p-AKT
miR-22 Tissue 162 OS, tumor size, Apoptosis Galectin-1 - (114)
   differentiation, stage,
   distant metastasis
miR-26b-5p Tissue 23 RFS Migration, invasion, SMAD1 Yes (115)
    EMT
miR-101 Tissue 20 - Migration, invasion VEGF-C - (116)
miR-106b Tissue 120 OS, DFS, HBV (+) - MCM7, miR-93, - (117)
     miR-25
miR-127-5p Tissue 111 Grade, vascular invasion Proliferation NF-κB, p65, BLVRB - (118)
miR-133b Tissue 37 - Proliferation, invasion, Sirt1, E-cadherin, Yes (119)
    apoptosis GPC3, Bcl-2, Bcl-xL,
     Mcl-1, β-catenin
miR-135a Tissue - - Migration, invasion FOXO1, MMP2, - (120)
     Snail, p-AKT, FOXO3a
miR-137 Tissue 110 OS, DSS, vascular - - (121)
   invasion, bile
   duct invasion, AFP
miR-144 Tissue 100 Recurrence Invasion, metastasis, SMAD4 - (122)
    cell cycle, EMT,
    chemoresistance
miR-155-3p Tissue 45 OS Proliferation FBXw7 Yes (123)
miR-186 Cell line - - Proliferation, migration, YAP1 - (124)
    invasion
miR-192 Tissue 101 OS, vascular invasion Metastasis SNAIL, SLC39A6, Yes (125)
     E-cadherin
miR-211 Tissue 227 OS, vein invasion,  Proliferation, migration, SPARC Yes (126)
   stage invasion
miR-214 Tissue 25 - Proliferation uCP2 - (127)
miR-224 Tissue, 211 Tumor size, stage, - - - (128)
 plasma  recurrence
miR-367 Tissue 35 - Proliferation, migration, PTEN - (129)
    invasion
miR-379-5p Tissue 85 Stage, metastasis Migration, invasion, FAK Yes (130)
    EMT, metastasis
miR-449a Tissue 40 - Proliferation, migration, ADAM10 - (131)
    invasion
miR-497 Tissue 86 OS, DFS, AFP, Proliferation, apoptosis YAP1 - (132)
   tumor size, grade,
   T stage
miR-502-3P Tissue 50 - Proliferation, invasion, SET - (133)
    metastasis, cell adhesion
miR-503 Tissue 87 Grade, nodal metastasis, Proliferation, apoptosis IGF-1R - (134)
   vascular invasion, stage
miR-519a Tissue 116 OS, DFS, tumor size, Proliferation, cell cycle PTEN - (135)
   grade, stage,
   venous infiltration
miR-613 Tissue 38 - Proliferation, invasion DCLK1 Yes (136)
miR-655-3p Tissue 84 Tumor size, PVTT, Proliferation, ADAM10 - (137)
   differentiation, stage, migration, invasion
   metastasis
miR-761 Tissue 50 - Proliferation, metastasis MFN2 Yes (138)
miR-1180 Tissue 7 - Proliferation, apoptosis OTuD7B, TNIP2, BAD Yes (139)

OS, overall survival; RFS, recurrence-free survival; EMT, endothelial-mesenchymal transition; DFS, disease-free survival; DSS, disease-specific 
survival; AFP, serum α-fetoprotein.
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measuring the phosphorylation of jAK/STAT proteins (166). 
Sonohara et al (167) reported that higher jAK2 expression in 
CN significantly correlated with shorter overall survival while 
jAK2 expression in HCC did not relate to prognosis statisti-
cally. The authors suggested that higher jAK2 expression in 
the background liver tissue of HCC could reflect carcinogen-
esis potential and may be a good prognostic biomarker for 
resected HCC.

4. Conclusions

The improvement in array technologies and the development 
of next-generation sequencing have contributed to the iden-
tification of several tumor factors in HCC that may serve as 
novel molecular targets for treating recurrence and biomarkers 
for predicting the prognosis. Further research in this direction 
should lead to the establishment of background liver factors, 
which may contribute to the development of carcinogenic 
markers of HCC and the prevention of the development of 
HCC.
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