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Abstract. We present a computational-statistical algorithm 
that, from data on the staining degree of immunocytochemical 
markers: i) evaluates the ability of the considered immunopanel 
in predicting the breast cancer stage; ii) makes the accurate 
identification of breast cancer stage possible; iii) provides the 
best stage prognosis compatible with the considered sample; 
and iv) does so through the use of the minimum number of 
markers minimizing time and resource costs. After running 
the algorithm on two data sets [triple-negative breast cancer, 
(TNBC), and estrogen receptor-negative breast cancer, 
(ERNBC)], we conclude that EpCAM and β1 integrin are 
enough to accurately predict TNBC stage, being ALDH1, 
CD24, CD61, and CK5 the necessary markers to exactly 
predict ERNBC stage.

Introduction

In breast cancer, staging is determined by the combination of 
tumor size (T), lymph node status (N), and metastases (M). 
The stage of a cancer helps clinician to evaluate the status 
of the disease and makes the treatment decision. Therefore, 
any advance that contributes to determine the proper staging 
will have importance in applying the correct treatment and 
improving patient outcomes. The use of immunocytochemical 
markers is used in the diagnosis and prognosis of breast 
cancer; however, they have not yet been used for staging the 
disease. This is due to two reasons. On the one hand, the use 
of immunocytochemical markers is hampered by the lack 

of clear correlation between the marker staining degree and 
the disease stage. For each particular marker, its reaction to 
the progress of the disease is usually non-proportional and 
irregular because of the heterogeneity of the disease, being an 
obstacle for an accurate staging when using a unique immu-
nocytochemical marker. On the other hand, the existence of 
complex and very different uneven behavior for the distinct 
markers prevents medical researchers from obtaining useful 
marker combinations to accurately and rapidly predict the 
disease stage: when the individual marker responses to the 
disease progress are diverse and erratic, it is not clear at all 
how to obtain information from the joint behavior of a set of 
markers in a manageable and operative way. As a consequence, 
although the use of immunopanels becomes mandatory to gain 
diagnosis and prognosis capability, only under appropriate 
mathematical and statistical analyses can the use of additional 
markers shed further light on the specific stage of the disease 
without the use of clinical and pathological data (1-30).

At the present time due to the aforementioned reasons, 
prognosis and diagnosis based on immunocytochemical 
markers are far from substituting clinical and pathological 
verification. However, it will be of great advantage to obtain 
a more exact and reliable use of these markers, since it would 
allow a rapid and costless monitoring, evaluation and verifica-
tion of the disease staging, response to treatment, and origin 
of the cancer without the use of clinical and pathological data. 
In this respect, the objective of this study is to design an effi-
cient method for assessing the ability of immunocytochemical 
markers, especially stemness markers, in predicting the 
specific stage of breast cancer. More specifically, we present a 
computational-statistical algorithm that, making use of data on 
the staining degree of immunocytochemical markers: i) evalu-
ates the ability of the considered immunopanel in predicting 
the breast cancer stage; ii) makes the accurate identification 
of breast cancer stage possible; iii) provides the best stage 
prognosis compatible with the considered sample; and iv) does 
so through the use of the minimum number of markers, thus 
minimizing time and resource costs.

To illustrate the applicability of this algorithm we have run 
it for a set of 16 samples identified as TNBC and another set of 
32 samples classified as ERNBC. The stages of these cancers 
ranged from stage I to IV, and were determined following the 
guidelines of American Cancer Society and the American 

Immunocytochemical stem cell markers can 
predict clinical stage of breast cancer

Pedro J. Gutiérrez Diez1,  Yanrong Su2  and  Jose Russo2

1Department of Economic Theory, University of Valladolid, School of Economics, Valladolid, Spain;   
2The Irma H. Russo, MD - Breast Cancer Research Laboratory, Fox Chase Cancer Center,  

Temple University Health System, Philadelphia, PA, USA

Received October 13, 2016;  Accepted April 3, 2017

DOI: 10.3892/or.2017.5820

Correspondence to: Dr Pedro J. Gutiérrez Diez, Department of 
Economic Theory, University of Valladolid, School of Economics, 
Avda. Valle Esgueva 6, 47011 Valladolid, Spain
E-mail: pedrojos@fae.uva.es

Key words: triple-negative breast cancer, estrogen receptor-negative 
breast cancer, immunocytochemical marker, stemness, efficiency, 
algorithm, multinomial regression model for ordinal responses, 
prognosis



Gutiérrez Diez et al:  stem cell markers predict clinical stage of breast cancer1508

Joint Committee on Cancer (AJCC) TNM system (31,32). 
We have used the algorithm to test the predictive capability 
in breast cancer of ALDH1; CD24; CD44; CD49f; CD61; 
cytokeratin 5 (CK5); EpCAM; β1 integrin; and vimentin. 
These markers, suitable for paraffin embedded tissue in situ 
localization of breast cancer stem cells, are subject of recent 
and increasing research given the importance of breast cancer 
stem cells in the development of cancer and the complexity of 
the responses of these markers to the disease status (33-42). 
After running the algorithm, we conclude that EpCAM and 
β1 integrin are enough to accurately predict TNBC stage, 
being ALDH1, CD24, CD61, and CK5 the necessary markers 
to exactly predict ERNBC stage. From this perspective, our 
analyses are relevant not only for allowing total accuracy in 
identifying the specific breast cancer stage from a reduced 
number of markers, but also for contributing to the compre-
hension of the relationships between the distinct breast cancer 
stages and the considered immunocytochemical stemness 
markers.

Materials and methods

Immunohistochemistry (IHC). Formalin-fixed paraffin-
embedded primary breast tumor samples were sectioned and 
evaluated after hematoxylin and eosin staining. Representative 
neoplastic areas were marked and selected to construct tissue 
microarray blocks. Tissue sections (4 µm) were used to do 
IHC staining following the standard protocol. Briefly, sections 
were deparaffinized and placed in Citra Plus antigen retrieval 
solution (BioGenex, Fremont, CA, USA; #HK081-20K) in 
microwave oven for 10 min at 100˚C. After cooling for 20 min, 
slides were placed in PBS for 5 min, and then the staining took 
place using i6000 Autostainer (BioGenex). The slides were 
quenched with Peroxide Block (BioGenex, #HK111) for 10 min, 
followed by blocking with Power Block (BioGenex, #HK085) 
for 20  min at room temperature. The sections were then 
incubated with primary antibody (information of antibodies 
is shown in Table I) for 30 min, super enhancer (BioGenex 
HK518) for 20 min, and second antibody (BioGenex, HK519) 
for 30 min. Washing three times using Super Sensitive Wash 
Buffer (BioGenex, #HK583) was performed after each step 
of incubation. DAB was used to develop the staining. Slides 
were scanned using Aperio Digital Pathology Scaner (Leica 
Biosystems Inc, Buffalo Grove, IL, USA).

Calibration of the antibodies for IHC. To run the statistical-
computational algorithm it is necessary to obtain data on the 
staining intensity of each marker for each particular breast 
cancer stage, i.e. a calibration of the considered markers is 
necessary. This calibration was carried out separately for each 
type of examined breast cancer, namely TNBC and ERNBC.

The calibration process of the antibodies was as follows: 
For each type of breast cancer, we began by identifying 
the specific stage of each breast cancer. On the basis of 
standard criteria, we considered the following stages: I, IIa, 
IIb, IIIa, IIIb, and IV. For each stage, using the above-
mentioned immunocytochemical markers of stemness, we 
identified the number of stem cells in primary breast cancer 
tissue embedded in paraffin. In particular, we examined 
16 samples identified as triple-negative breast cancer and 

32 samples classified as ER-negative. As explained before, 
the stem cells were quantified on the basis of the presence 
of the protein as indicated by staining. Each tumor cell was 
observed and its staining evaluated, and then classified by 
using the Cell Counter function of ImageJ software to label 
the cells. When possible, the stain was evaluated by quanti-
fying the staining intensity on each cancer cell, scoring the 
cell from 0 to 3+, where 0 was for negative staining, 1+ for 
weak staining, 2+ for moderate staining, and 3+ for strong 
staining. This was done for ALDH1, CD24, CD61, EpCAM, 
and β1 integrin. For the remaining markers CD44, CD49f, 
CK5 and vimentin, each tumor cell was observed and classi-
fied and counted as either positive or negative. This process 
was repeated for all of the samples, and after quantifying the 
number of cells in each staining degree for each sample, the 
results were transferred to an Excel® spreadsheet. Through 
the use of Excel, a percentage breakdown was calculated for 
both positive and negative cells. This method was chosen in 
order to clearly show the amount of stem cell activity within 
each tumor. Additionally, if a tumor had multiple image 
cores to be quantified then the results from all of the tumor 
images were added together and the final percentages were 
calculated.

Statistical and computational issues. The statistical study of 
the association between the marker staining degrees and the 
different stages of breast cancer is the most relevant analysis 
from the clinical and pathological points of view. By capturing 
how the distinct markers respond to the advance of breast 
cancer, it is possible to relate the marker staining intensity 
with a particular stage of the disease and/or a particular 
type of breast cancer, opening up the possibility to infer the 
specific stage at which breast cancer is. In this respect and as 
commented on before, there is abundant empirical evidence 
showing that: i) the use of isolated markers is questionable in 
terms of reliability, the use of immunopanels becoming neces-
sary (1); and ii) when using immunopanels, the selection of the 
appropriate statistical technique is crucial.

Once accepted the use of immunopanels, the problem is 
to select the most suitable statistical approach. On this point, 
since the breast cancer stage, the variable to be explained, 
is an ordinal variable, and the marker staining degrees, the 
explanatory variables, are of quantitative nature, the appro-
priate model to consider is a ‘multinomial regression model 
for ordinal responses’. The intuitive idea behind this model is 
that the information on the specific stage of breast cancer is 
contained in the joint behavior of a certain number of markers: 
The relevant behavior to consider is not the response of an 
isolated marker, whatever this marker is, but the combined 
and joint reaction of a specific number of markers. The crucial 
questions are then: first, to identify the markers providing 
information; and, second, to specify how the selected marker 
staining degrees enter into the mathematical expression 
explaining the stage.

These are the tasks that our algorithm efficiently performs. 
In a first step, our procedure identifies the combinations of 
marker staining degrees that imply the desired degree of accu-
racy, in our case the maximum one with a perfect explanation 
of the sample. Among them, in a second step, the algorithm 
selects those combinations entailing the minimum number of 
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markers. We refer the interested reader in these statistical and 
mathematical issues to (43-47).

Computational algorithm. The selection of the best set of 
markers is based on the following criteria: i) to imply the 
higher predictive capability; and ii) to involve the minimum 
number of markers. Obviously, these criteria seek to identify 
the set of antibodies that are the most reliable in predicting 
the disease stage and that, in addition, entail the lowest costs 
in terms of time and resources. To identify this set of anti-
bodies, we wrote computational programs with the following 
steps: 1) From the set of the considered possible explana-
tory variables, to generate all the possible combinations of 
regressors (Table II). In our specific case, with 19 explana-
tory variables, there exist 524286 possible combinations. 
2) For each possible combination of regressors, to run the 
multinomial regression model for ordinal responses. 3) From 
step 2, to compute the predictive capability for each possible 
combination of regressors. 4) From step 3, to select those 
combinations of regressors that imply the maximum predic-
tive capability. 5) From step 4, among the set of regressors 
with the maximum predictive capability, to select those 
implying the minimum number of markers.

To gain computational efficiency, we wrote in Eviews 
the program to run all the statistical regressions, since this 
statistical package offers the best results and options for the 
multinomial regression model for ordinal responses. We 
programmed in Matlab the remaining steps. After applying 
this computational algorithm, the outcome is the set of markers 
ensuring the maximum feasible reliability in predicting the 

breast cancer stage and implying the minimum time and 
resources costs.

Results

We have run the algorithm for a set of 16 samples identified 
as triple-negative breast cancer and another set of 32 samples 
classified as estrogen receptor-negative breast cancer. The data 
for these samples are those in Tables III and IV, which collect 
the observed stages and the staining degree of the considered 
markers for triple-negative breast cancer and estrogen negative 
breast cancer, respectively.

Triple-negative breast cancer. After running the algorithm 
for the triple-negative breast cancer data, we obtained that, for 
the sample, the stages can be predicted with total accuracy 
with a minimum number of two markers. More specifically, 
the computational procedure generated a perfect explanation 
of the data when the explanatory variables were the negative, 
weak and moderate staining degrees measured for EpCAM 
and β1 integrin. Obviously, there exist many other combina-
tions of regressors allowing observed data to be perfectly 
explained, but all of them entail a greater number of markers 
and/or regressors.

Since the coefficients for the multinomial regression model 
for ordinal responses have no clear interpretation and the model 
main purpose is prediction, we present here the algorithm 
results related to the predictive ability of the final estimation. 
The efficiently selected marker staining degrees are those 
in Table V, which also collects the value for the pseudo-R2 

Table I. Antibody information.

Antibody name (clone)	 Provider	 Catalog#	 Dilution

ALDH1 (44/ALDH)	 BD Biosciences	 611194	 1:800
CD24	 Abbiotec	 251181	 1:150
CD44 (DF1485)	 BioGenex	 AM310-5M	 Ready-to-use
CD49f	 Lifespan Bioscience	 LS-A8769	 1:200
CD61	 BioGenex	 AN482-5N	 Ready-to-use
CK5 (EPR1600Y)	 BioGenex	 AN484-5M	 Ready-to-use
EpCAM (E144)	 BioGenex	 AN489-5M	 Ready-to-use
β1 integrin (EP1041Y)	 Abcam	 Ab529741	 1:400
Vimentin (V9)	 BioGenex	 AM074-5M	 Ready-to-use

Table II. Possible regressors.

	 Regressors
	 -----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Breast
cancer	 ALDH1	 CD24	 CD44	 CD49f	 CD61	 CK5	 EpCAM	 β1 Integrin	 Vimentin
stage	 ----------------------------	 ----------------------------	 -----------	 --------------	 ---------------------------	 ---------	 ----------------------------	 ----------------------------	 ------------------
	 N	 W	 M	 N	 W	 M	 N	 N	 N	 W	 M	 N	 N	 W	 M	 N	 W	 M	 N

N, W and M: percentage of negative, weak and moderate stained cells, respectively.
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(goodness of fit), the likelihood-ratio statistic (LR statistic), and 
the p-value for the LR test. This LR test uses the LR statistic 
to compare the goodness of fit of two models, one of which 
is the null model, in this case the constant probability model, 
the second being our multinomial regression model for ordinal 
responses (the alternative model). As it appears in Table V, the 
null hypothesis of constant probabilities is rejected given that 
the p-value of the test is extremely low, and we can conclude 
that our proposed multinomial regression model for ordinal 
response is much more plausible.

Eviews provides an additional comparison between the 
constant probability specification and the estimated ordered 
dependent variable model. This comparison, based on the 
predictive capability of each model, appears in Table VI. The 
first column collects the (arbitrary) ordered values assigned to 
the dependent variable, i.e. to the different stages. For each 
stage, the second to sixth columns display, respectively, the 
number of observations, the number of correct and incorrect 
predictions, and the percentages of correct and incorrect 
predictions. These results are provided for the ordered model 
and for the best constant probability specification. Obviously, 
this comparison allows the significance of the markers in 
explaining the stages to be visualized: if we would remove the 
selected marker staining degrees as explanatory variables, we 
would be able to explain only a 28.571% of the observed data, 
versus the 100% that the inclusion of the considered marker 
staining degrees makes possible.

According to our results, it seems that the joint response of 
EpCAM and β1 integrin completely characterizes the disease 
stage for the triple-negative breast cancer, a characterization 
impossible to obtain when using these markers separately. 
Indeed, for the same sample, no correlation was observed 
between the expression of any of these two markers and the 
clinical stage.

When we eliminate the distinction between stages SIIa 
and SIIb and define a unique SII stage, the algorithm output is 
that in Tables VII-IX. As is logical, the results and conclusions 
are very similar, the most remarkable consideration being the 
disappearance of a level of staining for EpCAM as an explana-
tory variable. In other words, the introduction for EpCAM of 
the moderate or negative staining allows the separation between 
stages SIIa and SIIb to be established, but their consideration is 
not mandatory if this distinction is not necessary.

As appears in Tables VII and VIII, when the considered 
stages for TNBC were SI, SII, SIII and SIV, total accuracy 
in predicting the sample was achieved without considering 
a staining degree for EpCAM marker, respectively moderate 
(Table VII) or negative (Table VIII) staining. Table IX collects 
the predictive power results and the comparison with the 
constant probability model for both cases.

Estrogen receptor-negative breast cancer. For the estrogen 
receptor-negative breast cancer we count on a sample with 
32 data that differentiate between stages SI, SIIa, SIIb, SIIIa, 
SIIIb and SIV. After running the algorithm for this sample, we 
obtained that the stages can be predicted with total accuracy 
with a minimum number of five markers. More specifically, 
the computational procedure generated a perfect explanation 
of the data when the explanatory variables were the staining 
degrees measured for ALDH1 (negative, weak and moderate), 

Ta
bl

e 
II

I. 
Tr

ip
le

-n
eg

at
iv

e 
br

ea
st

 c
an

ce
r d

at
a.

	
A

LD
H

1	
C

D
24

	
C

D
44

	
C

D
49

F	
C

D
61

	
C

K
5	

Ep
C

A
M

	
β1

 In
te

gr
in

	
Vi

m
en

tin
	

----
----

----
----

----
----

----
----

----
----

----
----

----
---	

----
----

----
----

----
----

----
----

----
----

----
----

----
----

-	
----

----
----

----
-	

----
----

----
----

-	
----

----
----

----
----

----
----

----
----

----
----

----
----

---	
----

----
----

----
-	

----
----

----
----

----
----

----
----

----
----

----
----

----
-	

----
----

----
----

----
----

----
----

----
----

----
----

----
---	

----
----

----
----

St
ag

e	
N

eg
at

iv
e	

W
ea

k	
M

od
er

at
e	

N
eg

at
iv

e	
W

ea
k	

M
od

er
at

e	
N

eg
at

iv
e	

N
eg

at
iv

e	
N

eg
at

iv
e	

W
ea

k	
M

od
er

at
e	

N
eg

at
iv

e	
N

eg
at

iv
e	

W
ea

k	
M

od
er

at
e	

N
eg

at
iv

e	
W

ea
k	

M
od

er
at

e	
N

eg
at

iv
e

SI
	

87
.0

5%
	

2.
91

%
	

4.
53

%
	

0.
00

%
	

3.
21

%
	

95
.4

1%
	

59
.2

7%
	

52
.4

3%
	

3.
38

%
	

73
.0

9%
	

19
.5

3%
	

38
.4

0%
	

0.
00

%
	

0.
83

%
	

75
.3

3%
	

12
.0

1%
	6

1.
97

%
	

25
.8

9%
	

0.
39

%
SI

	
95

.7
8%

	
4.

22
%

	
0.

00
%

	
0.

00
%

	
0.

00
%

	
98

.0
8%

	
26

.4
4%

	
11

.3
1%

	
5.

90
%

	
31

.2
0%

	
57

.3
0%

	
23

.8
9%

	
0.

12
%

	
0.

66
%

	
31

.5
3%

	
0.

00
%

	1
5.

91
%

	
81

.1
2%

	
0.

00
%

SI
Ia

	
99

.9
8%

	
0.

02
%

	
0.

00
%

	
0.

00
%

	
0.

00
%

	
10

0.
00

%
	

77
.6

9%
	

45
.2

5%
	

3.
56

%
	

37
.6

3%
	

56
.1

6%
	

88
.0

9%
	

0.
00

%
	

19
.5

2%
	

63
.2

5%
	

0.
36

%
	4

3.
62

%
	

54
.5

3%
	

13
.9

9%
SI

Ia
	

84
.8

0%
	

0.
00

%
	

0.
23

%
	

0.
04

%
	

0.
00

%
	

98
.9

7%
	

77
.3

0%
	

19
.3

0%
	

2.
88

%
	

45
.9

7%
	

47
.7

2%
	

95
.3

7%
	

0.
00

%
	

0.
08

%
	

37
.0

0%
	

14
.1

1%
	8

5.
66

%
	

0.
23

%
	

0.
00

%
SI

Ia
	

86
.4

8%
	

0.
00

%
	

0.
00

%
	

0.
00

%
	

59
.8

6%
	

39
.3

9%
	

90
.6

0%
	

53
.2

8%
	

16
.6

1%
	

77
.6

9%
	

3.
53

%
	

96
.7

8%
	

0.
00

%
	

0.
00

%
	

87
.2

8%
	

15
.7

9%
	5

2.
62

%
	

30
.6

6%
	

48
.4

6%
SI

Ia
	

87
.9

2%
	

2.
08

%
	

6.
96

%
	

0.
00

%
	

10
0.

00
%

	
0.

00
%

	
80

.4
8%

	
96

.5
2%

	
82

.3
9%

	
4.

34
%

	
3.

22
%

	
99

.1
4%

	
0.

00
%

	
0.

36
%

	
68

.1
1%

	
97

.1
1%

	
2.

89
%

	
0.

00
%

	
96

.9
6%

SI
Ib

	
80

.5
3%

	
0.

31
%

	
2.

26
%

	
5.

55
%

	
92

.5
7%

	
1.

88
%

	
77

.2
4%

	
84

.8
8%

	
34

.4
2%

	
44

.0
7%

	
13

.1
3%

	
96

.9
2%

	
0.

06
%

	
1.

20
%

	
25

.3
6%

	
85

.8
2%

	
6.

57
%

	
7.

40
%

	
60

.9
9%

SI
Ib

	
91

.2
8%

	
0.

00
%

	
0.

08
%

	
0.

00
%

	
56

.0
9%

	
43

.9
1%

	
96

.4
9%

	
68

.5
0%

	
8.

24
%

	
82

.1
9%

	
6.

91
%

	
98

.3
8%

	
0.

93
%

	
1.

62
%

	
50

.9
9%

	
12

.3
8%

	8
7.

62
%

	
0.

00
%

	
40

.9
8%

SI
Ib

				





0.
00

%
	

0.
00

%
	

10
0.

00
%

							









97

.9
2%

				





17
.5

4%
	

82
.4

6%
	

0.
00

%
SI

Ib
	

81
.6

6%
	

0.
00

%
	

1.
03

%
	

7.
16

%
	

92
.4

0%
	

0.
44

%
	

10
0.

00
%

	
66

.9
6%

	
24

.2
2%

	
52

.4
6%

	
13

.0
6%

	
98

.3
3%

	
0.

00
%

	
0.

79
%

	
8.

00
%

	
48

.4
9%

	2
7.

14
%

	
24

.3
6%

	
84

.3
6%

SI
II

				





4.
54

%
	

95
.4

6%
	

0.
00

%
	

99
.9

5%
	1

00
.0

0%
	

1.
93

%
	

89
.8

7%
	

7.
27

%
	

99
.4

3%
	

0.
19

%
	

0.
06

%
	

40
.0

6%
	

10
0.

00
%

	
0.

00
%

	
0.

00
%

	
79

.4
2%

SI
II

	
95

.7
2%

	
0.

41
%

	
0.

79
%

	
7.

10
%

	
91

.8
8%

	
1.

02
%

	
82

.5
1%

	
91

.8
8%

	
21

.7
4%

	
45

.9
2%

	
29

.1
7%

	
98

.7
4%

	
0.

00
%

	
0.

00
%

	
35

.1
9%

	
37

.2
9%

	6
1.

33
%

	
0.

00
%

	
25

.7
1%

SI
II

	
82

.1
0%

	
0.

48
%

	
1.

67
%

	
2.

86
%

	
97

.1
4%

	
0.

00
%

	
81

.5
6%

	
32

.1
6%

	
4.

91
%

	
86

.5
3%

	
5.

70
%

	
99

.9
5%

	
0.

07
%

	
0.

30
%

	
53

.7
5%

	
99

.7
4%

	
0.

26
%

	
0.

00
%

	
83

.2
8%

SI
V

	
95

.0
8%

	
0.

00
%

	
4.

92
%

	
0.

00
%

	
44

.2
2%

	
53

.7
6%

	
84

.5
1%

	
23

.2
5%

	
0.

68
%

	
44

.7
8%

	
45

.0
3%

	
98

.8
8%

				





4.
58

%
	8

3.
10

%
	

11
.2

7%
	

93
.0

2%
SI

V
	

83
.9

2%
	

0.
76

%
	

0.
00

%
	

2.
27

%
	

73
.9

4%
	

23
.7

9%
	

10
0.

00
%

	
21

.1
3%

	
2.

68
%

	
68

.0
9%

	
21

.1
6%

	
89

.4
1%

	
4.

32
%

	
6.

92
%

	
31

.1
2%

	
92

.1
6%

	
6.

01
%

	
1.

32
%

	
91

.7
9%

SI
V

	
99

.5
0%

	
0.

00
%

	
0.

00
%

	
0.

00
%

	
74

.2
2%

	
23

.4
0%

	
42

.0
6%

	
14

.7
9%

				





82
.7

5%
	

1.
06

%
	

0.
67

%
	

39
.4

0%
	

2.
28

%
	3

8.
99

%
	

58
.7

3%
	

14
.2

0%



ONCOLOGY REPORTS  38:  1507-1516,  2017 1511
Ta

bl
e 

IV
. E

st
ro

ge
n 

re
ce

pt
or

-n
eg

at
iv

e 
br

ea
st

 c
an

ce
r d

at
a.

	
A

LD
H

1	
C

D
24

	
C

D
44

	
C

D
49

F	
C

D
61

	
C

K
5	

Ep
C

A
M

	
β1

 In
te

gr
in

	
Vi

m
en

tin
	

----
----

----
----

----
----

----
----

----
----

----
----

----
---	

----
----

----
----

----
----

----
----

----
----

----
----

----
----

-	
----

----
----

----
-	

----
----

----
----

-	
----

----
----

----
----

----
----

----
----

----
----

----
----

---	
----

----
----

----
-	

----
----

----
----

----
----

----
----

----
----

----
----

----
-	

----
----

----
----

----
----

----
----

----
----

----
----

----
---	

----
----

----
----

St
ag

e	
N

eg
at

iv
e	

W
ea

k	
M

od
er

at
e	

N
eg

at
iv

e	
W

ea
k	

M
od

er
at

e	
N

eg
at

iv
e	

N
eg

at
iv

e	
N

eg
at

iv
e	

W
ea

k	
M

od
er

at
e	

N
eg

at
iv

e	
N

eg
at

iv
e	

W
ea

k	
M

od
er

at
e	

N
eg

at
iv

e	
W

ea
k	

M
od

er
at

e	
N

eg
at

iv
e

SI
	

87
.0

5%
	

2.
91

%
	

4.
53

%
	

0.
00

%
	

3.
21

%
	

95
.4

1%
	

59
.2

7%
	

52
.4

3%
	

3.
38

%
	

73
.0

9%
	

19
.5

3%
	

38
.4

0%
	

0.
00

%
	

0.
83

%
	

75
.3

3%
	

12
.0

1%
	6

1.
97

%
	

25
.8

9%
	

0.
39

%
SI

	
95

.7
8%

	
4.

22
%

	
0.

00
%

	
0.

00
%

	
0.

00
%

	
98

.0
8%

	
26

.4
4%

	
11

.3
1%

	
5.

90
%

	
31

.2
0%

	
57

.3
0%

	
23

.8
9%

	
0.

12
%

	
0.

66
%

	
31

.5
3%

	
0.

00
%

	1
5.

91
%

	
81

.1
2%

	
0.

00
%

SI
Ia

	
99

.9
8%

	
0.

02
%

	
0.

00
%

	
0.

00
%

	
0.

00
%

	1
00

.0
0%

	
77

.6
9%

	
45

.2
5%

	
3.

56
%

	
37

.6
3%

	
56

.1
6%

	
88

.0
9%

	
0.

00
%

	1
9.

52
%

	
63

.2
5%

	
0.

36
%

	4
3.

62
%

	
54

.5
3%

	
13

.9
9%

SI
Ia

	
76

.0
1%

	
0.

00
%

	
5.

38
%

	
0.

28
%

	
98

.5
1%

	
1.

20
%

	
97

.6
1%

	
68

.5
4%

	
15

.7
7%

	
76

.3
4%

	
5.

48
%

	
99

.0
9%

	
0.

20
%

	
1.

72
%

	
55

.0
6%

	
96

.7
9%

	
0.

00
%

	
0.

00
%

	
90

.4
5%

SI
Ia

	
84

.8
0%

	
0.

00
%

	
0.

23
%

	
0.

04
%

	
0.

00
%

	
98

.9
7%

	
77

.3
0%

	
19

.3
0%

	
2.

88
%

	
45

.9
7%

	
47

.7
2%

	
95

.3
7%

	
0.

00
%

	
0.

08
%

	
37

.0
0%

	
14

.1
1%

	8
5.

66
%

	
0.

23
%

	
0.

00
%

SI
Ia

	
86

.4
8%

	
0.

00
%

	
0.

00
%

	
0.

00
%

	
59

.8
6%

	
39

.3
9%

	
90

.6
0%

	
53

.2
8%

	
16

.6
1%

	
77

.6
9%

	
3.

53
%

	
96

.7
8%

	
0.

00
%

	
0.

00
%

	
87

.2
8%

	
15

.7
9%

	5
2.

62
%

	
30

.6
6%

	
48

.4
6%

SI
Ia

	
71

.1
6%

	
0.

00
%

	
0.

00
%

	
0.

00
%

	
1.

83
%

	
72

.3
1%

	
78

.5
1%

	
86

.6
7%

	
30

.1
4%

	
58

.9
1%

	
6.

91
%

	
92

.0
4%

	
0.

00
%

	
0.

00
%

	
11

.9
8%

	
44

.4
9%

	2
4.

96
%

	
22

.0
2%

	
30

.4
8%

SI
Ia

	
87

.9
2%

	
2.

08
%

	
6.

96
%

	
0.

00
%

	1
00

.0
0%

	
0.

00
%

	
80

.4
8%

	
96

.5
2%

	
82

.3
9%

	
4.

34
%

	
3.

22
%

	
99

.1
4%

	
0.

00
%

	
0.

36
%

	
68

.1
1%

	
97

.1
1%

	
2.

89
%

	
0.

00
%

	
96

.9
6%

SI
Ib

	
80

.5
3%

	
0.

31
%

	
2.

26
%

	
5.

55
%

	
92

.5
7%

	
1.

88
%

	
77

.2
4%

	
84

.8
8%

	
34

.4
2%

	
44

.0
7%

	
13

.1
3%

	
96

.9
2%

	
0.

06
%

	
1.

20
%

	
25

.3
6%

	
85

.8
2%

	
6.

57
%

	
7.

40
%

	
60

.9
9%

SI
Ib

	
83

.9
7%

	
0.

00
%

	
0.

00
%

	
0.

00
%

	
0.

00
%

	
0.

00
%

	
54

.8
1%

	
55

.5
2%

	
22

.1
8%

	
63

.0
6%

	
9.

77
%

	
10

0.
00

%
	

0.
00

%
	

0.
00

%
	

0.
72

%
	

15
.5

6%
	

7.
14

%
	

33
.0

4%
	

3.
92

%
SI

Ib
	

91
.2

8%
	

0.
00

%
	

0.
08

%
	

0.
00

%
	

56
.0

9%
	

43
.9

1%
	

96
.4

9%
	

68
.5

0%
	

8.
24

%
	

82
.1

9%
	

6.
91

%
	

98
.3

8%
	

0.
93

%
	

1.
62

%
	

50
.9

9%
	

12
.3

8%
	8

7.
62

%
	

0.
00

%
	

40
.9

8%
SI

Ib
				





0.

00
%

	
0.

00
%

	1
00

.0
0%

						








97
.9

2%
				





17

.5
4%

	8
2.

46
%

	
0.

00
%

SI
Ib

	
81

.6
6%

	
0.

00
%

	
1.

03
%

	
7.

16
%

	
92

.4
0%

	
0.

44
%

	
10

0.
00

%
	

66
.9

6%
	

24
.2

2%
	

52
.4

6%
	

13
.0

6%
	

98
.3

3%
	

0.
00

%
	

0.
79

%
	

8.
00

%
	

48
.4

9%
	2

7.
14

%
	

24
.3

6%
	

84
.3

6%
SI

II
a	

5.
87

%
	

86
.7

1%
	

4.
88

%
	

0.
00

%
	

43
.6

2%
	

50
.3

4%
	

99
.9

0%
	

32
.3

3%
	

0.
54

%
	

69
.2

9%
	

26
.9

4%
	

98
.7

1%
	

0.
00

%
	

3.
81

%
	

96
.1

9%
	

0.
10

%
	4

2.
52

%
	

50
.2

4%
	

93
.6

0%
SI

II
a	

91
.5

3%
	

0.
00

%
	

8.
47

%
	

0.
00

%
	1

00
.0

0%
	

0.
00

%
	

10
0.

00
%

	
25

.1
7%

				





98
.0

4%
				





0.

00
%

	9
6.

00
%

	
1.

00
%

	
52

.4
6%

SI
II

a	
89

.8
0%

	
8.

37
%

	
1.

63
%

	
10

0.
00

%
	

0.
00

%
	

0.
00

%
	

10
0.

00
%

	
85

.6
9%

				





99
.7

7%
	

0.
00

%
	

1.
09

%
	

69
.4

9%
	

92
.9

6%
	

7.
04

%
	

0.
00

%
SI

II
a				





4.

54
%

	
95

.4
6%

	
0.

00
%

	
99

.9
5%

	1
00

.0
0%

	
1.

93
%

	
89

.8
7%

	
7.

27
%

	
99

.4
3%

	
0.

19
%

	
0.

06
%

	
40

.0
6%

	
10

0.
00

%
	

0.
00

%
	

0.
00

%
	

79
.4

2%
SI

II
a				





10

0.
00

%
	

0.
00

%
	

0.
00

%
	

99
.5

9%
	

0.
00

%
	

6.
18

%
	

78
.8

5%
	

10
.9

6%
	

99
.3

1%
	

0.
00

%
	

0.
00

%
	

12
.8

8%
	

11
.6

1%
	6

5.
45

%
	

9.
58

%
	

94
.1

0%
SI

II
a	

79
.0

7%
	

0.
00

%
	

11
.6

3%
				





10

0.
00

%
		


15

.1
9%

	
59

.9
6%

	
14

.9
9%

	
88

.3
9%

							









35

.6
2%

SI
II

a	
87

.1
8%

	
0.

00
%

	
2.

56
%

					






8.

28
%

				





98
.0

3%
	

0.
00

%
	

0.
00

%
	

96
.5

8%
	

90
.2

7%
	

7.
73

%
	

1.
47

%
SI

II
a	

85
.0

4%
	

1.
47

%
	

1.
61

%
				





56

.6
0%

		


1.
27

%
	

91
.6

1%
	

5.
30

%
	

98
.6

4%
							










33
.1

0%
SI

II
b	

26
.1

3%
	

13
.5

2%
	

21
.0

5%
	

0.
00

%
	

1.
20

%
	

98
.8

0%
	

81
.1

6%
	

55
.4

6%
	

5.
95

%
	

75
.0

7%
	

13
.7

1%
	

88
.6

2%
	

0.
00

%
	

2.
33

%
	

62
.0

7%
	

74
.6

5%
	2

1.
69

%
	

3.
27

%
	

21
.3

8%
SI

II
b	

95
.5

4%
	

0.
28

%
	

0.
63

%
				





99

.2
5%

		


0.
53

%
	

46
.3

9%
	

39
.7

9%
	

10
0.

00
%

							









97

.0
4%

SI
II

b	
95

.7
2%

	
0.

41
%

	
0.

79
%

	
7.

10
%

	
91

.8
8%

	
1.

02
%

	
82

.5
1%

	
91

.8
8%

	
21

.7
4%

	
45

.9
2%

	
29

.1
7%

	
98

.7
4%

	
0.

00
%

	
0.

00
%

	
35

.1
9%

	
37

.2
9%

	6
1.

33
%

	
0.

00
%

	
25

.7
1%

SI
II

b	
99

.2
6%

	
0.

12
%

	
0.

00
%

	
0.

00
%

	
0.

00
%

	1
00

.0
0%

	
91

.1
0%

	
13

.1
9%

	
5.

75
%

	
65

.3
8%

	
16

.6
5%

	
85

.1
0%

	
0.

00
%

	
0.

00
%

	
99

.2
5%

	
85

.2
5%

	1
4.

75
%

	
0.

00
%

	
95

.9
6%

SI
II

b	
82

.1
0%

	
0.

48
%

	
1.

67
%

	
2.

86
%

	
97

.1
4%

	
0.

00
%

	
81

.5
6%

	
32

.1
6%

	
4.

91
%

	
86

.5
3%

	
5.

70
%

	
99

.9
5%

	
0.

07
%

	
0.

30
%

	
53

.7
5%

	
99

.7
4%

	
0.

26
%

	
0.

00
%

	
83

.2
8%

SI
V

	
88

.2
1%

	
0.

00
%

	
0.

38
%

	
0.

72
%

	
99

.2
8%

	
0.

00
%

		


8.
13

%
	

1.
22

%
	

34
.7

1%
	

50
.6

6%
	

56
.8

7%
	

1.
08

%
	

0.
97

%
	

6.
16

%
	

1.
38

%
	

0.
36

%
	

77
.6

5%
	

10
.4

5%
SI

V
	

95
.0

8%
	

0.
00

%
	

4.
92

%
	

0.
00

%
	

44
.2

2%
	

53
.7

6%
	

84
.5

1%
	

23
.2

5%
	

0.
68

%
	

44
.7

8%
	

45
.0

3%
	

98
.8

8%
				





4.

58
%

	8
3.

10
%

	
11

.2
7%

	
93

.0
2%

SI
V

	
98

.6
1%

	
0.

23
%

	
0.

23
%

	
0.

00
%

	
0.

00
%

	1
00

.0
0%

	
81

.9
5%

	
13

.6
4%

				





91
.8

3%
	

0.
00

%
	

0.
00

%
	

37
.7

0%
				





48

.7
4%

SI
V

	
83

.9
2%

	
0.

76
%

	
0.

00
%

	
2.

27
%

	
73

.9
4%

	
23

.7
9%

	
10

0.
00

%
	

21
.1

3%
	

2.
68

%
	

68
.0

9%
	

21
.1

6%
	

89
.4

1%
	

4.
32

%
	

6.
92

%
	

31
.1

2%
	

92
.1

6%
	

6.
01

%
	

1.
32

%
	

91
.7

9%
SI

V
	

15
.5

6%
	

14
.1

5%
	

47
.5

7%
	

0.
14

%
	

0.
00

%
	

99
.8

6%
	

99
.0

7%
	

1.
12

%
	

0.
40

%
	

80
.4

1%
	

13
.4

4%
	

95
.8

6%
	

0.
00

%
	

0.
02

%
	

56
.7

5%
	

84
.6

3%
	

0.
34

%
	

0.
00

%
	

83
.8

6%
SI

V
	

99
.5

0%
	

0.
00

%
	

0.
00

%
	

0.
00

%
	

74
.2

2%
	

23
.4

0%
	

42
.0

6%
	

14
.7

9%
				





82

.7
5%

	
1.

06
%

	
0.

67
%

	
39

.4
0%

	
2.

28
%

	3
8.

99
%

	
58

.7
3%

	
14

.2
0%



Gutiérrez Diez et al:  stem cell markers predict clinical stage of breast cancer1512

CD24 (negative, weak and moderate), CD61 (negative, weak and 
moderate), CK5 (negative) and EpCAM (negative and moderate). 
As for triple-negative breast cancer, there exist many other 
combinations of regressors implying total accuracy, but all of 
them entail a greater number of markers and/or regressors.

Table X collects the selected regressors and the statistics 
on the model accuracy and validity. These regressors imply a 

total explanation of the sample and a gain of a 70% of accuracy 
with respect to the constant probability model, as presented in 
Table XI.

As for triple-negative breast cancer, it can be concluded 
that, for the considered sample of ERNBC, the five selected 
markers, namely ALDH1, CD24, CD61, CK5 and EpCAM,  
are enough to provide all the necessary information to identify 
the stage at which the estrogen receptor-negative breast cancer 
is with total accuracy.

If we remove sub-stages ‘a’ and ‘b’ for stages SII and 
SIII, the algorithm totally explain the data with 4 markers 
and 8 regressors: ALDH1 (negative, weak and moderate), 
CD24 (weak), CD61 (negative, weak and moderate), and CK5 
(negative). The inclusion of EpCAM therefore adds additional 

Table V. Multinomial regression model for ordinal responses.

	 Model specification
Dependent variable: Stage (TNBC, stages SI, SIIa, SIIb, SIII and 
SIV)
Method: Maximum likelihood - Ordered probit
Sample (adjusted): 16 observations
Included observations: 14 after adjustments

	 Selected regressors
Negative, EpCAM
Weak, EpCAM
Moderate, EpCAM
Negative, β1 integrin
Weak, β1 integrin
Moderate, β1 integrin

	 Accuracy and model validity
Pseudo R-squared	 1.000000
LR statistic	 44.07473
Prob (LR statistic)	 0.000000

Table VI. Prediction evaluation.

	 Prediction evaluation for ordered specification

Dep. 	 Obs. 	 Correct	 Incorrect	 Correct	 Incorrect
Value				    (%)	 (%)

Estimated equation
  0	   2	   2	   0	 100.000	 0.000
  1	   4	   4	   0	 100.000	 0.000
  2	   3	   3	   0	 100.000	 0.000
  3	   3	   3	   0	 100.000	 0.000
  4	   2	   2	   0	 100.000	 0.000
  Total	 14	 14	   0	 100.000	 0.000

Constant probability specification
  0	   2	   0	   2	 0.000	 100.000
  1	   4	   4	   0	 100.000	 0.000
  2	   3	   0	   3	 0.000	 100.000
  3	   3	   0	   3	 0.000	 100.000
  4	   2	   0	   2	 0.000	 100.000
  Total	 14	   4	 10	 28.571	 71.429

TNBC; stages SI, SIIa, SIIb, SIII and SIV.

Table VII. Multinomial regression model for ordinal responses. 

	 Model specification
Dependent variable: Stage (TNBC, stages SI, SII, SIII and SIV)
Method: Maximum likelihood - Ordered probit
Sample (adjusted): 16 observations
Included observations: 14 after adjustments

	 Selected regressors
Negative, EpCAM
Weak, EpCAM
Negative, β1 integrin
Weak, β1 integrin
Moderate, β1 integrin

	 Accuracy and model validity
Pseudo R-squared	 1.000000
LR statistic	 34.51401
Prob (LR statistic)	 0.000002

Table VIII. Multinomial regression model for ordinal responses. 

	 Model specification
Dependent variable: Stage (TNBC, stages SI, SII, SIII and SIV)
Method: Maximum likelihood - Ordered probit
Sample (adjusted): 16 observations
Included observations: 14 after adjustments

	 Selected regressors
Weak, EpCAM
Moderate, EpCAM
Negative, β1 integrin
Weak, β1 integrin
Moderate, β1 integrin

	 Accuracy and model validity
Pseudo R-squared	 1.000000
LR statistic	 34.51401
Prob (LR statistic)	 0.000002
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information useful to distinguish between sub-stages ‘a’ and ‘b’, 
both for stages SII and SIII. The results for this model are those 
in Tables XII and XIII, which again support the advantages of 
considering for predictive purposes the ‘multinomial regression 
model for ordinal responses’ that we propose.

As explained above, the proposed algorithm deduces 
which is the combination of marker staining degrees that, for 
the considered sample, simultaneously implies the maximum 
accuracy and the minimum time and resources costs. The 
algorithm results also allow prediction to be carried out for 
new patients, this predictive capability being one of its most 
interesting applications. Once the selected marker staining 
degrees have been measured for the new patient, we can 
apply the results of our model to these new observed values 
and obtain good estimators of the probabilities for each stage. 
Specialized software running the multinomial regression 
model for ordinal responses (such as that used here, Eviews®), 
usually allows these probabilities to be easily calculated simply 
by introducing the observed staining values. On this point, it 
is worth noting again that although our sample has a small 
size, the algorithm can be updated and the new probabilities 
re-estimated as new evidence appears. As an interesting 
program of development, the authors open this algorithm to 
the scientific community to make possible the incorporation of 
new evidence on the relationship between markers and stages, 
and therefore, a more exact estimation of the probabilities of 
presence of the different stages of the disease.

Discussion

In this study, we present an efficient computational-statistical 
algorithm that assesses the ability of immunocytochemical 
markers in predicting the specific stage of breast cancer. 
More specifically, the procedure determines and identifies 
the minimum number of immunocytochemical markers 

necessary to determine the stage of the disease at any desired 
level of reliability without the use of clinical and pathological 
data, thus reducing time and resource costs. Moreover, by 
measuring the staining degrees of the selected markers for 
any new patient, the algorithm also allows the probability of 
presence of each stage to be determined for the considered 
patient. Finally, the algorithm can be continuously updated in 
terms of Bayesian inference by introducing new evidence, in 
a feedback process that leads to more accurate estimations of 
the probabilities for each stage as new data on the response of 
the markers to the disease stage are available.

To illustrate the capability of the proposed algorithm we 
have run the procedure on two data sets (ERN and TN breast 
cancer), fixing as desired level of accuracy the maximum one, 
i.e. requiring total accuracy in prediction. In this respect, when 
the objective is to perfectly explain the sample, the algorithm 
has calculated for both types of cancer the minimum number of 
markers to use, has identified these markers, and has provided 
the prognosis functions to consider.

Our results confirm a previous finding in the literature: in 
identifying the stages of breast cancer, the relevant question 
to consider is not the response of an isolated marker, what-
ever this marker is, but the combined and joint reaction of 
a specific number of markers. We also have found that the 
progression of each type of cancer is signaled by distinct 
and specific markers. More specifically: i) triple-negative 
breast cancer stages can be identified using only two markers, 
namely EpCAM and β1 integrin; ii) Identification of Estrogen 

Table IX. Prediction evaluation.

	 Prediction evaluation for ordered specification

Dep. 	 Obs. 	 Correct	 Incorrect	 Correct	 Incorrect
Value				    (%)	 (%)

Estimated equation
  0	   2	   2	 0	 100.000	 0.000
  1	   7	   7	 0	 100.000	 0.000
  2	   3	   3	 0	 100.000	 0.000
  3	   2	   2	 0	 100.000	 0.000
  Total	 14	 14	 0	 100.000	 0.000

Constant probability specification
  0	   2	   0	 2	 0.000	 100.000
  1	   7	   7	 0	 100.000	 0.000
  2	   3	   0	 3	 0.000	 100.000
  3	   2	   0	 2	 0.000	 100.000
  Total	 14	   7	 7	 50.000	 50.000

TNBC; stages  SI, SII, SIII and SIV.

Table X. Multinomial regression model for ordinal responses. 

	 Model specification
Dependent variable: Stage (ERNBC, stages SI, SIIa, SIIb, SIIIa, 
SIIIb and SIV)
Method: Maximum likelihood - Ordered probit
Sample (adjusted): 32 observations
Included observations: 20 after adjustments

	 Selected regressors
Negative, ALDH1
Weak, ALDH1
Moderate, ALDH1
Negative, CD24
Weak, CD24
Moderate, CD24
Negative, CD61
Weak, CD61
Moderate, CD61
Negative, CK5
Negative, EpCAM
Moderate, EPCAM

	 Accuracy and model validity
Pseudo R-squared	 1.000000
LR statistic	 66.78321
Prob (LR statistic)	 0.000000
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Receptor-negative Breast Cancer stages requires 4 markers: 
ALDH1, CD24, CD61, and CK5; and iii) For both types of 
cancer, EpCAM is a useful marker to identify sub-stages ‘a’ 

and ‘b’. All our results can be verified by running the multi-
nomial regression model we propose with the data provided 
in Tables III and IV.

From the clinical and pathological points of view, our 
results are of interest in a double sense. On the one hand, with 
the estimated coefficients, we can estimate the probability of 
presence of each stage for a new patient simply by measuring 
the staining degrees of the selected markers for the new patient, 
making possible a rapid reliable staging. In this respect, a file 
with an Excel sheet that calculates the estimated probabilities 
of each stage for any new patient, i.e., for any value of the iden-
tified marker staining degrees, and for the two types of breast 
cancer, can be provided under request. In this Excel sheet, 
after introducing the staining degrees of the selected markers 
for the new patient, we can obtain the probabilities assigned to 
each stage and the most likely stage according to the sample 
information, both for ERN and TN breast cancer. On the other 
hand and as explained in the preceding sections, these prob-
abilities can be updated and re-estimated simply by applying 
our algorithm to the new evidence: as new verified data on 
the association between stages and marker staining degrees 
is available, our algorithm updates the selected markers and 
re-estimates the β and µ coefficients, allowing new and better 
estimations of the stage probabilities to be obtained. In this 
respect, the researchers and practitioners interested in applying 
this algorithm to alternative and/or complementary data sets 
and in obtaining updated parameters and probabilities can 
contact the authors to ask for results, routines and estimations.
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Table XI. Prediction evaluation.

	 Prediction evaluation for ordered specification

Dep. 	 Obs. 	 Correct	 Incorrect	 Correct	 Incorrect
Value				    (%)	 (%)

Estimated equation
  0	   2	   2	   0	 100.000	 0.000
  1	   6	   6	   0	 100.000	 0.000
  2	   4	   4	   0	 100.000	 0.000
  3	   1	   1	   0	 100.000	 0.000
  4	   4	   4	   0	 100.000	 0.000
  5	   3	   3	   0	 100.000	 0.000
  Total	 20	 20	   0	 100.000	 0.000

Constant probability specification
  0	   2	   0	   2	 0.000	 100.000
  1	   6	   6	   0	 100.000	 0.000
  2	   4	   0	   4	 0.000	 100.000
  3	   1	   0	   1	 0.000	 100.000
  4	   4	   0	   4	 0.000	 100.000
  5	   3	   0	   3	 0.000	 100.000
  Total	 20	   6	 14	 30.000	 70.000 

ERNBC; stages SI, SIIa, SIIb, SIIIa, SIIIb and SIV.

Table XII. Multinomial regression model for ordinal responses. 

	 Model specification
Dependent variable: Stage (ERNBC, stages SI, SII, SIII and SIV)
Method: Maximum likelihood - Ordered probit
Sample (adjusted): 32 observations
Included observations: 21 after adjustments

	 Selected regressors
Negative, ALDH1
Weak, ALDH1
Moderate, ALDH1
Negative, CD24
Weak, CD24
Negative, CD61
Weak, CD61
Moderate, CD61
Negative, CK5

	 Accuracy and model validity
Pseudo R-squared	 1.000000
LR statistic	 51.86092
Prob (LR statistic)	 0.000000

Table XIII. Prediction evaluation.

	 Prediction evaluation for ordered specification

Dep. 	 Obs. 	 Correct	 Incorrect	 Correct	 Incorrect
Value				    (%)	 (%)

Estimated equation
  0	   2	   2	   0	 100.000	 0.000
  1	 10	 10	   0	 100.000	 0.000
  2	   5	   5	   0	 100.000	 0.000
  3	   4	   4	   0	 100.000	 0.000
 Total	 21	 21	   0	 100.000	 0.000

Constant probability specification
  0	   2	   0	   2	 0.000	 100.000
  1	 10	 10	   0	 100.000	 0.000
  2	   5	   0	   5	 0.000	 100.000
  3	   4	   0	   4	 0.000	 100.000
  Total	 21	 10	 11	 47.619	 52.381 

ERNBC; stages SI, SII, SIII and SIV.
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