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Abstract. Cells from dental tissues have a mesenchymal 
stem cell (MSC) phenotype, are multipotent and can differ-
entiate into osteoblastic cells, as we have previously found. 
MSCs, due to their tumor‑homing ability, are currently being 
used as cell‑based delivery systems for cancer protein thera-
peutics, such as the TNF‑related apoptosis‑inducing ligand 
(TRAIL). In the present study we revealed that dental pulp 
stem cells (DPSCs) expressed TRAIL to a greater extent 
when they were differentiated into the osteoblastic lineage. 
TRAIL affected the viability of undifferentiated DPSCs, 
while osteoblastic differentiated DPSCs were not sensitive to 
TRAIL. The expression trend of TRAIL receptors underwent 
changes during the osteoblastic differentiation of DPSCs 
exhibiting low DcR2 and high DR5 levels in the undifferen-
tiated DPSCs and an opposite scenario was presented in the 
differentiated cells. The sensitivity of the undifferentiated 
DPSCs to the TRAIL‑apoptotic effect was also associated 
with low levels of intracellular anti‑apoptotic proteins, such 
as c‑FLIP, XIAP and the activation of caspase‑8 and ‑3. 
DPSC‑differentiated osteoblasts expressing high TRAIL 
levels were capable to affect the cell viability of the human 
myeloma cell line H929, thus representing an effective anti-
cancer therapeutic method.

Introduction

Mesenchymal stem cells (MSCs) are multipotent stem cells 
that have attracted a great interest for their noteworthy multi-
lineage differentiation potential (1,2) and hypoimmunogenic 
features (3,4). All these properties of MSCs have led to their 
application in regenerative medicine (5,6). Furthermore, due 
to their tumor‑homing ability (7), MSCs are currently used as 
cell‑based delivery systems of therapeutic proteins for cancer 
treatment (8,9). In particular, through the tumor‑homing ability 
of MSCs, the localized production of a specific therapeutic 
protein is more helpful than the systemic use of a recombinant 
protein considering both the effective in situ concentration 
of the molecule and the reduction of unwanted systemic 
actions. To this end, pro‑apoptotic molecules have been 
linked to MSCs to counteract tumor growth and a particular 
interest is evident toward TRAIL (10‑13), a cytotoxic protein 
inducing apoptosis mostly in tumor cells, upon binding to 
the death domain‑containing receptor 4 (DR4) and 5 (DR5). 
The activity of TRAIL can be modulated following binding 
with two membrane‑bound decoy receptors, namely DcR1 
and DcR2, which lacking functional death domains, confer 
TRAIL resistance to expressing cells (14).

However, clinical studies based on the use of a recombinant 
soluble form of TRAIL, consisting of a non‑covalently assembled 
homotrimer, as a whole, did not demonstrate therapeutic effi-
cacy (15,16). Over the past decades, many recombinant versions 
of TRAIL have been generated to enhance its pharmacokinetics 
and/or antitumor activity (17). To date, it is evident that at least 
a hexavalent organization of TRAIL molecules bypass the 
pharmacokinetic problems, however not the trimeric form (18). 
In contrast, in order to manage the insufficient pharmacokinetic 
properties, several studies have examined the practice of in situ 
production of a standard soluble TRAIL molecule by different 
adult stem cells (19‑21). Furthermore, two studies have reported 
the antitumor activity of human genetically modified MSCs 
expressing antibodies in a diabody format (22,23). Recently, 
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a MSC line, stably producing TRAIL which is activated in a 
xenotransplantation tumor model, has been generated  (13). 
Although the main known source of MSCs is the bone marrow, 
a wide variety of MSCs have been recognized in dental tissues 
such as pulp, periodontal ligament and apical papilla, exhibiting 
several multilineage potencies including osteogenic, adipogenic 
and neurogenic (24‑30), besides the expected odontogenic (31). 
In our previous studies, we demonstrated the stem cell properties 
of dental tissues such as pulp, follicle and bud, as well as their 
ability to differentiate into osteoblasts (32‑38). According to our 
findings, differentiated dental pulp stem cells (DPSCs) express 
high levels of TRAIL. Therefore, we hypothesized that DPSCs 
could provide, through the production of TRAIL, an effective 
anticancer therapeutic method. Based on these parameters and 
considering the pro‑apoptotic TRAIL effect, we investigated 
whether DPSCs differentiated into osteoblasts, expressing high 
TRAIL levels were capable to affect tumor cell viability.

Materials and methods

Cell cultures. Third molar teeth were obtained from 20 
healthy young donors, who gave their written informed 
consent. The study was approved by the Institutional Review 
Board of the Department of Dental Science and Surgery‑Unit 
of Periodontology, University of Bari. The dental pulps were 
dissected, gently washed with phosphate‑buffered saline 
(PBS), reduced to small pieces and digested enzymatically 
with 3 mg/ml type I collagenase and 4 mg/ml dispase (Gibco; 
Thermo Fischer Scientific, Uxbridge, UK) in agitation for 1 h at 
37˚C. To obtain single cell suspensions, the digested solutions 
were filtered through a 70‑µm BD Falcon strainer (Falcon; BD 
Biosciences, Sunnyvale, CA, USA). Single cell suspensions, 
centrifuged at 1,300  rpm, were seeded at 5x103  cells/cm2 
in mesenchymal stem cell culture medium supplemented 
with 10% fetal bovine serum (FBS), 100 U/ml penicillin‑G, 
100 µg/ml streptomycin (Gibco; Thermo Fischer Scientific) at 
37˚C, in 5% CO2, replacing the medium every three days until 
cells reached confluence. The cells were then trypsinized and 
seeded into appropriate common culture dishes for character-
ization and experiments, that provide an efficacious substrate 
for DPSC adhesion, proliferation and differentiation (39). For 
the induction of osteogenic differentiation, the cells were 
seeded at a density of 3x103 cells/cm2 in α‑MEM supplemented 
with 2% FBS, 10‑8 M dexamethasone and 50 µg/ml ascorbic 
acid (35). For some experiments, osteogenic differentiated 
DPSCs were co‑cultured with 1x103/cm2 H929 cells (from 
the ATCC, Rockville, MD, USA) with or without anti‑TRAIL 
neutralizing monoclonal antibody (mouse; cat. no. MAB375; 
500 ng/ml; R&D Systems, Minneapolis, MN, USA).

Cell viability assay. Cell viability was evaluated by the 
3‑(4,5‑dimethylthiazol‑2‑yl)‑2,5‑diphenyltetrazolium bromide 
(MTT) assay. DPSCs were cultured in 96‑well tissue‑culture 
plates and some of them were selected for the time‑point 0 (t0), 
while the others were differentiated with 50 µg/ml ascorbic 
acid and dexamethasone (10‑8 M) for 20 days (t20). Both t0 

and t20 cultures were treated with rh‑TRAIL (10‑500 ng/ml, 
TRAIL/TNFSF10; R&D Systems) for 48 h. The cell viability 
was assessed by adding 0.5 mg/ml MTT to the culture medium 
followed by a 4‑h incubation at 37˚C in a humidified 5% 

CO2 atmosphere. To stop the reaction, 150 µl of 0.04 N HCl 
in absolute isopropanol, was added and the optical density 
(OD) was read at 570 nm through an automatic plate reader 
(550 Microplate Reader; Bio‑Rad Laboratories Inc., Hercules, 
CA, USA). The obtained values were normalized to cells in 
control conditions.

RNA isolation and real‑time PCR analysis. DPSCs at t0 

and at t20 were subjected to mRNA extraction using spin 
columns (RNeasy; Qiagen, Hilden, Germany) according to the 
manufacturer's instructions. The mRNA (1 µg) was reverse 
transcribed using SuperScript First‑Strand Synthesis System 
kit (Invitrogen Life Technologies, Carlsbad, CA, USA). The 
resulting cDNA was subjected to PCR amplification with 
the iTaq SYBR Green Supermix with ROX kit (Bio‑Rad 
Laboratories), using the Chromo 4 real‑time PCR detection 
system (Bio‑Rad Laboratories). The following pairs of oligo-
nucleotides were used for the PCR amplification: TRAIL 
sense, 5'‑AGC​AAC​ACA​TTG​TCT​CC‑3' and antisense, 5'‑CCA​
GTT​CAC​CAT​TCC​TCA​AG‑3'; GAPDH sense 5'‑TCA​TCC​
CTG​CCT​CTA​CTG‑3' and antisense 5'‑TGC​TTC​ACC​ACC​
TTC​TTG‑3'. The fold change values were calculated using the 
Pfaffl method (40).

Western blot analysis. Total cell lysates were obtained from 
cultures ceased at different time‑points. Briefly, at the indi-
cated time‑points, lysis buffer [50 mmol/l Tris‑HCl (pH 8.0), 
150 mmol/l NaCl, 5 mmol/l ethylenediaminetetraacetic acid, 
1% NP40 and 1 mmol/l phenylmethyl sulfonyl fluoride] was 
added to the cell monolayer and the lysates were recovered 
after incubation on ice for 30 min. The proteins were sepa-
rated by SDS‑PAGE gel and transferred onto nitrocellulose 
membranes (Hybond; Amersham Pharmacia, London, UK) 
and the blots were probed with the appropriate antibodies 
(Abs): Mouse caspase‑3 (1:500; cat. no. 9662; Cell Signaling 
Technology, Danvers, MA, USA) and mouse anti‑β‑actin 
monoclonal Abs (1:1,000; Chemicon International Inc.; EMD 
Millipore, Billerica, MA, USA), rabbit anti‑DR5 (1:200; cat. 
no. ab47179; Abcam, Cambridge, UK), anti‑DcR2 (1:200; cat. 
no. ab2019; Abcam), anti‑caspase‑8 (1:500; cat. no. 552038; 
BD Biosciences, San Diego, CA, USA), anti‑cFLIP (1:500; cat. 
no. 8510; Cell Signaling Technology) and anti‑XIAP (1:500; 
cat. no.  3B6; Cell Signaling Technology) polyclonal Abs. 
Specific reactions with the appropriate fluorescent‑dye‑conju-
gated secondary Ab (1:10,000; IRDye 800 CW goat anti 
rabbit IgG or IRDye 800 CW goat anti mouse IgG; LI‑COR 
Biosciences GmbH, Bad Homburg, Germany), were revealed 
with the LI‑COR Odyssey Infrared Imaging System (LI‑COR 
Biosciences, Lincoln, NE, USA).

Statistical analysis. Statistical analysis was performed using 
Student's t‑test with the SPSS 22 (spss x/pc) software (SPSS, 
Inc., Chicago, IL, USA). A value of P<0.05 was considered to 
indicate statistically significant differences.

Results

Expression of TRAIL increases in DPSCs differentiated 
towards osteoblasts. We previously demonstrated that DPSCs 
cultured in osteogenic medium displayed an osteoblastic 
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phenotype  (32,33). It is also known from the literature 
that MSCs produced TRAIL. These findings prompted us 
to evaluate the expression of TRAIL in undifferentiated 
DPSCs (t0) and in cultures differentiated for 20 days in osteo-
genic conditions (t20). We found that undifferentiated DPSCs 
already expressed TRAIL, however, in the cells cultured for 
20 days in osteogenic medium, TRAIL mRNA levels reached 
a 25‑fold increase (Fig. 1A). These results were also supported 
by western blotting indicating a 15‑fold increase of TRAIL 
in differentiated DPSCs in respect to undifferentiated cells 
(Fig. 1B).

Sensitivity of DPSCs to TRAIL‑mediated apoptosis. DPSC 
sensitivity to TRAIL‑apoptotic effect was investigated by 
analyzing cell viability through an MTT assay in undif-
ferentiated (t0) and differentiated (t20) DPSCs in the presence 
of TRAIL. Undifferentiated and differentiated DPSCs were 
first characterized for their osteoblastic parameters (alka-
line phosphatase, osteopontin and osteocalcin) exhibiting 
a weak expression at t0 and a significant increase at t20 (data 
not shown). The cells in both conditions were treated with 
increasing concentrations of rh‑TRAIL (ranging from 10 to 
500 ng/ml) for 48 h and their viability was determined in both 
TRAIL‑treated and untreated cells as a control. As observed 
in Fig. 2A, the viability of t0‑DPSCs was reduced by TRAIL 
in a dose‑dependent manner. In detail, when undifferentiated 
cells were treated with 10 ng/ml rh‑TRAIL for 48 h their 
viability was significantly reduced compared to untreated 
cultures. Treatment with TRAIL at 25 ng/m further decreased 
the viability of t0‑DPSCs, while the maximum decrease was 
observed at 50 ng/ml TRAIL and no additional reduction was 
observed in the presence of higher concentrations of the cyto-
kine. Unexpectedly, we observed that TRAIL did not induce 
any effect on cell viability on differentiated DPSCs even at a 
dose of 50 ng/ml TRAIL (Fig. 2B), thus demonstrating that 
DPSCs T20, were resistant to TRAIL‑induced apoptosis.

Expression of TRAIL receptors during DPSC differentiation. 
On the base of the aforementioned results, we explored 
the possibility that the progression of the osteoblastic 
differentiation could affect the expression of death and decoy 

TRAIL receptors in DPSCs. Using western blotting we found 
that DPSCs constitutively expressed all TRAIL receptors 
both in undifferentiated conditions and during their differ-
entiation. In particular, the expression of DR5, was high in 
undifferentiated cells and progressively decreased during the 

Figure 1. Expression of TRAIL in DPSCs. (A) qPCR of undifferentiated DPSCs (T0) and DPSCs differentiated for 20 days in osteogenic conditions (T20) 
revealed mRNA levels of TRAIL normalized to GAPDH. *P<0.01, compared to T0. TRAIL expression reached a 25‑fold increase in T20‑DPSCs. (B) The 
protein expression level of TRAIL was assessed by western blot analysis in same culture conditions (DPSCs T0‑T20) and normalized to β‑actin confirming 
mRNA level results. The graph represents means ± SE of three independent donors. *P<0.01 compared to T0. Student's t‑test was used for single comparison.

Figure 2. DPSC viability in the presence of exogenous TRAIL stimulation. 
An MTT assay performed on (A) DPSC‑T0 and (B) DPSC‑T20 revealed 
the cell viability in the presence of an increasing dose of rh‑TRAIL 
(10‑500  ng/ml) for 48  h. The graphs are representative of the mean 
values ± SE of three independent experiments in which each treatment was 
performed in quadruplicate.
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differentiation process, reaching the lowest level in t20‑DPSCs 
(Fig. 3). Additionally, the expression of the decoy receptor 
DcR2 was low in t0‑DPSCs and increased ~20% following 
20 days of osteoblasic differentiation. The expression of DR4 
and DcR1 was not modified (data not shown). Consequently, 
the ratio between decoy‑ and death‑TRAIL receptors shifted 
in favor of the death‑TRAIL receptors in the undifferentiated 
DPSCs thus, increasing their sensitivity to TRAIL apoptotic 
effect. By contrast, the ratio shifted in favor of the decoy recep-
tors during the DPSC osteogenic differentiation. Collectively, 
these results indicated the absence of the TRAIL effect on the 
viability of osteogenic differentiated DPSCs (Fig. 2).

TRAIL activates caspase‑8 and ‑3 in undifferentiated DPSCs. 
Based on the above described findings we evaluated the acti-
vation of caspase‑8 and ‑3 in TRAIL‑treated undifferentiated 
and differentiated DPSCs. It is known that caspase‑8 is the 
early caspase activated during TRAIL‑induced apoptosis in 
different cell types (41,42). Using western blot analysis, we 
demonstrated the activation of caspase‑8 in undifferentiated 
DPSCs treated with 100 ng/ml TRAIL from 1 up to 8 h. In 
particular, caspase activation was evident after 6 h of TRAIL 
treatment (Fig.  4A). It is also well‑known that activated 
caspase‑8 cleaves caspase‑3. Thus, we explored whether 
TRAIL treatment induced the cleavage of caspase‑3. As 
depicted in Fig. 4B, the p17 cleaved form of caspase‑3 was 
found in undifferentiated DPSCs following 6 and 8 h of 
TRAIL‑treatment exposure. According to the MTT assay, 
we observed that TRAIL failed to induce caspase‑8 and ‑3 
activation in differentiated DPSCs (Fig. 4C and D).

Expression of cFLIP and XIAP during DPSC differentiation. 
The reported diverse TRAIL sensitivity of the undifferenti-
ated and differentiated DPSCs prompted us to evaluate the 
different levels of the intracellular anti‑apoptotic molecules 

cFLIP and XIAP during the DPSC differentiation. Using 
western blotting we observed that the expression of cFLIP 
and XIAP increased during the osteoblastic differentiation 
of DPSCs and the lowest levels of XIAP and cFLIP were 
demonstrated in undifferentiated DPSCs (Fig. 5). Thus, our 
findings indicated that differentiated DPSCs were further 
preserved from TRAIL pro‑apoptotic effect through the 
increase of the intracellular inhibitors of caspases cFLIP and 
XIAP (43,44).

Differentiated DPSCs affect the viability of the H929 cells 
through TRAIL. The above‑reported high expression of 
TRAIL in differentiated DPSCs led us to hypothesize that 
these cells could be a vehicle of the pro‑apoptotic agent for 
cancer cells and we tested this hypothesis on the human 
myeloma cell line H929. Firstly, we verified the sensitivity 
of H929 cells to the TRAIL‑apoptotic effect, stimulating 
the human myeloma cell line with 100 ng/ml TRAIL and 
assessing the cell viability with an MTT assay. The results 
indicated a significant decrease of H929 cell viability following 
treatment, demonstrating that the cells were sensitive to the 
TRAIL‑apoptotic effect (Fig. 6A). Subsequently, in order to 
demonstrate that osteoblastic differentiated DPSCs producing 
TRAIL can induce apoptosis of tumor cells, we co‑cultured 
osteoblastic differentiated DPSCs with H929, with or without 
a neutralizing anti‑TRAIL antibody. Our results indicated 
that anti‑TRAIL antibody treatment exhibited a significant 
increase of cell viability in the co‑culture, which should be 
related to the neutralization of TRAIL produced by differenti-
ated DPSCs (Fig. 6B). Anti‑TRAIL antibody did not affect 
cell viability of H929 cells and differentiated DPSCs cultured 
alone (Fig. 6C and D). Notably, cell‑cell contact was funda-
mental for this interaction; in fact the media from osteoblastic 
differentiated DPSCs did not affect the viability of H929 cells 
(data not shown).

Figure 3. Expression of TRAIL receptors during DPSC osteogenic differentiation. Immunoblotting was performed to detect the expression of death (DR5) and 
decoy (DcR2) receptors during the osteogenic differentiation of DPSCs (0, 5, 10, 15 and 20 days). The graphs represent the quantified OD normalized to β‑actin 
of each band. Data are reported as the means ± SE of three independent experiments. *P<0.01 compared to T0; #P<0.05 compared to T0.
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Figure 4. Activation of caspase‑8 and caspase‑3 in DPSC T0 and T20. (A and B) DPSCs at T0 were stimulated with 100 ng/ml TRAIL for 1, 2, 4, 6 and 8 h and 
analyzed by western blotting to detect the activation of caspase‑8 and ‑3. The blots revealed the bands corresponding to the active fragment of 23 kDa for caspase‑8 
and 17 kDa for caspase‑3. (C and D) DPSCs at T20 stimulated with 100 ng/ml TRAIL for 1,  2, 4, 6 and 8 failed to demonstrate the activation of caspase‑8 and 
caspase‑3. Densitometric quantification of the results, normalized to β‑actin, was reported in the graphs as the mean ± SE of three independent experiments.

Figure 5. Expression of cFLIP and XIAP during the DPSC differentiation. The blots demonstrate the protein expression levels of XIAP and cFLIP in DPSCs 
differentiated in osteogenic conditions (T0, 7, 14, 21 and 28 days). The graphs represent the mean ± SE values of three independent experiments. The results 
were normalized to total ERK (erk tot). *P<0.01 compared to T0.
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Discussion

In the present study, we demonstrated that the expression of 
TRAIL increased during the osteoblastic differentiation of 
DPSCs and in parallel, that differentiated DPSCs lost their 
sensitivity to TRAIL‑induced apoptosis. These two proper-
ties of DPSCs led us to use these cells as a TRAIL‑vehicle to 
induce an apoptotic effect on H929 myeloma cell line in vitro.

Since its discovery  (45,46), TRAIL has been broadly 
considered a potential therapeutic agent, due to its uniqueness 
of inducing apoptosis in cancer cells while not affecting normal 
cells (47,48). However, sensitivity to its pro‑apoptotic effect 
has also emerged in normal cells, such as bone cells (49‑54). 
TRAIL‑based therapies performed in numerous clinical trials 
generated poor results for different reasons, including the 
defective delivery of the protein to cancer cells. These find-
ings led to the use of DPSCs as a delivery system for cancer 
cells. We previously characterized DPSCs as an alternative 
source of MSCs  (32,33,35) and demonstrated their ability 
to differentiate into osteoblastic cells. Notably, we observed 

that differentiated DPSCs expressed higher TRAIL levels and 
presented a different responsiveness to TRAIL pro‑apoptotic 
effect with respect to undifferentiated DPSCs.

In detail, we found that only undifferentiated DPSCs 
were sensitive to TRAIL‑induced apoptosis in a time‑ and 
dose‑dependent manner, while DPSCs cultured in osteo-
genic conditions were resistant. We demonstrated that the 
diverse responses of undifferentiated and differentiated 
DPSCs to TRAIL were related to the different expression 
of TRAIL‑receptors DR5 and DCR2 during osteoblastic 
differentiation. DR5 is a death domain‑containing receptor, 
required for the induction of cell death (55‑58), while DCR2 
is a decoy factor able to counteract the pro‑apoptotic action 
of TRAIL (59,60). Our results indicated that undifferentiated 
DPSCs expressed higher levels of DR5 and lower levels of 
DcR2 compared to differentiated DPSCs. Thus, in undif-
ferentiated DPSCs the ratio of TRAIL‑receptors moved 
towards the death receptors, leading these cells to be more 
sensitive to the pro‑apoptotic action of TRAIL. Conversely, 
in differentiated DPSCs the receptor ratio shifted to the decoy 

Figure 6. DPSCs T20 affect H929 cell viability. (A) H929 cells were cultured with or without TRAIL 100 ng/ml for 48 h and the cell viability was assessed by an 
MTT assay. (B) Differentiated DPSCs were co‑cultured with H929 human myeloma cell line for 48 h in the presence or absence of a neutralizing anti‑TRAIL 
antibody (500 ng/ml). The MTT assay performed on the H929 cells, growing in suspension, revealed that the treatment with the neutralizing anti‑TRAIL 
significantly increased the cell viability of H929 cells, compared to the corresponding untreated co‑cultures. (C) H929 cells and (D) differentiated DPSCs were 
cultured with or without 500 ng/ml anti‑TRAIL antibody for 48 h and the cell viability was assessed by an MTT assay. The graphs are representative of the 
mean ± SE of three independent experiments in which each treatment was performed in quadruplicate. *P<0.01 compared to untreated samples.
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receptors, resulting in defense from TRAIL‑mediated apop-
tosis. We demonstrated that cell viability in DPSCs at t0 was 
negatively affected by TRAIL treatment, while DPSCs at t20 

were protected from death. However, we hypothesized that 
cell‑resistance or ‑sensitivity to TRAIL‑mediated apoptosis 
was not only determined by the balance between the expres-
sion of its death and decoy receptors, but could be partially 
related to the levels of certain intracellular anti‑apoptotic 
molecules, such as c‑FLIP and XIAP  (61‑64). Supporting 
the observation of different TRAIL sensitivity between 
t0‑ and t20‑DPSCs, we found low levels of the anti‑apoptotic 
factors c‑FLIP and XIAP in t0‑DPSCs, that increased during 
osteogenic differentiation.

Furthermore, according to the shifted ratio of receptors 
towards death receptors and low levels of cFLIP and XIAP 
in undifferentiated DPSCs, we demonstrated, in these cells, 
after the TRAIL administration, the immediate activation of 
caspase‑8 that in turn resulted in the executioner caspase‑3 
cleavage starting at 6 h of incubation. These events repre-
sented the crucial intracellular steps in the initiation of the 
apoptotic pathway activated by TRAIL in other cells (65‑67). 
Notably, the stimulation of TRAIL failed to activate this 
pathway in t20‑DPSCs, since caspase‑8 and ‑3 were almost 
unexpressed. The latter finding was in agreement with the 
resistance to TRAIL‑mediated cell death exhibited by these 
cells in osteogenic conditions and with the expression of 
receptors and anti‑apoptotic molecules. The obtained results 
led us to hypothesize on the possible role of differentiated 
DPSCs as a vehicle of TRAIL to cancer cells and prompted 
us to test this hypothesis on cancer cells. We used the human 
myeloma cell line H929 to test our hypothesis due to its 
non‑adherent behavior in culture. Previous studies have tested 
the use of MSCs as a vehicle of TRAIL demonstrating the 
ability to induce either in vitro apoptosis in several cancer cell 
lines (11), or in vivo remission of colon tumor and sarcomas 
established in nude mice (10,12). Furthermore, the localized 
action of TRAIL delivered by MSCs appeared to bypass the 
resistance of cancer cells, such as breast and colorectal, to 
soluble TRAIL (68,69). More recently, a stable MSC line 
expressing a highly bioactive form of TRAIL was generated 
and demonstrated a significant tumor regression in an in vivo 
Colo205 mouse xenograft tumor model (13). The advantage of 
our model is that DPSCs differentiated in osteogenic condi-
tions, expressed high levels of endogenous TRAIL, thus this 
system did not require any transfection technology and the 
cells were resistant to TRAIL‑mediated apoptosis. Our results 
indicated that the cell viability of human myeloma H929 
cells was affected by the TRAIL‑apoptotic effect (Fig. 6A). 
Notably when the H929 cells were co‑cultured with DPSCs 
and treated with anti‑TRAIL neutralizing antibody, they 
recovered high levels of cell viability, with a complete rescue 
of the apoptotic effect (Fig. 6A). In conclusion, our results 
revealed that differentiated DPSCs expressed high levels of 
TRAIL and were not sensitive to its pro‑apoptotic effect, 
thus they may be an optimal carrier of this antitumor agent 
in cancer cells. Furthermore, the results demonstrated that 
this effect completely depended on TRAIL. When TRAIL, 
produced by DPSCs co‑cultured with myeloma cells, was 
neutralized using blocking antibodies, an increase of H929 
cell viability was obtained.

Notably, a recent well‑designed study indicated that osteo-
blasts could counteract leukemia progression in mice, while 
osteoblast impairment promoted the disease. The authors 
concluded that osteoblasts could be a therapeutic target in 
akute leukemia, although the basic mechanism of this inter-
esting finding has not yet been described (70). This study is 
aligned with our results and it is intriguing to hypothesize 
that TRAIL expressed by osteoblasts mediates this effect. 
Collectively, these emerging results suggested that osteoblasts 
and osteogenic differentiated MSCs could have a potential 
therapeutic role in hindering tumor progression.
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