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Abstract. Head and neck squamous cell carcinoma (HNSCC) 
is the sixth most common cancer and displays divergent clinical 
outcomes. Prognostic biomarkers might improve risk strati-
fication and survival prediction. We aimed to investigate the 
prognostic genes associated with overall survival. A two-step 
gene selection method was used to develop a seven-gene-
based prognostic model based on the training set collected 
from The Cancer Genome Atlas (TCGA). In addition, the 
prognostic model was validated in an independent testing set 
from Gene Expression Omnibus (GEO). The score based on 
the model successfully distinguished HNSCC survival into 
high-risk and low-risk groups in the training set (HR, 2.79; 
95% CI, 1.98-3.92; P=4.05x10-9) and the testing set (HR, 2.05; 
95% CI, 1.35-3.11; P=7.98x10-4). In addition, the score could 
significantly predict 5-year survival by ROC curves (AUCs 
for training set, 0.73; testing set, 0.66). Combining risk scores 
with clinical characteristics improved the AUCs beyond using 
clinical characteristics alone (training set, from 0.57 to 0.75; 
testing set, from 0.63 to 0.72). A subgroup sensitivity analysis 
with HPV status and tumor sites revealed that the risk score 
was significant in all subgroups except oral cavity tumors of 
the testing set. Furthermore, HPV-positive status improves 
survival in oropharyngeal HNSCC but not non-oropharyngeal 
HNSCC. In conclusion, the seven-gene prognostic signature 

is a reliable and practical prognostic tool for HNSCC. This 
approach can add prognostic value to clinical characteristics 
and provides a new possibility for individualized treatment.

Introduction

Head and neck squamous cell carcinoma (HNSCC) consti-
tutes approximately 4% of all new cancer diagnoses in 
the United States, with approximately 62,000 new cases 
in 2016 (1). Each year approximately 600,000 patients are 
affected worldwide (2). Importantly, the 5-year survival rate of 
HNSCC patients is only 40-50% (3). The high mortality rate 
is attributable to a high rate of late diagnosis, and the survival 
rate for cases in late stages is only 34.9% (4). These outcomes 
demonstrate the need for prognostic biomarkers to help predict 
patient outcome and outline individualized treatment plans. 
Age, clinical stage and smoking status are characteristics 
emerging as important contributors to clinical outcome that 
may also help us improve survival prediction (5-7). However, 
the traditional clinical information has limited prediction 
ability due to the complex molecular regulation mechanism 
in cancer.

Recently, the clinical importance of messenger RNA 
(mRNA) expression has been reported in various types of 
cancer including HNSCC. They play important roles in a 
variety of physiological and pathological processes, such as 
development, differentiation, cell proliferation, apoptosis and 
stress responses (8). Therefore, characterization of key genes 
in different tumors is essential not only for an urgent require-
ment of precision medicine (9) but also for preclinical and 
pharmaceutical research (10).

Prognostic models in HNSCC have been described 
using different biomarkers such as somatic mutations (11), 
microRNAs (12,13) and proteins (4) but limited studies focus 
on mRNA expression according to Cancer Genetics Web (14). 
De Cecco et al (15) reported a gene expression survival 
predictor using HNSCC microarray data based on a semi-
supervised survival method involving principal component 
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method (16). However, the model comprised 172 genes and was 
complicated for further interpretation. Now that transcriptome 
sequencing technologies (RNA-Seq) are being applied widely, 
there is a more ideal platform for cancer genetic studies (17). 
In addition, The Cancer Genome Atlas (TCGA) and Gene 
Expression Omnibus (GEO) repositories provide abundant 
HNSCC case resources, which may be useful to explore reli-
able biomarkers.

In this study, we investigated the prognostic value of seven 
gene expression biomarkers (AATF, APP, GNPDA1, HPRT1, 
LASP1, P4HA1 and ILF3) for HNSCC overall survival. The 
cases mainly included oropharyngeal, laryngeal and oral squa-
mous cell carcinoma. TCGA cohort was used as the training 
set to generate the prognostic model by a two-stage variable 
selection. We also used an independent external testing set to 
validate the robustness and reproducibility of the model.

Materials and methods

Study population. Information for the HNSCC training 
set was obtained from TCGA on November 13, 2016 (18). 
Gene expression data were extracted from IlluminaHiSeq_
RNASeqV2 platform and normalized by RSEM method (19). 
In addition, we performed quality control with a total of 20530 
genes. Genes with more than half of values as zero were 
removed, 17711 genes remained with quantile normaliza-
tion. Patients with complete follow-up information and gene 
expression values for tumor tissues were included in the study. 
Information for the HNSCC testing set was collected from 
GSE65858 (20) in GEO. Gene expression data were extracted 
from Illumina HumanHT-12 V4.0 expression beadchip and 
normalized using the robust spline normalization (RSN) 
method (21). Consecutive patients with primary and meta-
chronous secondary HNSCC of oral cavity, larynx, oro- and 
hypopharynx were included, while tumor cell lines and those 
with low quality assays were excluded. All gene expression 
values were log2-transformed and standardized for compara-
bility between the training and testing sets.

Weighted t-test (WTT) method as the first step for gene selec-
tion. To select differentially expressed genes combined with 
clinical information, WTT was used to select genes based 
on the method of Hu et al (22). For the ith subject with a 
covariate vector Zi, the Cox proportional hazards model is 
given by λ(t|Zi) = λ0(t)exp(βTZi) and the survival function is 
S(t|Zi) = exp{-λ0(t)exp(βTZi)}, where λ0(t) is the basic hazard 
function, β is the regression coefficient and λ0(t) is the cumu-
lative baseline hazard function. Then we constructed a Cox 
regression model for each subject based on clinical information 
(age, sex, smoking status and clinical stage) only and defined 
hi = βTZi. The weights for n patients totally were calculated 
accordingly:

which were assigned for the tumor cases but not the normal 
cases.

With the weighted tumor expression expwi = wi x expi, 
Student's t-test was conducted for each gene to measure the 

difference between tumor and matched normal expression 
level. We also used t-test with no weight adjustment and 
examined the difference between the t-test statistics after and 
before weight adjustment, dk = tadjust - tunadjust for the kth gene. 
Afterwards, 1,000 total permutations were performed and dki 

could be got for the ith permutation. Then, we calculated the 
averaged order statistics, 

_
dk, across all 1,000 permutations. A 

gene was labeled as significant when |dk - 
_
dk| was at the top 5%.

Sure independence screening (SIS) as the second step for 
gene selection. After the WTT selection, there were still over 
800 genes left, which were too many and not robust to build 
the prognostic sigature in HNSCC. The traditional univariate 
or multivariate Cox regression was not suitable to select the 
prognosis-associated genes because it easily led to overfit-
ting and produced instable results (23). SIS was used to 
choose those which were truly associated with disease from 
the 5% genes remaining for further modeling (24). This is 
a two-step screening approach: it first screened all genomic 
features and discarded the irrelevant features whose correla-
tion with overall survival were weak, and secondly applied 
LASSO penalized regression to estimate the sensitivity from 
the selected genomic instability data. We could significantly 
reduce the number of genes in the final model by the SiS 
method.

Statistical analysis. Continuous variables are described as 
mean ± SD, and categorized variables are summarized by 
frequency (n) and proportion (%). Chi-square test was used 
for rate or proportion comparison. Associations between the 
characteristics and the overall survival were evaluated by 
Cox proportional hazard models. Survival curves were drawn 
with the Kaplan-Meier method and were compared among 
subgroups using log-rank tests. To evaluate the robustness 
of the results, we used the bootstrap method with ‘bootcov’ 
function that computed a bootstrap estimate of the covariance 
matrix for a set of regression coefficients in rms package. The 
bootstrap procedure were carried out with 500 re-samplings 
for the multivariable Cox regression. We predicted 5-year 
patient survival using the nearest neighbor method for receiver 
operating characteristic (ROC) curves of censored survival 
data (25) and estimation of confidence intervals and P-values 
of area under the curve (AUC) was based on bootstrap resam-
pling. In the subgroup analysis, we used the Fisher's exact test 
to compare the proportions of different HPV status or tumor 
sites.

Statistical analyses were performed using R version 3.3.1 
(The R Foundation). P-values are two-sided and P<0.05 indi-
cates statistical significance.

Results

Demographic and clinical characteristics. The analysis 
included 512 HNSCC cases from TCGA training set and 270 
cases from the GEO testing set (Table I). Cases in the training 
set had an average age of 60.8±11.9 years, ranging from 19 to 
90 years; 149 (29.1%) individuals were followed until death. 
Cases in the testing set had an average age of 60.1±10.3 years, 
ranging from 35 to 87 years; 88 (32.6%) individuals were 
followed until death.
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Development of biomarker signature model. To exclude a large 
number of genes unrelated to disease, we assessed the TCGA 
training set in two steps after quality control (Fig. 1A). First, of 
all 17711 genes with normalization, we used the WTT method 
to select the top 5% significant genes (n=886) from 43 pairs of 
tumor and matched adjacent normal tissue data. All 886 genes 
were significantly differentially expressed (all P≤1.15x10-5) and 
199 genes were significant in univariate Cox regression analysis 
(P<0.05; Fig. 1B). Second, the SIS method was used for further 
dimension reduction. After iterative process for different 
genes and LASSO penalized regression with 10-fold cross-
validation to select the best parameter, seven genes remained 
after selection. All of them were significantly overexpressed 
in tumor tissue (Fig. 1C). in addition, they were significantly 
associated with overall survival except LASP1 (P=0.056) 
(Fig. 1D). A Cox regression model was used to generate model 
coefficients. The biomarker signature model was calculated as 
risk score = 0.198xAATF + 0.244xAPP + 0.252xGNPDA1 + 
0.314xHPRT1 + 0.136xLASP1 + 0.110xP4HA1 - 0.388xILF3. 
We categorized the patients into low-risk and high-risk groups 
and defined the cut-off value (score=0.36). This was selected 
by the optimum cut point according to the highest χ2 value 
defined by kaplan-Meier survival analysis and log-rank test in 
the training test (26).

As a linear combination model of seven mRNAs, the risk 
score was significantly associated with the TCGA patient 
survival (HRunadjust = 2.79; 95% CI, 1.98-3.92; P=4.05x10-9) 
(Fig. 2A). In total, 16.4% in the low-risk group vs. 41.8% 
in the high-risk group were followed until death (χ2=38.78, 
P=4.76x10-10) (Fig. 2B). With the bootstrap adjustment for 
clinical characteristics, the results remained significant for 
all cases (HRadjust = 2.86; 95% CI, 1.99-4.12; P<0.0001) or 
cases with available HPV status (HRadjust = 3.17; 95% CI, 
1.90-5.30; P<0.0001) (Table II). 

Validation of the prognostic signature. In the GEO testing set, 
risk scores were calculated for each patient. Using the same 
cut-off value (score=0.36), the score showed a 2.05 times 
higher risk of death for the high-risk group compared to the 
low-risk group in univariate Cox regression (HRunadjust = 2.05; 
95% CI, 1.35-3.11; P=7.98x10-4) (Fig. 2C). In total, 25.1% in the 
low-risk group vs. 46.3% in the high-risk group were followed 
until death (χ2 = 11.62, P=6.53x10-4) (Fig. 2D). Results retained 
statistical significance with further adjustment for covariates, 

Table I. Demographic and clinical characteristics of HNSCC 
patients.

 Training set Testing set
Characteristics (n=512) (n=270)

Median follow-up time (years) 4.35 4.95
Censor rate (%) 70.8 67.4
Age, mean ± SD (years) 60.8±11.9 60.1±10.3

Sex, n (%)
  Male 376 (73.4) 223 (82.6)
  Female 136 (26.6) 47 (17.4)

Smoking status, n (%)
  Never 115 (22.5) 48 (17.8)
  Current/former 385 (75.2) 222 (82.2)
  NAa 12 (2.3) 0 (0)

Tumor site, n (%)
  Oropharynxb 80 (15.6) 102 (37.8)
  Larynx 114 (22.3) 48 (17.8)
  Oral cavityb 308 (60.2) 83 (30.7)
  Others 10 (2) 37 (13.7)

HPV status, n (%)
  Positive 35 (6.8) 73 (27.0)
  Negative 241 (47.1) 196 (72.6)
  NAa 236 (46.1) 1 (0.4)

T classification, n (%)
  T1 48 (9.4) 35 (13.0)
  T2 130 (25.4) 80 (29.6)
  T3 99 (19.3) 58 (21.5)
  T4 172 (33.6) 97 (35.9)
  TX or NAa 63 (12.3) 0 (0)

N classification, n (%)
  N0 174 (34) 94 (34.8)
  N1 66 (12.9) 32 (11.9)
  N2 165 (32.2) 132 (48.9)
  N3 8 (1.6) 12 (4.4)
  NX or NAa 99 (19.3) 0 (0)

M classification, n (%)
  M0 484 (94.5) 263 (97.4)
  M1 4 (0.8) 7 (2.6)
  MX or NAa 24 (4.7) 0 (0)

TNM stage, n (%)
  I 20 (3.9) 18 (6.7)
  II 97 (18.9) 37 (13.7)
  III 104 (20.3) 37 (13.7)
  IV 278 (54.3) 178 (65.9)
  NAa 13 (2.5) 0 (0)

Grade, n (%)
  1 61 (11.9) -
  2 300 (58.6) -
  3 122 (23.8) -
  4 7 (1.4) -
  NAa 22 (4.3) 270 (100)

Table I. Continued.

 Training set Testing set
Characteristics (n=512) (n=270)

Neoadjuvant treatment, n (%)
Yes 10 (1.9) -
No 502 (98.1) -
NAa 0 (0) 270 (100)

aNA, not available; boropharynx also includes tonsil and base of 
tongue; oral cavity also includes oral tongue, buccal mucosa, lip, 
alveolar ridge, hard palate and floor of mouth.
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including age, sex, smoking status, HPV status and clinical 
stage (HRadjust = 1.94; 95% CI, 1.27-2.96; P=0.002) (Table II).

Furthermore, prognostic prediction ability for 5-year 
survival was evaluated. The time-dependent AUCs of risk 
scores for HNSCC cases were 0.73 (95% CI, 0.68-0.78; P<0.001) 
in the training set (Fig. 3A) and 0.66 (95% CI, 0.59-0.73; 

P<0.001) in the testing set (Fig. 3B). Besides, we combined the 
scores with clinical characteristics to see whether they could 
improve the predictive value. In the training set, prognostic 
score plus clinical characteristics had a higher AUC (AUC, 
0.75; 95% CI, 0.70-0.80) than the clinical characteristics (age, 
sex and stage) alone (AUC, 0.57; 95% Ci, 0.51-0.64) (Fig. 3C). 

Figure 1. (A) Work flow of gene selection steps, with the number of genes remaining. (B) heatmap of the seven genes using 43 pairs of tumor and matched 
adjacent normal HNSCC tissue data in the training set. The upper half is the expression of normal tissues, and the lower half is the expression of tumor tis-
sues. (C) volcano plot showing the prognostic significance of the 886 genes selected by the WTT method. This plot depicts the hazard ratio on the x-axis and 
statistical significance on the y-axis, as evaluated by the Cox regression model. The blue dashed line indicates a P-value of 0.05. (D) hazard ratio with 95% Ci 
of the seven genes in univariable Cox regression analysis of the training set.

Table II. Multivariable Cox regression analysis of clinical characteristics and risk score.

 Training set
 ----------------------------------------------------------------------------------------------------------------------
  Cases with HPV
 All cases (n=512) status (n=276) Testing set (n=270)
 ------------------------------------------------------ ------------------------------------------------------- ------------------------------------------------------
Characteristics HR (95% CI) P-value HR (95% CI) P-value HR (95% CI) P-value

High risk score 2.86 (1.99-4.12) <0.0001 3.17 (1.90-5.30) <0.0001 1.94 (1.27-2.96) 0.002
Age (per year) 1.02 (1.00-1.04) 0.039 1.01 (0.99-1.04) 0.141 1.03 (1.00-1.06) 0.020
Gender (Female) 1.11 (0.76-1.62) 0.578 1.07 (0.64-1.79) 0.797 1.02 (0.57-1.79) 0.952
Smoking status
  (Current/former smoker) 1.26 (0.80-1.98) 0.324 1.56 (0.87-2.79) 0.133 0.92 (0.49-1.75) 0.815
Clinical stage (per stage) 1.09 (0.91-1.31) 0.331 1.02(0.82-1.25) 0.878 1.77 (1.21-2.59) 0.003
HPV status (positive) - - 0.65 (0.29-1.47) 0.301 0.43 (0.24-0.79) 0.006

estimation of confidence intervals and P-values are based on a bootstrap estimate (500 resamples) of the variance-covariance matrix.
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The testing set also displayed improvement in AUC from 0.63 
(95% CI, 0.57-0.70) to 0.72 (95% CI, 0.65-0.78) (Fig. 3D). In 
brief, the risk score could better distinguish HNSCC prognosis 
beyond clinical information alone.

Subgroup sensitivity analysis with HPV status and tumor 
site. Next, we examined whether the risk score could help 
improve prognostication in the two datasets separately by 
subgroup sensitivity analysis. HPV-positive HNSCC has been 
widely recognized as associated with better prognosis than 
hPv-negative hNSCC (27). The risk score could significantly 
distinguish patient prognosis among 274 cases with available 
HPV information in the training set (HPV+, P=8.65x10-6; 
HPV-, P=1.24x10-7; Fig. 4A and B) and 269 cases in the testing 
set regardless of HPV status (HPV+, P=0.004; HPV-, P=0.014; 
Fig. 4C and D).

in different tumor sites, high vs. low-risk score signifi-
cantly distinguished outcomes in patients with tumor at larynx 
(training set, P=0.001; testing set, P=0.019), oropharynx 
(training set, P=0.0004; testing set, P=0.003) and oral cavity 
in the training set (P=1.80x10-5) (Fig. 5). However, the result 
was not significant in oral cavity of the testing set (P=0.178), 

possibly due to the failure to distinguish patients with longer 
survival. In addition, we found that HPV-positive status 
improves survival in oropharyngeal HNSCC but not in non-
oropharyngeal HNSCC (training set, P<0.001; testing set, 
P=0.010; Fig. 5E and F), which was consistent with a previous 
report (28).

Discussion

In the present study, we developed an HNSCC prognostic risk 
model that includes seven mRNAs and validated it using an 
independent external data set. Integrating multiple biomarkers 
into an aggregated model could improve prognostic value 
compared with single biomarker (29). Results showed that 
the risk score was significantly associated with patient overall 
survival. HNSCC patients with higher risk scores tended to 
have a poorer clinical outcome. In addition, this score could 
improve model performance combined with clinical charac-
teristics based on 5-year overall survival.

To screen out the survival-related genes from over 20,000 
total genes, we used a two-stage screening method. The WTT 
method was used as the first step to identify a subset of genes 

Figure 2. (A and B) Training set. (C and D) Testing set. Upper left panel: risk score distribution of the seven-gene model classifier and patient survival status. 
All scores are standardized (ʻscoreʼ = score - 0.36) to make the low-risk group negative and high-risk group positive. lower half panel: heatmap showing 
expression of the seven genes among tumor patients. Right panel: Kaplan-Meier analysis for the patients. The patients are divided into low-risk (red) and 
high-risk (blue) groups.



SHEN et al:  heAD AND NeCk SqUAMOUS Cell CARCiNOMA AND OveRAll SURvivAl 3408

that were not only differentially expressed in the tumor and 
matched normal tissues but also had an impact on patient 

survival by weighting the clinical covariates. Using permuta-
tion procedures that have widely been used in biomedical data 

Figure 3. (A and B) Training set. (C and D) Testing set. Upper half panel: time-dependent ROC curves are used to evaluate patient survival with the risk score 
on different time, obtained by the nearest neighbor method. Lower half panel: ROC curves for clinical model and improved model. Clinical model contains 
age, sex, smoking status and clinical stage. Improved model contains the risk score and characteristics of clinical model.

Figure 4. Subgroup sensitivity analysis with HPV status. (A) Training set (HPV+). (B) Training set (HPV-). (C) Testing set (HPV+). (D) Testing set (HPV-). Cross 
tables of tumor sites and risk group proportions in each figure were summarized and tested by the Fisher's exact test.
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analysis (30), error rates can be controlled (22). The results 
show that all the selected genes were differentially expressed 
and a number (22.5%) were significantly associated with prog-
nosis. The WTT method performs better than a traditional 
t-test, which will flag a large number of genes unrelated to 
disease. Afterwards, SIS was used to reduce the number of 
genes included in the final model as the second step. Compared 
with a traditional penalized regression like lasso or elastic net 
models, SIS is ungraded on the basis of penalized regression 
to reduce dimensionality from high to a moderate scale that 
is below the sample size (24). It has improved both speed and 

accuracy, and has a stronger association with disease (31). Of 
the seven genes in the training set, all of them are significantly 
differentially expressed in tumor and normal tissue. In addi-
tion, six of them are significant in a univariate Cox model 
and the last one shows suggestive significance (P=0.056). 
Our results show that the two-step gene selection method is 
amenable to deal with a high dimension problem.

Among the seven candidate genes, six have positive 
coefficients in the prognostic model and are associated with 
worse survival. AATF, also called Che-1, is a critical regulator 
of apoptosis driven by genes coding for PAR4 and p53 (32), 

Figure 5. Subgroup sensitivity analysis with different tumor sites. (A and B) Laryngeal tumors. (C and D) Oral cavity tumors. (E and F) Oropharyngeal tumors. 
(A, C and e) Training set. (B, D and F) Testing set. Cross tables of hPv status and risk group proportions in each figure were summarized and tested by 
Fisher's exact test.
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and promotes tumor cell survival by sustaining mutant p53 
transcription and inhibiting DNA damage response activa-
tion (33). It has activity in transcriptional regulation, cell cycle 
control, DNA damage responses, and in the execution of cell 
death programs (34). In addition, it interacts with NRAGE that 
has been found as a tumor marker in different cancers. AATF 
has been reported associated with multiple cancers, such as 
colon carcinoma (35), gastric cancer (36), hepatocellular carci-
noma (37) and breast cancer (38).

APP was initially found to be associated with Alzheimer's 
disease, but it also contributes to regulating cell growth, 
apoptosis, and motility of cancer cells (39). Several studies 
have confirmed APP as an invaluable marker for oral carci-
nogenesis that promotes the proliferation and carcinogenesis 
of oral squamous cell carcinoma (OSCC) (40-42). Notably, in 
addition to its effects on promoting oral carcinogenesis, APP 
expression could be negatively regulated by tea in OSCC, 
which has been demonstrated to be effective in preventing 
animal carcinogenesis in different experimental systems (41).

LASP1, a recognized cancer biomarker functioning in 
cell structure, physiological processes, and cell signaling, 
contributes to cancer aggressiveness by overexpression (43). 
Increased LASP1 levels occur in OSCC and more than ten 
other tumor types (44). It appears to involved in regulation of 
cancer cell metastatic propensity and perturb the architecture 
and dynamics of focal adhesion that triggers cell migration 
and invasion (45). In OSCC, LASP1 plays an essential role in 
tumor cellular growth by mediating G2/M transition.

This is not the first report for P4HA1 that was associated 
with HNSCC prognosis (46). It is involved in hydroxylation 
of collagen fibers and upregulated by HIF1 under hypoxic 
conditions directly that drive a series of different biological 
processes related with malignant progression. P4HA1 modu-
lates target genes in cancer cell growth and tumor progression 
(47) and its expression increases during the invasion and 
metastasis of breast cancer and hepatoma as well (48,49).

Furthermore, GNPDA1 is an allosteric enzyme that catal-
yses the reversible conversion of D-glucosamine-6-phosphate 
into D-fructose-6-phosphate and ammonium (50). It has been 
reported upregulated in colorectal cancer cells with western 
blotting and immunofluorescence assay (51). The protein 
encoded by HPRT1 is a transferase, which plays a central role 
in the generation of purine nucleotides through the purine 
salvage pathway. It still needs further experiments to validate 
its prognostic value.

In contrast, ILF3 confers an onco-protective effect. 
Downregulation of ILF3 can delay cell cycle progression, 
inhibit cell proliferation and reduce tumorigenic capacity 
in vivo (52). ILF3 is also involved in HPV-induced oncogenesis 
and p53-mediated apoptosis. It is a positive regulator of HPV 
E6 expression and its depletion leads to the accumulation of 
active p53 (53). Since HPV is effective in HNSCC, targeting 
on this gene may be useful to control the cancer.

The present study includes some limitations. First, in the 
subgroup analysis, the results may not strongly be robust 
due to small sample size of some groups. Second, due to the 
different experimental methods (RNASeq versus microarray) 
used between the two data sets, some bias may exist. Third, 
the differences between the two populations may indicate a 
need for further validation in another independent cohort for 

the current prognostic signature. Finally, the prognostic value 
of the seven genes in HNSCC still warrants further biological 
functional experiments.

In conclusion, our results showed that the seven-gene 
prognostic score significantly distinguishes hNSCC patients' 
prognosis and predicts 5-year overall survival in both training 
and testing sets. Thus, this score may be a novel biomarker 
based on gene expression levels and it warrants further inves-
tigation for establishing its relevance for clinical application.
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