MicroRNA-326 inhibits melanoma progression by targeting KRAS and suppressing the AKT and ERK signalling pathways

KANG KANG, JING ZHANG, XIAOYUN ZHANG and ZHAO CHEN

Department of Dermatology, Tangshan City Workers’ Hospital, Tangshan, Hebei 063000, P.R. China

Received April 27, 2017; Accepted September 29, 2017

DOI: 10.3892/or.2017.6074

Abstract. Melanoma is the seventh most common malignancy in females and the fifth most common cancer in males worldwide. An increasing number of studies have reported that microRNA (miRNA) dysregulation is frequently observed in various types of human cancers, including melanoma. Abnormally expressed miRNAs play an important role in melanoma formation and progression by serving as potential biomarkers and therapeutic targets. Recently, miRNA-326 (miR-326) has been reported to be differentially expressed in various types of tissues and play important roles in tumorigenesis and tumour development. However, the expression levels, biological roles and underlying mechanisms of miR-326 in melanoma remain unknown. In the present study, we demonstrated that miR-326 was significantly downregulated in melanoma tissues and cell lines. Functional assays revealed that the enforced expression of miR-326 suppressed melanoma cell proliferation and invasion and increased cell apoptosis in vitro. Using bioinformatic analysis, Kirsten rat sarcoma viral oncogene homolog (KRAS) was predicted as a potential target of miR-326. Luciferase reporter assay confirmed that miR-326 could directly target the 3'-untranslated region of KRAS. In addition, reverse transcription-quantitative polymerase chain reaction and western blot analysis revealed that miR-326 upregulation decreased the KRAS expression in melanoma cells at both the mRNA and protein level. Furthermore, KRAS was upregulated in melanoma tissues and inversely correlated with miR-326 expression. In addition, the KRAS knockdown phenocopied the tumour-suppressing effects of miR-326 overexpression in melanoma cells. The restoration of the expression of KRAS markedly reversed the antitumour effects induced by miR-326 overexpression in melanoma cells. Further experiments indicated that miR-326 inactivated the AKT and ERK signalling pathways in melanoma. Collectively, these results revealed that miR-326 serves as a tumour suppressor in melanoma by targeting KRAS and regulating the AKT and ERK signalling pathways, indicating that miR-326 may be a promising therapeutic target for melanoma patients.

Introduction

Melanoma, a tumour derived from melanocytes, is the seventh most common malignancy in females and the fifth most common cancer in males worldwide (1,2). It is characterised by aggressive invasion, early metastasis and resistance to chemotherapy or radiotherapy (3). Approximately 200,000 new cases and 46,000 deaths occur annually from the disease worldwide (4). Currently, the therapeutic management of melanoma patients consists mainly of surgical treatments and subsequent biotherapy, radiotherapy and chemotherapy (5). Melanoma cases diagnosed at an early stage can be curable with surgical resection. However, advanced melanomas with regional or distant metastases respond poorly to current treatment methods, resulting in high mortality rates (6). The prognosis for patients with local and distant metastases is poor, with a 10-year survival rate of 64 and 16%, respectively (7). Therefore, identifying the mechanisms underlying tumorigenesis and progression of melanoma is urgently needed in order to develop novel effective strategies for melanoma patients (8).

Over the past few years, microRNAs (miRNAs) have emerged as major regulators of the development of human cancers, including melanoma (9,10). miRNAs are a type of endogenous, noncoding and short RNAs with a length of ~22 nucleotides, miRNAs negatively modulate gene expression through imperfect base pairing with specific sequences in the 3'-untranslabeled regions (3'-UTRs) of their target genes, resulting in either mRNA degradation or translation inhibition (11). In total, more than 1,900 human miRNAs have been identified in the miRBase version 20.0 (http://www.mirbase.org/) and over 50% of all human protein-coding genes are regulated by miRNAs (12). Numerous studies have indicated that miRNAs play pivotal roles in several biological processes, including cell proliferation, cycle, apoptosis, differentiation, migration and metastasis (13-15). Recently, dysregulation of miRNA expression has been observed in various types of human cancers, such as melanoma (16), gastric (17), lung (18).
and colorectal cancer (19) and glioma (20). In the context of cancer, miRNAs may serve as oncogenes or tumour suppressors in tumourigenesis and tumour development by negatively regulating tumour suppressors or oncogenes (21,22). Therefore, exploring the expression patterns and roles of miRNAs in melanoma may provide potential diagnostic and therapeutic targets for melanoma treatment.

Recently, miR-326 has been reported to be differentially expressed in various types of tissues and play important roles in tumourigenesis and tumour development (23-25). However, to the best of our knowledge, studies on the role of miR-326 in melanoma have not yet been conducted. Therefore, the present study aimed to detect the miR-326 expression and investigate the biological roles of miR-326 in melanoma, as well as its potential underlying mechanisms.

Materials and methods

Tissue specimens and cell lines. A total of 23 pairs of melanoma tissues and adjacent non-tumour tissues were collected from patients (male, 14; female, 9; age, 36-69 years; mean age, 52 years) at the 'Tangshan City Workers’ Hospital’ between January 2013 and October 2015. All patients involved in this study were not treated with radiation therapy or chemotherapy prior to the surgical resection. These resected tissues were immediately frozen in liquid nitrogen and then stored at -80˚C until use. The present study was approved by the Ethics Committee of the Institute of Tangshan City Workers’ Hospital. In addition, informed consents were obtained from all subjects prior to the study.

Four human melanoma cell lines, namely SK-MEL-28, A375, HT144 and A2058, were acquired from the American Type Culture Collection (ATCC; Manassas, VA, USA) and maintained in Dulbecco’s modified Eagle’s medium (DMEM; Gibco; Thermo Fisher Scientific, Inc., Waltham, MA, USA) containing 10% foetal bovine serum (FBS; Gibco; Thermo Fisher Scientific, Inc., Waltham, MA, USA) and 100 mg/ml penicillin and 100 mg/ml streptomycin (Gibco; Thermo Fisher Scientific). Human epidermal melanocytes (HEMs) were purchased from ScienCell Research Laboratories, Inc. (San Diego, CA, USA) and cultured in melanocyte medium (ScienCell Research Laboratories) according to the manufacturer’s protocol. All cells were grown in a humidified incubator at 37˚C with 5% CO₂.

Oligonucleotides and transfection. miR-326 mimics, miRNA negative control mimics (miR-NC), a small interfering RNA (siRNA) targeting KRAS (KRAS siRNA) and a negative control siRNA (NC siRNA) were obtained from Shanghai GenePharma Co., Ltd. (Shanghai, China). pcDNA3.1-KRAS plasmid and empty pcDNA3.1 plasmid were synthesised by GeneCopoeia (Guangzhou, China). The cells were transfected with miRNAs, siRNAs or plasmids using Lipofectamine 2000 (Invitrogen; Thermo Fisher Scientific) according to the manufacturer's instructions. The cell culture medium was replaced with fresh DMEM supplemented with 10% FBS at 6 h post-transfection.

Reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Total RNA samples were isolated from the tissues or the cells using TRIzol (Invitrogen; Thermo Fisher Scientific), according to the manufacturer's instructions. For the miR-326 detection, total RNA was reverse transcribed into cDNA using TaqMan MicroRNA Reverse Transcription kit (Applied Biosystems, Carlsbad, CA, USA) and qPCR was carried out with a TaqMan MicroRNA PCR kit (Applied Biosystems) on an ABI Prism 7500 Sequence Detection system (Applied Biosystems). To quantify KRAS mRNA, cDNA was synthesised using PrimeScript RT reagent kit (Takara Biotechnology Co., Ltd., Dalian, China), followed by qPCR with SYBR Premix Ex Taq™ (Takara Biotechnology). U6 and GAPDH were used as internal reference for miR-326 and KRAS, respectively. The relative levels of miRNA and mRNA were analysed via the 2−ΔΔCt method (26). The primers used in the present study were as follows: miR-326 forward, 5'-GGCCGCC AGAUAAUGCG-3' and reverse, 5'-CTGTCAGGGTCCCGAG GTC-3'; U6 forward, 5'-CTCGCTTTCGGCAAGCACA TATACT-3' and reverse, 5'-ACGCTTTCAGAAATTTGCGT GTC-3'; KRAS forward, 5'-GACTCTGAAGATGTACCTAT GGTCTCTA-3' and reverse, 5'-CATACACACACTATTGGTCT CT GTC-3'; GAPDH forward, 5'-ATGGTGCAAGAGGAT TTCC TATGTTG-3' and reverse, 5'-CTTCATGAGGTAGTCG ATGTC-3'.

Cell Counting Kit-8 (CCK8) assay. A CCK8 assay was used to assess melanoma cell proliferation. A total of 3x10⁵ cells/well were seeded into 96-well plates. After being cultured overnight at 37˚C, the cells were transfected with miRNAs, siRNAs or plasmids. The examination time-points were set at 0, 24, 48 and 72 h after transfection. In brief, 10 µl of CCK8 solution (Dojindo Laboratories, Kumamoto, Japan) was added to each well and the cells were incubated at 37˚C with 5% CO₂ for 2 h. A microplate reader (Bio-Tek Instruments, Inc., Winooski, VT, USA) was used to measure the optical density (OD) values at a wavelength of 450 nm. Each experimental group contained five replicate wells and this assay was repeated three times.

Cell invasion assay. The Transwell chambers coated with Matrigel (BD Biosciences, San Jose, CA, USA) on the upper surface of a polycarbonate membrane were used to perform cell invasion assays. A total of 1x10⁵ transfected cells in FBS-free DMEM were placed in the upper chambers. The bottom chambers were filled with 500 µl of DMEM containing 20% FBS serving as a chemoattractant. After 24 h of incubation, the cells remaining on the upper surface of the membrane were removed using cotton swabs. The invasive cells were fixed in 90% alcohol, stained with 0.5% crystal violet, dried at 80˚C for 30 min and photographed. The cell number was determined in five fields randomly selected under an inverted microscope (x200 magnification, IX73; Olympus Corporation, Tokyo, Japan). The experiments were performed in triplicates and repeated three times.

Flow cytometric analysis. At 48 h after transfection, the cells were collected via trypsinization, washed with ice-cold phosphate-buffered saline (PBS) and fixed in ice-cold 80% ethanol in PBS. Fluorescein isothiocyanate (FITC) Annexin V-apoptosis detection kit (BD Biosciences) was used to determine cell apoptosis rate according to the manufacturer's instructions. In brief, the fixed cells were treated with FITC Annexin V and propidium iodide (PI) for 20 min in the dark at room temperature. The cell
apoptosis rate was assessed using FACScan flow cytometer (BD Biosciences, Franklin Lakes, NJ, USA) within 1 h of staining.

Bioinformatic analysis and luciferase reporter assay. Bioinformatic analysis was performed to predict the putative targets of miR-326 using TargetScan (www.targetscan.org) and miRBase (http://www.mirbase.org). KRAS was indicated as a potential target of miR-326.

For the luciferase activity assay, a wild-type and mutant 3’-UTR segment of KRAS cloned into a pmirGLO plasmid (pmirGLO-KRAS-3’-UTR Wt and pmirGLO-KRAS-3’-UTR Mut) was synthesised and confirmed by Shanghai GenePharma. The cells were seeded into 24-well plates at a density of 60-70% confluence and co-transfected with miR-326 mimics or miR-NC and pmirGLO-KRAS-3’-UTR Wt or pmirGLO-KRAS-3’-UTR Mut using Lipofectamine 2000. After incubation at 37°C for 48 h, the cells were harvested, and luciferase activity was assessed using the Dual-Luciferase Reporter assay system (Promega, Manheim, Germany) according to the manufacturer’s protocol. Renilla luciferase activity served as an internal reference. The experiments were performed ≥3 times independently.

Protein isolation and western blot analysis. The protein was extracted from tissues or cells using radioimmunoprecipitation assay buffer (Nanjing KeyGen Biotech Co., Ltd., Nanjing, China) supplemented with a freshly added protease inhibitor cocktail (Roche, Manheim, Germany). After centrifuging at 16,000 x g at 4°C for 10 min, the protein concentration was detected using the Bicinchoninic Acid Protein Assay kit (Pierce; Thermo Fisher Scientific). Equal amounts of protein were dissolved using sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and transferred to polyvinylidene difluoride membranes (EMD Millipore, Billerica, MA, USA). After blocking with 5% nonfat milk in Tris-buffered saline, 0.1% Tween (TBST) at room temperature for 1 h, the membranes were incubated with primary antibodies at 4°C overnight. The primary antibodies used in this assay included mouse anti-human monoclonal KRAS (sc-30; 1:1,000 dilution; Santa Cruz Biotechnology, Santa Cruz, CA, USA), mouse anti-human monoclonal p-AKT (sc-81433; 1:1,000 dilution; Santa Cruz Biotechnology), mouse anti-human monoclonal AKT (sc-56878; 1:1,000 dilution; Santa Cruz Biotechnology), mouse anti-human monoclonal p-ERK (sc-81492; 1:1,000 dilution; Santa Cruz Biotechnology), mouse anti-human monoclonal ERK (sc-514302; 1:1,000 dilution; Santa Cruz Biotechnology), and mouse anti-human monoclonal GADPH antibody (sc-32233; 1:1,000 dilution; Santa Cruz Biotechnology). The membranes were then washed three times with TBST for 5 min each time and further probed with goat anti-mouse horseradish peroxidase-conjugated secondary antibody (sc-2005; 1:5,000 dilution; Santa Cruz Biotechnology) at room temperature for 1 h. The signals were developed using an enhanced chemiluminescent reagent (Amersham Biosciences, Piscataway, NJ, USA). The signal intensity was determined using the FluorChem imaging system (Alpha-InnoFec GmbH, Kasendorf, Germany). GADPH was used as a loading control.

Statistical analysis. The data were expressed as the mean ± standard deviation. All statistical analyses were performed via the Student’s t-test or one-way ANOVA followed by Student-Newman-Keuls post hoc test, with SPSS 18.0 software (SPSS, Chicago, IL, USA). P<0.05 was considered to indicate a statistically significant difference.

Results

miR-326 is downregulated in melanoma tissues and cell lines. To explore the potential roles of miR-326 in melanoma, we firstly detected the expression levels of miR-326 in 23 pairs of melanoma tissues and adjacent non-tumour tissues. The RT-qPCR data revealed that miR-326 was weakly expressed in melanoma tissues compared with that in adjacent non-tumour tissues (Fig. 1A, P<0.05). Subsequently, the expression levels of miR-326 were determined in four melanoma cell lines, namely SK-MEL-28, A375, HT144 and A2058, as well as HEM, which was determined using RT-qPCR. P<0.05 compared with HEM. HEM, human epidermal melanocytes.

Upregulation of miR-326 inhibits the proliferation and invasion and promotes the apoptosis of melanoma cells. To assess the regulatory roles of miR-326 in melanoma, SK-MEL-28 and A375 melanoma cells, which exhibited a relatively weaker miR-326 expression, were transfected with miR-326 mimics or miR-NC. The RT-qPCR data indicated that the miR-326 expression was substantially upregulated in the SK-MEL-28 and A375 cells after transfection with miR-326 mimics,
-compared with cells transfected with miR-NC (Fig. 2A, P<0.05). The CCK8 assay was performed to evaluate the effect of miR-326 overexpression on melanoma cell proliferation. As illustrated in Fig. 2B, the restoration of the expression of miR-326 significantly suppressed the proliferation of the SK-MEL-28 and the A375 cells compared with the miR-NC group (Fig. 2B, P<0.05). To determine the role of miR-326 in the invasion capability of melanoma cells, cell invasion assays were conducted in the SK-MEL-28 and A375 cells transfected with miR-326 mimics or miR-NC. The results revealed that ectopic expression of miR-326 decreased the invasive capacities of the SK-MEL-28 and A375 cells (Fig. 2C, P<0.05). To examine the effect of miR-326 on the apoptosis of melanoma cells, flow cytometric analysis was performed. Our data
demonstrated that miR-326 overexpression led to an increased rate of apoptosis in the SK-MEL-28 and A375 cells (Fig. 2D, P<0.05). Overall, these findings indicated that miR-326 exerts a suppressive role in melanoma progression.

KRAS is a direct target gene of miR-326 in melanoma. To investigate the underlying mechanism responsible for the miR-326-mediated tumour-suppressing roles in melanoma, the potential binding sites of miR-326 were determined using bioinformatic analysis. Of these target candidate genes, KRAS (Fig. 3A) attracted our attention immediately since it has been implicated in tumourigenesis and progression (27-29). To confirm this hypothesis, luciferase reporter assays were performed in SK-MEL-28 and A375 cells transfected with miR-326 mimics or miR-NC along with pmirGLO-KRAS-3'-UTR Wt or pmirGLO-KRAS-3'-UTR Mut. As displayed in Fig. 3B, miR-326 significantly decreased the luciferase activities of the 3'-UTR Wt (P<0.05), but not the 3'-UTR Mut of KRAS in the SK-MEL-28 and A375 cells. To further confirm whether KRAS is a direct target of miR-326, the effects of miR-326 overexpression on endogenous KRAS expression in melanoma cells were examined by RT-qPCR and western blot analysis. The results revealed that restoration of the expression of miR-326 suppressed the KRAS expression in the SK-MEL-28 and A375 cells at both the mRNA (Fig. 3C, P<0.05) and protein (Fig. 3D, P<0.05) levels. These results indicated that KRAS is a novel target of miR-326 in melanoma.

KRAS expression is inversely correlated with miR-326 levels in melanoma tissues. We further determined the expression levels of KRAS in 23 pairs of melanoma tissues and adjacent non-tumour tissues. The results revealed that KRAS mRNA was highly expressed in melanoma tissues compared with that in adjacent non-tumour tissues (Fig. 4A, P<0.05). In addition, a negative correlation between the miR-326 level and the KRAS level was observed in melanoma tissues (Fig. 4B, r=-0.6589, P<0.001), further indicating that the KRAS overexpression in melanoma is a result of the miR-326 underexpression. In addition, western blot analysis also revealed that the KRAS expression was upregulated in melanoma tissues compared with that in adjacent non-tumour tissues (Fig. 4C).

KRAS knockdown phenocopies the effects of miR-326 overexpression in melanoma cells. Considering that KRAS is a direct target of miR-326, we hypothesised that the tumour-suppressing roles of miR-326 in melanoma cells could be achieved by KRAS downregulation. To examine this hypothesis, we knocked down KRAS via RNA interference techniques to evaluate the biochemical roles of KRAS in melanoma. Western blot analysis confirmed that KRAS protein was significantly downregulated in the SK-MEL-28 and A375 cells after transfection with KRAS siRNA (Fig. 5A, P<0.05). Functional assays revealed that the downregulation of KRAS inhibited cell proliferation (Fig. 5B, P<0.05) and invasion (Fig. 5C, P<0.05) and promoted apoptosis (Fig. 5D, P<0.05) in the SK-MEL-28 and A375 cells. These results indicated that KRAS mediates the biological functions of miR-326 in melanoma.

KRAS restoration markedly abrogates the antitumour effects of miR-326 in melanoma. To determine whether miR-326 induces antitumour effects in melanoma cells by targeting KRAS, rescue experiments were performed. The SK-MEL-28
and A375 cells were transfected with miR-326 mimics with or without pcDNA3.1-KRAS. Western blot analysis revealed that decreased KRAS expression was markedly restored by transfection of pcDNA3.1-KRAS (Fig. 6A, P<0.05).
Figure 6. KRAS upregulation reverses the miR-326-induced tumour-suppressing effects in melanoma. (A) The SK-MEL-28 and the A375 cells were transfected with miR-326 mimics with or without pcDNA3.1-KRAS. After transfection, western blot analysis was performed to detect KRAS protein expression. *P<0.05 compared with miR-NC and miR-326 mimics + pcDNA3.1-KRAS. (B) The CCK8 assay was used to detect cell proliferation in the SK-MEL-28 and A375 cells transfected with miR-326 mimics with or without pcDNA3.1-KRAS. *P<0.05 compared with miR-NC and miR-326 mimics + pcDNA3.1-KRAS. (C) Cell invasion capabilities were determined using the cell invasion assay in the SK-MEL-28 and A375 cells transfected with miR-326 mimics with or without pcDNA3.1-KRAS. *P<0.05 compared with miR-NC and miR-326 mimics + pcDNA3.1-KRAS. (D) Cell apoptosis was detected in the SK-MEL-28 and A375 cells transfected with miR-326 mimics with or without pcDNA3.1-KRAS. *P<0.05 compared with miR-NC and miR-326 mimics + pcDNA3.1-KRAS. KRAS, Kirsten rat sarcoma viral oncogene homolog; OD, optical density.
Decreased miR-326 expression in osteosarcoma is significantly associated with distant metastasis and advanced clinical stage. In addition, osteosarcoma patients with a low miR-326 expression tend to have shorter survival time than patients with high miR-326 expression (38). Furthermore, miR-326 is expressed in low levels in gastric cancer and is strongly associated with clinical stage, tumour depth, lymph node metastasis and distant metastasis. In survival analysis, low miR-326 expression is a poor independent prognostic factor for gastric cancer patients (39). In glioma, miR-326 expression level is reduced in tumour tissues and cell lines. miR-326 expression level is correlated with advanced pathological grade and low Karnofsky performance score. In addition, low miR-326 expression is an independent factor predicting poor prognosis for glioma patients (40). Downregulation of miR-326 is also observed in colorectal (23), pancreatic (24) and lung cancer (25). Previous studies have indicated that miR-326 may be investigated as a useful prognostic marker in human cancer.

Numerous studies have reported that miR-326 contributes to the malignant phenotype of cancers. Cao et al (38) found that miR-326 overexpression inhibited the growth and metastasis of osteosarcoma cells. In addition, studies reported that the enforced expression of miR-326 suppressed gastric cancer (GC) cell growth and metastasis and induced GC cell G2/M arrest (39,41). Furthermore, studies revealed that miR-326 served as a tumour-suppressor in glioma by inhibiting cell proliferation, colony formation and metabolic activity and inducing cell apoptosis (42,43). Wu et al (23) reported that miR-326 re-expression attenuated cell growth and motility and promoted cell apoptosis and cell cycle-arrest in colorectal cancer. Studies revealed that miR-326 decreased cell proliferation, viability, colony formation, migration and invasion, reversed chemoresistance and increased apoptosis and epithelial-to-mesenchymal transition of lung cancer (25,44-46). These findings indicated that miR-326 could be developed as a therapeutic target for these human cancer types.

Several miR-326 targets, including Bcl-2 (38) in osteosarcoma, FSCN1 (39) and NOB1 (41) in gastric cancer, SMO (47) and PKM2 (43) in glioma and CCND1 (25), phox2a (44), SP1 (45) and ADAM17 (46) in lung cancer, have been identified. In the present study, KRAS was validated as a novel target of miR-326. The KRAS gene, located in 12p12.1, encodes a protein that is a member of the small GTPase superfamily (48). Recently, an abnormal KRAS expression has been reported to be involved in human cancers, such as gastric (27), pancreatic (28), bladder (29), lung (49) and breast cancer (50). In addition, aberrantly expressed and somatic activating mutations in KRAS are involved in tumourigenesis and tumour development, including pilocytic astrocytoma (51), nasopharyngeal carcinoma (52), colorectal (53) and lung cancer (54). In the present study, we found that KRAS was highly expressed in melanoma at both the mRNA and protein levels. In addition, the KRAS downregulation inhibited melanoma cell proliferation and invasion and induced apoptosis. Previous studies indicated that KRAS activation triggered several downstream pathways, such as the PI3K/Akt and MAPK/ERK signalling pathways (55,56). Consistently, the present study demonstrated that miR-326 upregulation reduced the KRAS expression and inactivated
the AKT and ERK signalling pathways. These findings indicated that miR-326 acts as a tumour suppressor in melanoma by targeting KRAS and regulating the AKT and ERK signalling pathways. Therefore, KRAS could be a major target for potential cancer therapies and numerous therapeutic strategies for melanoma.

In conclusion, the present study provided evidence that miR-326 is downregulated in melanoma and is involved in melanoma carcinogenesis and progression, partly by directly targeting KRAS. Modulating the miR-326 expression represents a potential strategy for the treatment of melanoma patients.

References


RETRACTED