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Abstract. Breast carcinoma is one of the most common types 
of malignant neoplasms, and is associated with high rates of 
morbidity and mortality. Altered gene expression is critical in 
the development of breast cancer. To identify the important 
differentially expressed genes and microRNAs in breast carci-
noma, mRNA (GSE26910, GSE42568, and GSE89116) and 
microRNA (GSE35412) microarray datasets were downloaded 
from the Gene Expression Omnibus database. The differen-
tially expressed microRNA expression data were extracted 
with GEO2R online software. The DAVID online database was 
used to perform a function and pathway enrichment analysis 
of the key identified differentially expressed genes. A protein-
protein interaction (PPI) network was constructed using the 
STRING online database, and visualized in Cytoscape soft-
ware. The effect of the expression level of the key identified 
genes on overall survival (OS) time was analyzed by using the 
Kaplan-Meier Plotter online database. Furthermore, the online 
miRNA databases TargetScan, microT-CDS, and TarBase were 
used to identify the target genes of the differentially expressed 
miRNAs. A total of 254 differentially expressed genes were 

identified, which were enriched in cell adhesion, polysac-
charide binding, extracellular region part and ECM-receptor 
interactions. The PPI network contained 250 nodes and 
375 edges. Five differentially expressed genes were found to 
be significantly negatively correlated with the differentially 
expressed miRNAs, which were potentially also target genes 
for miRNAs. Four of the five genes, including AKAP12, SOPB, 
TCF7L2, COL12A1 and TXNIP were downregulated, and 
were associated with the OS of patients with breast carcinoma. 
In addition, a total of 130 differentially expressed miRNAs 
were identified. In conclusion, these results constitute a novel 
model for miRNA-mRNA differential expression patterns, and 
further studies may provide potential targets for diagnosing 
and understanding the mechanisms of breast carcinoma.

Introduction

Breast cancer is one of the most common types of malignancy 
among women, and is associated with high mortality. Globally, 
more than 1.7 million individuals are diagnosed with breast 
cancer annually, and approximately 521,000 individuals 
succumb to the disease (1). In recent decades, the incidence of 
breast cancer has increased, with almost one-tenth of all newly 
diagnosed cancers worldwide originating in the breast (2). 
Changes in reproductive and lifestyle characteristics are 
contributing to the increased morbidity and mortality rates of 
breast carcinoma. However, the exact molecular mechanisms 
underlying breast carcinoma are not fully understood.

At present, three major protein markers: estrogen receptor 
(ER), progesterone receptor (PR) and human epidermal growth 
factor (EGF) receptor 2 (HER2), are used for determining the 
classification, treatment and prognosis of breast carcinoma (3). 
However, there are no identified protein markers for the early 
diagnosis and treatment of breast carcinoma (4). Therefore, it 
is necessary to further investigate the molecular regulatory 
mechanisms of breast carcinoma, and identify molecular 
markers that can be used for early diagnosis and monitoring.

In recent years, DNA microarray analysis has been developed 
as a rapid, high-throughput detection technology to simultane-
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ously monitor the differential expression of numerous genes or 
miRNAs in oncology research, including in the field of breast 
cancer (5-8). miRNAs are small ~21-nt RNAs involved in post-
transcriptional gene regulation. It has been demonstrated that 
miRNAs pair with the mRNA 3'-untranslated region (UTR) of 
target genes to regulate their expression, including in cancer. In 
breast cancer, multiple miRNAs have been identified to regulate 
the expression of target genes, including miRNA-155, miRNA-
675, miRNA‑519a and miRNA-31 (9-12), among others.

Although DNA microarray application in oncology 
research has been widely recognized, the test has high vari-
ability. Therefore, in our research, we identified differentially 
expressed genes and microRNAs by analyzing three breast 
cancer mRNA microarray datasets, and one microRNA 
dataset. We then aimed to identify the key genes in breast 
cancer with survival, mRNA-microRNA interaction, ontology 
enrichment and network analyses.

Materials and methods

Microarray data. The GEO (https://www.ncbi.nlm.nih.gov/
gds. Accessed Jan. 26, 2018) is a free international public 
repository of high-throughput functional genomics data, 
including microarray and next-generation sequencing data. In 
this study, we used three gene expression profiles (GSE26910, 
GSE42568 and GSE89116) and one miRNA expression profile 
(GSE35412) from GEO.

The GSE26910 dataset was comprised of six breast cancer 
and six para-carcinoma tissue sample mRNA expression 
profiles (13); GSE42568 included 104 breast cancer and 17 para-
carcinoma tissue sample mRNA expression profiles  (14); 
GSE89116 contained 30 breast cancer and nine para-carcinoma 
tissue sample mRNA expression profiles (15); and GSE35412 
was comprised of 29 breast cancer and 21 para‑carcinoma 
tissue sample miRNA expression profiles (16). All datasets 
were downloaded in a processed and normalized format.

Data processing. The GEO2R (https://www.ncbi.nlm.nih.gov/
geo/geo2r. Accessed Jan. 26, 2018) is an online data analysis 
tool that can be utilized to analyze GEO data series obtained 
under the same experimental conditions (17). In this study, 
GEO2R was used to identify the differentially expressed 
miRNAs and genes between the breast cancer and para-carci-
noma tissue expression profiles. Adjusted P-values (adj.p) were 
calculated using the Benjamini and Hochberg false discovery 
rate method to correct for the likelihood of false positive 
results. An adj.P<0.01 and | logFC | >1 were set as the cut-off 
criteria for differential expression.

Functional and pathway enrichment analysis of the differen-
tially expressed genes. The DAVID (https://david-d.ncifcrf.
gov/summary.jsp. Accessed Jan. 26, 2018) online database 
is an online program that provides comprehensive gene 
annotation tools (18). The database was used to perform gene 
ontology (GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway enrichment analyses. P<0.05 was applied as 
the cut-off criterion.

Protein-protein interaction (PPI) network construction and 
module selection for the differentially expressed genes. The 

construction of a network of interactions between proteins can 
establish a framework for the study of molecular mechanisms. 
In this study, a PPI network of the differentially expressed 
genes was constructed using the Search Tool for the Retrieval 
of Interacting Genes and Proteins (STRING) database (https://
string-db.org. Accessed Jan. 26, 2018) (19), followed by visu-
alization using Cytoscape software (20). The confidence score 
≥0.7 was set as the cut-off criterion. The PPI network module 
selection criteria included a degree cut-off=2, node score 
cut-off=0.2, k-core=2 and maximum depth=100 (21).

Prediction of miRNA target genes. The online data-
bases TargetScan (http://www.targetscan.org. Accessed 
Jan. 26, 2018), microT-CDS (http://diana.imis.athena-inno-
vation.gr/DianaTools/index.php?r=microT_CDS. Accessed 
Jan. 26, 2018) and Tarbase (http://diana.imis.athena-innova-
tion.gr/DianaTools/index.php. Accessed Jan. 26, 2018) were 
used to identify the target genes of the differentially expressed 
miRNAs. These databases are universally recognized for their 
ability to accurately predict miRNA target genes.

Analysis of the effect of the differentially expressed genes 
on overall survival (OS). In the online database, Kaplan-
Meier (KM) Plotter (http://www.kmplot.com. Accessed 
Jan. 26, 2018), the impact of 54,675 genes on the survival time 
of cancer patients was evaluated by analyzing the data from 
10,188 cancer samples, including 4,142 breast, 1,648 ovarian, 
2,437  lung and 1,065  gastric cancer sample microarray 
expression profiles  (22). In the present study, we divided 
breast carcinoma patients into two groups depending on the 
expression of specific genes (high vs. low expression). The KM 
Plotter database was utilized to analyze the OS of breast cancer 
patients. Hazard ratios (HR) with 95% confidence intervals 
(CI) and a log-rank P-value were calculated and displayed.

Results

Identification of differentially expressed genes in three GEO 
datasets. The total number of differentially expressed genes 
was 1,293, 4,251 and 1,130 from GSE26910, GSE42568 and 
GSE89116, respectively. A total of 254 genes showed the 
same expression trend in all three data sets (Fig. 1). This 

Figure 1. Identification of the differentially expressed genes in the GSE26910, 
GSE42568 and GSE89116 mRNA microarray datasets.
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included 44 upregulated and 210 downregulated differentially 
expressed genes.

Construction of a PPI network of the differentially expressed 
genes. The PPI network of the differentially expressed genes 
consisted of 250 nodes and 375 edges, including 20 upregulated 
and 139 downregulated genes (Fig. 2).

Function and pathway enrichment analysis. We used the 
DAVID database to identify enriched functions and pathways 
of the differentially expressed genes, in order to further under-
stand their function. The differentially expressed genes were 
the most significantly enriched in cell adhesion (biological 
process category), polysaccharide binding (molecular function 
category) and extracellular region part (cellular component 

Figure 2. Protein-protein interaction network of the differentially expressed genes. Red nodes represent upregulated genes, while green nodes represent 
downregulated genes. The edges represent interactions between nodes.

Figure 3. Function and pathway enrichment analysis of upregulated and downregulated genes in breast carcinoma. The gene ontology enrichment analysis cov-
ered three categories: (A) biological process, (B) cellular component and (C) molecular function. (D) KEGG analysis suggested that genes were predominately 
associated with the ECM-receptor interaction pathway. P<0.05 was used as a cut-off for significance.
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category) (Fig. 3). In addition, these genes were significantly 
associated with 10 KEGG pathways, including ECM-receptor 
interactions, complement and coagulation cascades and adhe-
sion spots (Fig. 3).

Prediction of the target genes of the differentially expressed 
miRNAs. A total of 130 differentially expressed miRNAs were 
detected in the GSE35412 dataset, including 17 upregulated 
and 113 downregulated miRNAs. miR-183-5p was the most 
significantly upregulated miRNA, whereas miR-129-1-3p was 
the most significantly downregulated (Fig. 4). Subsequently, 
target genes of the differentially expressed miRNAs were 
obtained from online databases (TargetScan, microT-CDS 
and Tarbase). We determined that AKAP12, SOPB, TCF7L2, 
COL12A1 and TXNIP were the target genes for multiple 
differentially expressed miRNAs (Fig. 5).

Survival analysis of key identified differentially expressed 
genes. The prognostic values of five key genes in the PPI 
network were assessed from KMplots. The OS rate for breast 
cancer patients was analyzed based on the low and high 
expression of the key genes. The results showed that high 
AKAP12 mRNA expression [HR 0.67 (95% CI, 0.58-0.79), 
P=6.1e-07] was associated with an improved OS for breast 
carcinoma patients (Fig. 6), as was high expression of TXNIP 
[HR 0.66 (95% CI, 0.59-0.74), P=1e-13], SOBP [HR 0.83 (95% 
CI, 0.74-0.92), P=0.00059] and TCF7L2 [HR 0.76 (95% CI, 
0.68-0.85), P=6e-07] (Fig. 6).

Discussion

Although our understanding of the pathogenesis and clinical 
treatment of breast cancer has made significant progress, 

Figure 4. Unsupervised hierarchical clustering analysis using the differentially expressed microRNAs that separated normal and tumor breast tissues. The heat 
map (based on Spearman's correlation and Euclidean distance) contains log-transformed ∆Ct values. Heat map colors correspond to microRNA expression as 
indicated in the color key: red (upregulated) and blue (downregulated). Orange line, para-carcinoma samples; green line, tumor samples.

Figure 5. Co-expression networks of overexpressed miRNAs and their target genes in breast carcinoma. Red nodes represent upregulated genes, while green 
nodes represent downregulated genes.
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the overall mortality rate for breast cancer has not improved 
significantly, which can be attributed to the lack of molecular 
markers for effective diagnosis and treatment. Therefore, it is 
important to explore the molecular markers of breast carci-
noma to improve the survival rate and prevention of patients.

Microarray technology has been applied to detect the 
genetic changes associated with the progression of various 
types of malignancy. Microarray technology has also been 
widely used to select molecular markers for determining the 
diagnosis, treatment and prognosis of tumors. In this study, 
we screened a total of 254 differentially expressed genes 
through analyzing three mRNA datasets, which included 
44 upregulated genes and 210 downregulated genes. These 
differentially expressed genes were significantly enriched in 
cell adhesion, polysaccharide binding, extracellular region 
part and ECM-receptor interaction, which are all associated 
with the pathogenesis of carcinomas.

We also analyzed a miRNA dataset, in which we identified 
130 differentially expressed miRNAs, including 17 upregulated 
and 113 downregulated miRNAs, in breast carcinoma. miR-
183-5p was the most significantly upregulated miRNA, while 
miR-129-3p was the most markedly downregulated miRNA. 
miRNAs are small, non-coding RNAs of ~22 nucleotides 
in length, which regulate gene expression by targeting the 

3'UTR of target mRNAs, resulting in their degradation or the 
inhibition of translation. Previous research has suggested that 
the dysregulation of miRNAs is involved in the pathogenesis 
of many types of cancer, including breast carcinoma. For 
example, it has been demonstrated that miR-21, miR-210 and 
miR-221 are upregulated in triple-negative primary breast 
carcinomas (23). In addition, the overexpression of miR-301 
is considered a negative prognostic index for lymph node-
negative invasive ductal breast carcinoma. Shi et al identified 
that miR-301 is a crucial oncogene in breast carcinoma that 
promotes nodal and distant relapse via multiple pathways and 
mechanisms (24).

As miRNAs negatively regulate the expression of their 
target genes, we analyzed the correlation of upregulated genes 
with downregulated miRNAs, downregulated genes and upreg-
ulated miRNAs. Notably, we identified that AKAP12, SOPB, 
TCF7L2 and TXNIP were potentially the common targets of 
hsa-miRNA-183-5p, hsa-miRNA-454-3p and hsa-let-7g-5p 
among the downregulated genes. COL12A1 was potentially 
the common target of hsa-miRNA-139-3p and hsa-miRNA-
654-3p among the upregulated genes. Subsequently, survival 
analysis of the relationship between the postoperative survival 
of patients and the expression of these genes suggested that 
four genes were closely associated with improved OS of breast 

Figure 6. Prognostic value of four genes in breast carcinoma patients. Plots of the prognostic value of (A) AKAP12, (B) TXNIP, (C) SOBP and (D) TCF7L2 
genes were obtained from www.kmplot.com. The corresponding Affymetrix IDs were 227529_s_at (AKAP12), 201010_s_at (TXNIP), 218974_at (SOBP) and 
216037_x_at (TCF7L2).
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carcinoma patients, namely AKAP12, SOPB, TCF7L2 and 
TXNIP.

Tumor progression is induced by genetic mutations and 
epigenetic changes. Protein kinase A anchor 12 (AKAP12) 
is a scaffold protein that plays a major regulatory role in cell 
proliferation, migration, apoptosis and angiogenesis  (25). 
Studies have also shown that AKAP12 is involved in multiple 
signaling pathways through regulating protein kinases A 
and C. AKAP12 is a tumor metastasis inhibitory factor, which 
is associated with carcinoma susceptibility and tumor cell 
behavior in a variety of tumor types, including breast carci-
noma (26-28). AKAP12 has also been associated with miRNAs 
in various types of disease. In liver cirrhosis, the interaction 
of miRNA-183 or miRNA-186 can downregulate the expres-
sion of AKAP12 (29). In addition, Xia et al indicated that the 
overexpression of miR-103 can promote cell proliferation and 
inhibit apoptosis by downregulating AKAP12 expression in 
hepatocellular carcinoma cell lines (30).

SopB (also known as SigD) is an effector of the Salmonella 
typhimurium Type III secretion system that acts on phospho-
lipids in the host cell membrane (31,32). SopB may induce 
epithelial-mesenchymal transition (EMT), which is also 
associated with malignant disease. SopB plays a central role 
in activating Wnt/β-catenin signaling, which can induce cell 
transformation and Wnt/β-linked regulatory signaling trans-
duction. SopB-dependent activation of Akt kinases can lead 
to the inhibitory phosphorylation of GSK3β, which further 
induces cytosolic β-catenin and Wnt/β-catenin-mediated 
EMT (33).

The transcription factor 7-like 2 (TCF7L2) gene is located 
on the long arm of chromosome 10q25.2 (previously called 
TCF-4). TCF7L2 is a part of the Wnt/β-catenin signaling 
pathway, which plays an important role in the regulation of cell 
development and growth (34,35). In addition, epidemiological 
studies have shown that TCF7L2 gene polymorphisms are asso-
ciated with increased susceptibility to carcinomas, including 
of the breast (35,36). Additionally, TCF7L2 can increase the 
expression of genes involved in the proliferation, apoptosis, 
invasion and metastasis of tumor cells  (37,38). TCF7L2 
synthesis is directly regulated by miR-21 transcription (39). 
In cervical carcinoma, the expression levels of miR-328 and 
TCF7L2 are negatively correlated. Furthermore, miR-328 can 
reduce the expression of TCF7L2 to affect the treatment of 
cervical carcinoma (40). Cervical carcinoma metastasis and 
progression may also be inhibited by miR-212, through its 
direct targeting of TCF7L2 expression (41). In addition, miR-
181a-5p may regulate the Wnt signaling pathway through the 
direct targeting of TCF7L2, promoting 3T3-L1 preadipocyte 
differentiation and adipogenesis (42).

TXNIP (also known as VDUP-1 or TBP-2) is proapop-
totic, and inhibits growth and metastasis (43). TXNIP has a 
variety of functions, including an important regulatory role 
in the redox equilibrium, and can increase the production of 
reactive oxygen species (ROS) to induce apoptosis through 
oxidative stress. TXNIP is a major tumor suppressor gene 
that is downregulated in a variety of solid tumors, including 
breast carcinoma (44-46). There is a correlation between the 
expression of TXNIP and the metastasis and survival prog-
nosis of breast carcinoma (45). TXNIP also plays a critical 
role in the treatment of HER-1/HER-2-positive tumors, and 

is a potential prognostic indicator in breast carcinoma (47). 
TXNIP has been associated with a variety of miRNAs and has 
been demonstrated as a target of miR-342 (48), miR‑135a (49) 
and miR-20a  (50). The miR-373 expression is negatively 
correlated with the expression of TXNIP, and activation of 
the miR-373-TXNIP signal transduction axis is associated 
with a poor outcome in breast carcinoma (51). This may be 
mediated through an effect on the invasion and migration of 
breast carcinoma cells, which is associated with the prognosis 
of breast carcinoma patients (52).

In summary, the present study intended to identify the 
differentially expressed genes in breast carcinoma and 
thus find the potential biomarkers for predicting disease 
progression using comprehensive bioinformatic analyses. In 
this study, a total of 254 differentially expressed genes and 
130 differentially expressed miRNAs were screened; AKAP12, 
SOPB, TCF7L2 and TXNIP, and several miRNAs, including 
miR-183-5p, let-7g-5p and miR-454-3p, may be key breast 
carcinoma-associated genes. Our results suggested that data 
mining and integration is a useful tool to predict the progres-
sion of breast carcinoma, and to identify the mechanisms of 
the occurrence and development of tumors. To apply these 
gene expression profiles in clinical practice, it is necessary to 
improve the reliability and reproducibility of this model within 
dependent datasets in the future. Nevertheless, our research 
may provide new information for the diagnosis and treatment 
of breast carcinoma patients.
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