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Abstract. Decoy receptor 3 (DcR3), a decoy molecule 
belonging to the tumor necrosis factor receptor superfamily 
(TNFRSF), is a soluble receptor that can neutralize the 
biological effects of three other TNFSF members, namely, 
Fas ligand (FasL/TNFSF6/CD95L), LIGHT (TNFSF14) and 
TNF-like molecule 1A (TL1A/TNFSF15). DcR3 expression is 
increased in tumor cells. As such, DcR3 has been considered 
a potential biomarker to predict cancer invasion and progres-
sion of inflammation. However, the molecular mechanisms 
of DcR3 in tumor progression and metastasis remain poorly 
described. In the present study, DcR3 induced cytoskeleton 
remodeling, inhibited E-cadherin expression, and promoted 
cancer cell migration. Immunofluorescence and flow cytom-
etry demonstrated that DcR3 expression was increased in 
hepatoma cells, whereas E-cadherin expression was signifi-
cantly downregulated. Immunohistochemistry revealed that 
DcR3 and E-cadherin exhibited an opposite expression pattern 
between normal and cancerous liver tissues. Moreover, DcR3 
treatment promoted IκBα degradation and p65 nuclear translo-
cation. Therefore, the present study uncovered the mechanism 
underlying the function of DcR3 in cancer cell migration and 
provides evidence that DcR3 may be a potential target for 
cancer therapy.

Introduction

Decoy receptor 3 (DcR3), a soluble molecule belonging to the 
tumor necrosis factor receptor superfamily (TNFRSF), was 
first identified as a decoy receptor of Fas ligand (FasL) and 
inhibitor of FasL-induced apoptosis (1). DcR3 also neutral-
izes the biological effects of two other TNFSF members, 
namely, LIGHT (TNFSF14) and TNF-like molecule 1A 
(TL1A/TNFSF15) (2-4). DcR3 can be defined as an immu-
nomodulator on the basis of its neutralizing effects on FasL, 
LIGHT and TL1A (4-7). DcR3 is upregulated in tumor cells 
and inflammatory diseases (8-11). DcR3 in serum can be used 
as a biomarker to predict cancer invasion and progression of 
inflammation (12-15). DcR3 also acts as an effector molecule to 
modulate cell function through non-decoy activities, including 
the effects on cell adhesion and differentiation (16-18).

Liver cancer is a common malignancy worldwide. 
Cancerous liver tissues yield high DcR3 expression, and this 
expression is correlated with tumor differentiation, serosal 
invasion and liver metastases (13,19,20). Nevertheless, the 
precise mechanisms of DcR3 in liver cancer progression and 
metastasis remain unclear.

E-cadherin, a classical member of the cadherin superfamily, 
is a calcium-dependent cell-cell adhesion glycoprotein (21). The 
E-cadherin-catenin complex plays a key role in cellular adhe-
sion (22,23). The loss of E-cadherin function or expression has 
been implicated in cancer progression and metastasis (24,25). 
In the present study, DcR3 treatment caused HepG2 cell 
cytoskeleton remodeling, inhibited E-cadherin expression, 
and promoted cell migration. Immunohistochemical analysis 
revealed that E-cadherin and DcR3 exhibited an opposite 
expression trend in liver carcinoma tissues. The present study 
also demonstrated the functional mechanism of DcR3 in 
cancer cell migration and provides a theoretical basis for the 
use of a DcR3 antagonist to treat liver cancer.

Materials and methods

Clinical samples. Tissue samples from three patients with 
hepatic carcinoma and biliary tract disease were collected 
during surgical resection performed at the Shenzhen Second 
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People's Hospital (Shenzhen, China). Liver tumor and 
non-tumor liver tissues were fixed and immediately used to 
prepare tissue slices. All of the samples were obtained with 
patient consent and approval of the Institutional Animal 
Care and use Committee, Shenzhen Institutes of Advanced 
Technology.

Cell culture and transfection. The human hepatocarcinoma 
cell line Hepg2 or the normal liver cell line L02 were obtained 
from the Shanghai Institute of Cell Biology (Shanghai, China). 
Both cell lines were maintained in Dulbecco's modified Eagle's 
medium (DMEM), supplemented with 10% fetal bovine serum 
(FBS) (Gibco, Carlsbad, CA, uSA), and 100 µg/ml each of 
penicillin-streptomycin (HyClone, Logan, UT, USA) in 5% 
CO2 at 37̊C.

In 6-well plates, 2x105 cells/well were cultured overnight 
and transfected with 2 µg PLVx-IRES-Zsgreen-DcR3 
plasmid with Lipofectamine® 2000 (Invitrogen, Carlsbad, CA, 
USA). The cells transfected with an empty vector were used as 
a blank control.

Western blot analysis. Hepg2 cells were treated with 3 µg/ml 
DcR3-Fc or Igg1 as control, or transfected with the indicated 
plasmids. At 48 h after transfection or treatment, cells were 
harvested and determined by the antibodies indicated in the 
figures. Cell pellets were lysed in RIPA (Thermo Fisher Scientific 
Inc., Waltham, MA, USA), 1 mM phenylmethylsulfonyl fluo-
ride (PMSF) (Beyotime, Shanghai, China) and 1% protease 
inhibitor cocktail (Thermo Fisher Scientific, Inc.). Lysates 
were normalized for total protein (25 µg) and loaded on 8-12% 
sodium dodecyl sulfate-polyacrylamide gel, electrophoresed, 
and transferred to a polyvinylidene fluoride (PVDF) membrane 
(Millipore, Kenilworth, NJ, USA), followed by blocking with 
5% skimmed milk at room temperature for 1 h. The membrane 
was incubated with primary antibodies overnight at 4̊C, and 
rinsed with Tris-buffered saline with Tween-20. The blots were 
then incubated with horseradish peroxidase (HRP)-conjugated 
secondary antibody (KPL) for 1 h at room temperature. 
Detection was performed using EMD Millipore Luminata™ 
Western HRP Chemiluminescence Substrates (WBLuR0500). 
Nuclear and cytoplasmic extracts were isolated with NE-PER™ 
Nuclear and Cytoplasmic Extraction Reagents (78833) 
purchased from Thermo Fisher Scientific. The defined sections 
of the film were scanned for image capture and quantification 
using Adobe Photoshop software (CS4; (Adobe Systems, Inc., 
San Jose, CA, USA) and ImageJ software (National Institutes of 
Health, Bethesda, MD, USA).

RNA isolation and real-time quantitative PCR. Total RNA 
was isolated using TRIzol reagent (Invitrogen) according to 
the manufacturer's instructions. RNA samples were reverse 
transcribed with oligo (dT) and M-MLV Reverse Transcriptase 
(Takara, Tokyo, Japan). A mixture of 1 µg RNA, 4 µl 5x RT 
mix, 1 µl primer mix, and nuclease-free water were made up to 
a 20-µl volume. The reverse transcription step was as follow: 
37̊C for 15 min; 85̊C for 5 sec, and then stored at -20˚C. Real-
time quantitative PCR analysis was performed with specific 
primers for human E-cadherin (forward, 5'-TggAggAATTC 
TTGCTTTGC-3' and reverse, 5'-CGTACATGTCAGCCAGC 
TTC-3') in a CFx96 Touch™ Real-Time PCR Detection 

System (Bio-Rad, Hercules, CA, USA) with SYBR qPCR mix 
(Takara). Relative levels of gene expression were determined 
using gAPDH as the control (forward, 5'-ATCTggCACCAC 
ACCTTCTAC-3' and reverse, 5'-CAGCCAGGTCCAGACGC 
Agg-3'). SYBR-green PCR Master Mix 2 µl, forward and 
reverse primers 200 nM, cDNA template 100 ng, and ddH2O 
up to 10 µl volume was mixed together. PCR conditions 
consisted of the following: 95̊C for 3 min for denaturation; 
95̊C for 5 sec for annealing; and 60̊C for 40 sec for extension, 
for 40 cycles. The threshold cycle for each sample was selected 
from the linear range and converted to a starting quantity by 
interpolation from a standard curve generated on the same 
plate for each set of primers. The E-cadherin mRNA levels 
were normalized for each well to the gAPDH mRNA levels 
using the 2-ΔΔCt method.

Immunofluorescent assay. L02 or Hepg2 cells were washed 
with phosphate-buffered saline (PBS) and fixed at room 
temperature with 4% polyformaldehyde for 10 min, permeated 
with 0.1% Triton x-100 for 7 min, blocked for 30 min with 1% 
BSA, and incubated sequentially with the indicated primary 
and secondary antibodies. 4',6-Diamidino-2-phenylindole 
(DAPI) (Beyotime) was used to label the nuclei. Phalloidin-
Rhodamine (Thermo Fisher Scientific) was used for F-actin 
staining.

Flow cytometry. L02 or Hepg2 cells were collected and 
washed with PBS, fixed and permeabilized with Fix/Perm 
solution (BioLegend, San Diego, CA, uSA) before intracel-
lular staining. After 15 min, the cells were washed twice with 
Perm/Wash buffer, and incubated with the DcR3 antibody at 
4̊C for 1 h. Cells were washed with PBS and incubated with 
the FITC-goat anti-rabbit antibody at 4̊C for 30 min. Cells 
were washed with PBS twice. The intracellular fluorescence 
of FITC was detected by FCM after excitation at 488 nm. 
Fluorescence emissions at 530 nm from 10,000 cells were 
collected, amplified and scaled to generate a single-parameter 
histogram.

Immunochemistry. The sample sections were deparaffinized 
and rehydrated. After boiling in a microwave oven, the antigen 
was retrieved with a 0.01 M sodium citrate buffer (pH 6.0) 
at a sub-boiling temperature for 20 min. The following steps 
were performed with the SP kit (9001; ZSgB-BIo, Beijing, 
China). Shortly, the sections were incubated with 3% hydrogen 
peroxide for 10 min to block endogenous peroxidase. After 
15 min of pre-incubation in 5% normal goat serum to prevent 
non-specific staining, the samples were incubated with the 
antibody to DcR3 (Abcam, Cambridge, UK) at 4̊C overnight. 
Secondary antibody was added and incubated for 30 min. 
The sections were incubated in horseradish enzyme-labeled 
chain avidin solution for 30 min at room temperature. Color 
was developed with a diaminobenzidine (DAB) substrate kit. 
Counterstaining was performed with hematoxylin.

Wound healing assay. Confluent cell cultures were grown on 
6-well plates. Wounds were made with the tip of a micropi-
pette. DcR3-Fc was added to the culture medium at a final 
concentration of 3 µg/ml. Igg1 was added as a control. Wound 
closure speed was analyzed as indicated in the legend.
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Transwell assay. Hepg2 cells were treated with 3 µg/ml 
DcR3-Fc or Igg for 24 h, and then were trypsinized and 
resuspended in DMEM without FBS before plating on the 
upper layer of the Transwell with an 8-µm pore-size membrane 
at a cell density of 1x104. DMEM containing 5% FBS was 
added to the lower layer. After 15 h, the cells remaining on the 
top surface were scratched off. The cells on the lower surface 
were fixed in methanol, stained with 0.5% crystal violet 
(Beyotime), and images were captured under a microscope. 
The intact Transwell was dissolved in 33% acetic acid, and 
the supernatant was detected for absorption values with a 
spectrophotometer at 590 nm.

Materials. DcR3-Fc and human Igg1 proteins were purchased 
from Sino Biological, Inc. (Beijing, China). Anti-DcR3, 
anti-E-cadherin and anti-IκBα antibodies were purchased 
from Abcam. Anti-p65 was purchased from Santa Cruz 
Biotechnology (Santa Cruz, CA, USA). Anti-tubulin was 
purchased from Abmart (Shanghai, China).

Statistical analysis. All experiments were repeated at least three 
times or noted otherwise. Data are expressed as mean ± SD. 
The t-test was performed for inter-group comparisons. Values 
with p<0.05 were considered to show significant differences.

Results

DcR3 regulates colony scattering of HepG2 cells and 
decreases E-cadherin expression. Hepg2 cells were examined 

using a colony scattering assay to analyze the function of 
DcR3 in regulating cell migration. The colony scattering 
assay, mimicking certain aspects of tumor invasion, reveals 
the ability of epithelial tumor cells to detach from colonies 
in culture. The cells were plated at very low density, and the 
morphological characteristics of the colonies were evaluated 
5 days after plating. The colonies were compact in the control 
or Igg1 groups, and >90% of the cells in a colony contained 
cell-cell junctions. By contrast, the cells were scattered in 
the DcR3 treatment group, and <20% of the cells formed 
junctions (Fig. 1A). In the cells detached from the scattered 
colonies, numerous protrusions were formed on the membrane 
edge of these cells (Fig. 1A, lane 3, arrows). Philloidin staining 
revealed that DcR3 promoted actin remodeling and revealed 
a scattered phenotype (Fig. 1B). This finding indicated that 
DcR3 triggered changes in cell morphology and enhanced the 
ability of cells to detach from the colonies.

DcR3 treatment disrupts colony scattering and causes cyto-
skeleton remodeling in HepG2 cells. To investigate the role of 
DcR3 in the regulation of cell-cell adhesion, we detected whether 
E-cadherin, a key molecule in the regulation of intercellular 
adhesion, was regulated by DcR3. The mRNA of E-cadherin 
was significantly downregulated by DcR3 treatment (Fig. 1C). 
The same effect was observed at the protein level (Fig. 1D). 
DcR3 expression also inhibited E-cadherin expression (Fig. 1E). 
Thus, DcR3 is a negative regulator of E-cadherin.

DcR3 and E-cadherin expression levels are inversely corre-
lated in hepatocarcinoma cell lines and tissues. To understand 

Figure 1. DcR3 regulates colony scattering and inhibits E-cadherin expression. Cells were plated at a low density and treated with 3 µg/ml DcR3-Fc or 
control Igg1. The colony morphology was analyzed 4 days after plating. (A) Representative images of colony formation. Rows 1-3 indicate colony scattering 
under different magnification. Scale bar: row 1, 150 µm; row 2, 50 µm and row 3, 20 µm. (B) Representative images of actin remodeling as observed by phal-
loidin staining. Scale bar, 20 µm. (C) Hepg2 cells were treated with 3 µg/ml DcR3-Fc. Forty-eight hours later, the E-cadherin mRNA level was determined 
by qRT-PCR. Data are from 3 indepentdent experiments; *p<0.05. (D) Hepg2 cells were treated as described in C, and the protein level of E-cadherin was 
detected using western blot analysis. Representative images from two independent experiments are shown. (E) Hepg2 cells were transfected with the control 
or DcR3-expressing vectors. At 48 h after transfection, cells were harvested and whole-cell lysates were detected by the indicated antibodies. Representative 
images from two independent experiments are shown.
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the significance of the role of DcR3 in hepatocarcinoma, we 
detected DcR3 and E-cadherin expression levels in the normal 
liver cell line L02 and the hepatoma cell line HepG2 by 

performing immunofluorescent assays. The DcR3 expression 
level was higher in the Hepg2 cells than that noted in the L02 
cells (Fig. 2A). To confirm this observation, we detected the 

Table I. 

Figure 3. DcR3 treatment promotes cell migration. (A) Representative images of wound healing assay as described in Materials and methods. (B) Quantitative 
analysis of three independent experiments as presented in A; *p<0.05. (C) Representative images of the Transwell assay as described in the Materials and 
methods. (D and E) Quantitative analysis of three independent experiments as presented in C; *p<0.05, **p<0.01, ***p<0.001.

Figure 2. DcR3 and E-cadherin expression in hepatocarcinoma cell lines and tissues. DcR3 expression in L02 and Hepg2 cells was determined 
using (A) immunofluorescence assay (scale bar, 50 µm) and (B) flow cytometry. E-cadherin protein or mRNA expression in L02 and Hepg2 cells was 
determined using (C) western blot analysis and (D) qRT-PCR; *p<0.05. Representative images of (E) DcR3 expression in normal and liver carcinoma tissues 
and (F) E-cadherin. Scale bar, 200 µm.
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DcR3 expression using flow cytometry. The DcR3 expres-
sion level in Hepg2 cells was higher than that in the L-02 
cells (Fig. 2B). Protein and mRNA quantification showed that 
E-cadherin was downregulated in the Hepg2 cells as compared 
with that in the L-02 cells (Fig. 2C and D). Importantly, 
immunohistochemical staining showed that DcR3 was almost 
undetectable in the non-tumor liver tissues (from patients with 
biliary tract disease) but was upregulated in the liver cancer 
tissues (Fig. 2E). Inversely, E-cadherin was located in the cell 
junction in non-tumor tissue, but was almost undetectable in 
liver cancer tissue (Fig. 2F). Therefore, hepatocarcinomas 
exhibited low E-cadherin expression but high DcR3 levels.

DcR3 promotes cancer cell migration. Considering that 
E-cadherin plays a crucial role in cell adhesion and migration, 
we analyzed the effect of DcR3 on the migratory ability of 
Hepg2 cells. The wound healing assay demonstrated that the 
addition of the DcR3-containing supernatant caused a strong 
increase in cell migration at 24 and 48 h (Fig. 3A and B). To 
confirm this trend, we detected the cell migratory ability using 
a Transwell assay. We observed that DcR3 greatly enhanced 
HepG2 cell migration (Fig. 3C-E). These results also indicated 
that DcR3 plays a positive role in cancer cell migration.

DcR3 induces p65 cytoplasm-nuclear translocation. To 
investigate whether DcR3 inhibits E-cadherin expression via 
its decoy function, we treated Hepg2 cells by simultaneously 
adding DcR3 and its ligand FasL, LIGHT or TL1A, to the 
culture medium. The addition of these ligands did not affect 
the function of DcR3 in the regulation of E-cadherin expres-
sion (Fig. 4A). Thus, DcR3 inhibited E-cadherin expression 
via its non-decoy function.

To investigate the mechanism of the function of DcR3 in 
E-cadherin regulation, we explored the involved signaling 
pathway. DcR3 regulates the NFκB signaling pathway 
in monocytes. E-cadherin is also a target of p65 (26,27). 
Consequently, we investigated whether DcR3 activates NFκB 
signaling in Hepg2 cells. DcR3 significantly downregulated 
IkBα expression (Fig. 4B). Furthermore, DcR3 treatment of 
HepG2 cells markedly increased the nuclear translocation 
of the NF-κB subunit p65 (Fig. 4C). These data suggest that 
the NFκB signaling cascade is an essential component in the 
involvement of E-cadherin expression for the DcR3-mediated 
migration response.

Discussion

DcR3 can be defined as a novel immunosuppressant on the basis 
of its neutralizing effects on FasL, LIGHT and TL1A. DcR3 
is expressed by tumor cells from various lineages, including 
adenocarcinomas of the colon, rectum (28,29), lung (30) and 
gastric cancer (31), hepatocellular carcinoma (13,20) and in 
chronic liver diseases (19), which frequently lead to cancer 
formation. Increased DcR3 levels in serum or tissues were 
found to be correlated with poor prognosis and resistance 
to treatment in some cancer patients (13). In addition to its 
neutralizing effect, DcR3 also acts as an effector molecule to 
modulate cell function via non-decoy activities, including the 
regulation of DC and macrophage differentiation that leads to 
Th2 polarization (32,33), M2 macrophage differentiation (34), 
and cytoskeleton remodeling (16,17).

DcR3 can induce actin reorganization in human mono-
cytes, and this protein triggers multiple signaling molecules, 
such as PKC and phosphatidylinositol 3-kinase (PI3K) (35). 

Figure 4. DcR3 deregulates IκBα expression and induces p65 nuclear translocation. (A) Hepg2 cells were treated with 3 µg/ml control Igg1 or 3 µg/ml DcR3-Fc 
alone or with 3 µg/ml FasL, LIgHT and TL1A. After 48 h, cells were harvested and E-cadherin expression was detected by western blot analysis. (B) Hepg2 
cells were treated with 3 µg/ml control Igg1 or 3 µg/ml DcR3-Fc. IκBα expression was detected by western blot analysis at 48 h after treatment. (C) Hepg2 
cells were treated as described in B, p65 expression in the cytoplasm and nucleus was determined by western blot analysis. p65 in the cytoplasm (C) or the 
nucleus (N) were normalized to lamin A/C or tubulin, respectively. Representative images from 2 independent experiments are shown. (D) Schematic illustra-
tion of the role of DcR3 in regulating cell migration.
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Furthermore, DcR3 induces NFκB-mediated expression of 
ICAM-1, VCAM-1 and IL-8 by monocytes; consequently, their 
binding to endothelial cells is enhanced (17). DcR3-Fc was 
found to act on THP-1 monocytes and differentiated macro-
phages to increase the expression level of integrin α4. Thus, 
cell aggregation and proliferation are promoted and apoptosis 
is reduced (18). DcR3 is upregulated in cancer cells; thus, 
these observations suggest its important roles in modulating 
the migration and trafficking of monocytes/macrophages in 
the tumor microenvironment.

E-cadherin plays an important role in cell adhesion by 
forming adherent junctions to bind cells within tissues. The 
loss of E-cadherin expression has been defined as a hallmark 
of EMT. EMT is a process by which epithelial cells lose their 
cell polarity and cell-cell adhesion, and they gain migratory 
and invasive properties to become mesenchymal stem cells. 
DcR3 was found to induce IκB kinase activation, IκB degra-
dation, and p65 nuclear translocation in human microvascular 
endothelial cells (17). E-cadherin is a target of p65, which 
represses E-cadherin expression and enhances the epithelial-
to-mesenchymal transition of mammary epithelial cells via 
ZEB-1 and ZEB-2 (36). In addition, TGF-β is one of the most 
critical factors involved in EMT regulation. TgF-β promotes 
EMT through both Smad-dependent and Smad-independent 
manner (37). The relationship between DcR3 and the TgF-β 
pathway will be the research of interest in a future study. 
A model of the function of DcR3 in cell migration regula-
tion is shown in Fig. 4D. DcR3 controls the expression of 
E-cadherin and the p65 translocation of HepG2 cells. Thus, 
it elicits double effects in tumor metastasis regulation and 
immune modulation. The blocking of DcR3 may be applied 
as an effective therapeutic strategy to prevent tumor metas-
tasis.

In conclusion, the present study demonstrated that DcR3 
is overexpressed in hepatic carcinoma tissues and cell lines. 
DcR3-Fc treatment inhibited E-cadherin expression, enhanced 
tumor cell migration in vitro, and promoted p65 nuclear trans-
location. These findings revealed the mechanism underlying 
the ability of DcR3 to regulate cell migration. Therefore, 
DcR3 may be a potential target for the gene therapy of hepatic 
carcinoma.
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