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Abstract. The Hippo pathway, initially identified through 
screenings for mutant tumor suppressors in Drosophila, is 
an evolutionarily conserved signaling pathway that controls 
organ size by regulating cell proliferation and apoptosis. 
Abnormal regulation of the Hippo pathway may lead to 
cancer in mammals. As the major downstream effectors 
of the Hippo pathway, unphosphorylated Yes-associated 
protein (YAP) and its homolog transcriptional co-activator 
TAZ (also called WWTR1) (hereafter called YAP/TAZ) are 
translocated into the nucleus. In the nucleus, in order to induce 
target gene expression, YAP/TAZ bind to the TEA domain 
(TEAD) proteins, and this binding subsequently promotes 
cell proliferation and inhibits apoptosis. In contrast, as key 
regulators of tumorigenesis and development, YAP/TAZ are 
phosphorylated and regulated by multiple molecules and path-
ways including Lats1/2 of Hippo, Wnt and G-protein-coupled 
receptor (GPCR) signaling, with a regulatory role in cell 
physiology, tumor cell development and pathological abnor-
malities simultaneously. In particular, the crucial role of YAP/
TAZ in tumors ensures their potential as targets in designing 
anticancer drugs. To date, mounting research has elucidated 
the suppression of YAP/TAZ via effective inhibitors, which 
significantly highlights their application in cancer treatment. 
In the present review, we focus on the functions of YAP/TAZ 
in cancer, discuss their potential as new therapeutic target for 

tumor treatment, and provide valuable suggestions for further 
study in this field.
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1. Introduction

The precise regulation of cell proliferation and apoptosis 
plays an important role in maintaining an appropriate organ 
size during organ development and tissue homeostasis during 
postnatal life (1). The Hippo pathway was initially identi-
fied in Drosophila through genetic mosaic screening. As an 
evolutionarily and functionally conserved signaling network, 
the Hippo pathway has been discovered to participate in 
controlling organ size by regulating cell proliferation and 
apoptosis (2-5).

Following these pioneering discoveries, research 
concerning the Hippo pathway in mammalian tissues has 
currently become a burgeoning field (2,3). Generally, in 
Drosophila, the terminal effector component of the Hippo 
pathway is a transcription co-activator, named Yorkie (4). 
However in mammalians, Yes-associated protein (YAP) and 
its homolog transcriptional co-activator TAZ (also called 
WWTR1) with PDZ-binding motif are key downstream 
terminal effectors of the Hippo pathway (5). In normal tissue, 
YAP/TAZ proteins are phosphorylated at specific serine 
residues in order to confine their subsequent degradation in 
the cytoplasm, which consists of the final effect of the Hippo 
pathway on YAP/TAZ proteins. However in tumors, YAP/TAZ 
proteins are translocated into the nucleus where they bind to 
TEA domain (TEAD) proteins. This eventually results in 
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cell proliferation, evasion of apoptosis and amplification of 
progenitor/stem cells for the promotion of organ size (6-8).

Increasing evidence shows that alterations to the Hippo 
pathway are significantly associated with cancer development 
(9,10). A high percentage of patients suffering from liver 
cancer, breast cancer or cancer of the pharynx are reported 
to harbor causative overexpression of YAP/TAZ genes (11). 
Moreover, aberrant expression of YAP/TAZ has been demon-
strated to be an independent prognostic predictor and indicator 
of rapid proliferation, metastasis and poor survival outcome of 
patients with colorectal cancer (CRC) (12).

Herein, we review the functions of YAP/TAZ on 
tumorigenesis, cell proliferation, metastasis and apoptosis. 
Furthermore, the importance of YAP/TAZ in cancer treat-
ment is also highlighted in light of the interactive molecular 
pathways noted among Hippo, Wnt and G-protein-coupled 
receptor (GPCR) in the regulation of tumor progression and 
drug resistance. Briefly, we focused on the considerable role 
of YAP/TAZ in oncotherapy, illuminating their promising 
application potential as new drug targets for tumor therapeutic 
intervention.

2. Hippo pathway in mammals

The Hippo pathway, conserved in mammals, has received 
immense research attention in recent years (4). The study from 
fruit flies to humans shows that the Hippo pathway is highly 
conserved under normal conditions and functions as a means 
of inhibiting cancer development (13). Basically, the Hippo 
pathway consists of three parts: upstream regulatory elements 
(NF2, Mel), core components (mainly Mst1/2, Lats1/2) and 
downstream effector molecules (YAP/TAZ). Meanwhile, the 
central components of the Hippo pathway comprise a regu-
latory serine-threonine kinase module and a transcriptional 
module (14) (Table I). In detail, the kinase module includes 
mammalian STE20-like protein kinase 1 (Mst1, also known 
as Stk4) and Mst2 (also known as Stk3), as well as large tumor 
suppressor 1 (Lats1) and Lats2 (11,15). The transcriptional 
module includes YAP and TAZ. They are two closely related 
paralogues which primarily mediate the downstream effects of 
the Hippo pathway via a feedback mechanism. It is now widely 
acknowledged that the components of the kinase module are 
tumor suppressors and those of the transcriptional module are 
oncogenes (11,16).

In normal tissue, Mst1/2, activated by certain upstream 
signals, can phosphorylate and activate the substrate 
Lats1/2 (17). Subsequently, the activated Lats1/2 can directly 
phosphorylate downstream effector molecules YAP/TAZ. 
In addition, the phosphorylated YAP/TAZ interacts with the 
14-3-3 protein, resulting in the cytoplasm retention of YAP/
TAZ. Consequently, phosphorylated YAP/TAZ may lose their 
function as transcription cofactors, which leads to ubiquitin-
mediated proteasomal degradation (18,19). On the contrary, 
YAP/TAZ can function as transcriptional co-activators that 
shuttle between the cytoplasm and nucleus. In the nucleus, they 
induce expression of cell-proliferative and anti-apoptotic genes 
via interacting with transcriptional factors, particularly the 
TEA domain (TEAD) (6,20,21). In short, the Hippo pathway 
is an important pathway to maintain the homeostasis of cell 
proliferation and apoptosis (22). Noteworthy, deactivation of 

the Hippo pathway and the upregulation of YAP/TAZ have 
been frequently observed in many human cancers (10,23).

Based on the aforementioned analysis, we regard the 
Hippo kinase module as a switch button. When Hippo kinase 
module is ‘on’, LATS1/LATS2 phosphorylates and inactivates 
YAP/TAZ, thus the output gene production is turned off. 
Oppositely, when the kinase module is ‘off’, hypophosphory-
lated YAP/TAZ are translocated into the nucleus and induce 
the expression of target genes (Fig. 1).

3. Structural and functional characteristics of YAP/TAZ

The YAP1 (Yes-associated protein 1) gene, located on chro-
mosome 11q22 in humans and having a 65-kDa molecular 
mass (known as YAP or YAP65), is ubiquitously expressed in 
human tissues throughout the developmental process (24-26). 
To date, eight splicing isoforms of the YAP1 gene product 
(YAP1-1 α, β, γ, δ and YAP1-2 α, β, γ and δ) have been 
initially identified in humans and are regarded as YAP1 and 
YAP2, which differ by the presence of an extra 38 amino 
acids that encode the WW domain (27). Although the exis-
tence of YAP1 (with one WW domain) and YAP2 (with two 
WW domains) isoforms has been previously unveiled, there 
are few studies that separate these two types of isoforms in 
the research of the Hippo pathway (24). As an oncogene, YAP 
is amplified in various human cancers, which leads to abnor-
malities of the Hippo-YAP pathway and induces an imbalance 
between cell proliferation and apoptosis (28). Research 
in vitro has demonstrated that YAP2 is the predominantly 
expressed YAP isoform in both ovarian surface epithelium 
and epithelial ovarian cancers (29). Notably, whether YAP has 
biological activity or not depends on the location of YAP in 
cells. Phosphorylated YAP binds to the 14-3-3 protein in the 
cytoplasm, leading to its cytoplasmic retention and inactiva-
tion (30). As for the TAZ gene, it is located on 3q23-q24 and 
encodes a 43-kDa protein (31) with abundant expression in 
various tissues except for thymus and peripheral blood leuko-
cytes and amplification in many human cancers (32). However, 
it is also known as WWTR1 (WW-domain containing tran-
scriptional regulator 1) and is similarly identified as a 14-3-3 
binding protein as well.

Structurally, YAP and TAZ share nearly half of the amino 
acid sequence and have very similar topology features. YAP 
protein, consisting of 488 amino acids, has a TEAD-binding 
region (TB), two WW domains (two conserved tryptophan/W 
residues separated by 20-23 amino acids), an SH3-binding 
motif, a coiled-coil domain, a transcription activation 

Table I. Elements of the Hippo pathway.

Location Elements

Upstream NF2 and Mel
Core components Mainly Mst1/2, Lats1/2
Downstream YAP/TAZ
Central components Serine-threonine kinase module
 (Mst1/2, Lats1/2), a transcriptional 
 module (YAP/TAZ)
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domain, an N-terminal proline-rich domain, and a C-terminal 
PDZ-binding motif. Whereas TAZ protein, consisting of 
400 amino acids, has a similar domain organization with YAP, 
although it lacks the second WW domain, the SH3-binding 
motif and the proline-rich domain (33,34) (Fig. 2).

Functionally, the WW domains of YAP and TAZ are 
shown to interact with PPXY motifs of various transcrip-
tional factors (35). The TB domains recognize transcriptional 
factors, the TEAD family, and activate the expression of target 
genes. In addition, the 14-3-3 binding motif is also crucial for 
the regulation of YAP and TAZ (36). In other words, both 
YAP and TAZ serve as transcriptional co-activators and share 
various transcriptional factor partners (37). However, there are 
still various studies indicating that YAP/TAZ have their own 
unique target transcriptional factors, such as ErbB4 and p73 
for YAP and PPARγ, Pax3, TBX5 and TTF-1 for TAZ. These 
different transcriptional factors may contribute to the distinct 
functions of YAP and TAZ (38-42).

4. YAP/TAZ in cancer

YAP/TAZ as biomechanic mediators. It is widely recognized 
that biomechanics is an important regulator of cell physiology 
and a pivot in cell development and pathological abnormali-
ties (43). YAP/TAZ, two proto-oncogene proteins, are able 
to respond to complex physical milieu characterized by the 
rigidity of extracellular matrix (ECM), mechanical stretching, 
cell geometry and status of the actin cytoskeleton (44).

It was revealed that breast cancer has elevated tissue stiff-
ness due to the alteration of the ECM (45). Nevertheless, the 
softening of the tumor microenvironment may contribute to 
the alleviation of tumor growth and progression. Intriguingly, 
remodeling of the ECM is partly dependent on YAP activity. 
In cancer-associated fibroblasts (CAFs), the activation of YAP 
promotes matrix stiffening through extensive deposition of 
collagen. Subsequently, the YAP-induced matrix stiffening 
creates tension within CAFs, leading to the activation of Src 

Figure 1. Hippo pathway. ‘Hippo On’ results in the phosphorylation and inactivation of TAP/TAZ via Lats1/2, ultimately leading to the cytoplasmic retention 
of TAP/TAZ (left). Oppositely, ‘Hippo Off’ abrogates the inactivation of TAP/TAZ, thus they are translocated into the nucleus to induce cell proliferation and 
tumor growth (right). P, phosphorylation; R, receptors; ↓, activation; x, block.

Figure 2. Structures of YAP/TAZ. YAP protein consists of a TEAD-binding region, two WW domains, an SH3-binding motif, a coiled-coil domain, a 
transcription activation domain, an N-terminal proline-rich domain and a C-terminal PDZ-binding motif (above). Similarly, TAZ protein consists of a TEAD-
binding region, only one WW domain, a coiled-coil domain, a transcription activation domain and a C-terminal PDZ-binding motif, without SH3-binding 
motif and proline-rich domain compared with YAP (below). TEAD, YAP/TAZ binds to TEA domain.
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kinase and the nuclear translocation of YAP. This is conducive 
to further matrix stiffening (46), thereby establishing a self-
enhancing loop during tumorigenesis. Beyond that, mechanical 
stretching can indeed induce the entry of YAP/TAZ into the 
nucleus, stimulating the proliferation of contact-inhibited 
mammary epithelial cells (47). In detail, mechanical stretching 
is able to override CIP (contact inhibition of proliferation) 
via YAP/TAZ, although CIP is deregulated in cancer (48). 
Namely, this is one of the major hallmarks of cell neoplastic 
transformation.

Crucially, in tumors, the extensive diversity of cell geom-
etry regulates cell proliferation, which is identified by YAP/
TAZ (49,50). However, it is not clear how YAP/TAZ respond 
to the diversity of cell geometry in cancer. It has been shown 
that the adhesion sites of YAP/TAZ and their associated 
F-actin cytoskeleton are affected differently in rounded cells 
and spread cells (51,52). Moreover, the regulation of YAP/TAZ 
localization by mechanical stress also depends on F-actin and 
Rho family GTPases (53,54). Induced actin polymerization 
by the overexpression of F-actin nucleator precisely correlates 
with activation of YAP/TAZ (55). Along with these clues, 
we may explain how YAP/TAZ interact with the F-actin 
cytoskeleton and sense cell geometry, which eventually leads 
to the acceleration of tumor cell proliferation. Furthermore, 
the pro-fibrotic microenvironment of tumors characterized 
by enhanced stiffness stimulates mesenchymal stromal cells 
(MSCs) to express α-smooth muscle actin (α-SMA). And 
α-SMA incorporates into hMSC stress fibers and promotes 
downstream translocation of YAP/TAZ transcription factors 
into the nucleus. Moreover, the nuclear localization of 
YAP/TAZ is positively correlated with α-SMA-expressing 
stromal cells of adiposarcoma and osteosarcoma (56), further 
suggesting the significant interaction between YAP/TAZ and 
biomechanic indicators.

YAP/TAZ as modulators of the Wnt pathway. The canonical 
Wnt pathway is initially stimulated by Wnt receptors on 
the cell surface. In the activated Wnt pathway, β-catenin 
destruction complex is decomposed and the accumulation 
of β-catenin in the nucleus is also promoted. Subsequently, 
these effects can facilitate the expression of Wnt-targeted 
genes and tumorigenesis (57,58). It was mentioned above 
that the dysregulation of YAP/TAZ may contribute to human 
cancer (59). Notably, previous research has discovered an 
unexpected role of Wnt/β-catenin on promoting YAP protein 
level by activating YAP transcription and interacting with 
Hippo/YAP. Their interaction considerably contributes to 
homeostasis, organ repair and tumorigenesis (60). As for 
colorectal cancer (CRC), β-catenin was found to associate 
with TCF/LEF sequence-specific transcriptional factors for 
the activation of target gene expression. In experiments using 
human CRC cell lines HCT116, SW620, SW480, RKO, LS174 
and HT29, the β-catenin/TCF4 complex binds to a DNA 
enhancer element within the first intron of YAP gene to trigger 
YAP expression (61). It is also noteworthy that as a modulator, 
the Wnt pathway can stimulate the stabilization of β-catenin 
and TAZ (43). Therefore, TAZ activation is speculated as 
a general feature of the Wnt pathway and is functionally 
relevant to mediate Wnt biological effects. Furthermore, the 
stability of TAZ is regulated by the phosphorylation of a 

C-terminal phospho-degron via the Hippo pathway and the 
phosphorylation of an N-terminal degron via GSK3 in the 
Wnt pathway (62), indicating the substantial connection of the 
Wnt pathway and Hippo pathway. However, the Wnt pathway 
has other branches including Wnt/PCP (regulating cell surface 
polarity), Wnt/Ca2+ (regulating intracellular calcium signal) 
and Wnt/ROR1/2. Collectively, these branches are known 
as the non-canonical Wnt pathway (63). In vertebrates, the 
non-canonical Wnt pathway can induce osteogenic differentia-
tion and the migration of tumor cells, and inhibit canonical 
Wnt/β-catenin signals (64). Surprisingly, YAP/TAZ are also 
found to be the downstream effector of the non-canonical Wnt 
axis, Wnt-FZD/ROR-Gα12/13-Rho GTPases-Lats1/2. In this 
axis, Wnt5a/b and Wnt3a induce YAP/TAZ activation and 
nuclear localization, which is independent of canonical Wnt/β-
catenin signaling. However, upregulation of the expression of 
YAP/TAZ-TEAD target genes including DKK1, BMP4 and 
IGFBP4, may lead to Wnt/β-catenin inhibition (65).

In terms of biochemical, functional and genetic aspects, 
YAP/TAZ are integral components of the β-catenin destruc-
tion complex that serves as a cytoplasmic sink for YAP/
TAZ (66). Cytoplasmic YAP may directly sequester β-catenin 
into the cytoplasm. Cytoplasmic TAZ may sequester DVL2 
to impede its activity in promoting β-catenin accumulation 
in response to Wnt stimulation (67,68). In other words, the 
cytoplasmic YAP/TAZ may have an opposite role here in 
regulating β-catenin activity. Hence, the bHippo pathway, 
known to be involved in tumor suppression, also promotes 
cytoplasmic localization of YAP/TAZ and inhibits the Wnt 
pathway. This indicates that the Hippo pathway promotes 
cytoplasmic retention and degradation of β-catenin via 
YAP/TAZ and the Hippo pathway serves as a tumor inhibitor 
in a novel manner (Fig. 3).

Regulation of YAP/TAZ via GPCR signaling. G protein-coupled 
receptors (GPCRs) are the largest family of cell surface recep-
tors mediating the responses to a wide range of physiological 
signals (69). However, abnormal GPCR signaling is involved in 
tumor development as well. For example, elevated expression 
of GCPRs such as PAR1 has been demonstrated in high-grade 
breast cancers, while activated mutations of GPCRs have 
been found in melanomas and thyroid carcinomas (70-72). As 
mentioned above, the Hippo pathway is regarded as a tumor 
suppressor that regulates organ size and tumorigenesis. Based 
on that, the relationship between activation of YAP/TAZ in 
cancer and aberrant GPCR signaling has attracted increasing 
attention (73).

Recently, groundbreaking research has found that serum-
derived sphingosine-1-phosphate (S1P) and lysophosphatidic 
acid (LPA) are small-molecule activators of YAP (74). However, 
S1P is independent of the core Hippo pathway kinase. It induces 
YAP nuclear localization through the S1P2 receptor, Rho 
GTPase activation and F-actin polymerization. Crucially, LPA 
and S1P activate YAP by binding to their respective GPCRs on 
the cell surface and by activation of downstream G proteins (75). 
Namely, the various GPCRs and their agonists importantly serve 
as Hippo pathway regulators. But notably, activation of GPCRs 
by epinephrine or glucagon stimulation increases the activity of 
Lats1/2 kinase, thus resulting in the inhibition of YAP function. 
In contrast, G12/13- or Gq/11-coupled receptors are activated 
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by LPA or S1P, which can inhibit Lats1/2 kinases and result in 
YAP activation.

However, protein kinase D (PKD) is activated within 
cells by the stimulation of multiple GPCRs (76). Moreover, 

YAP/TAZ are necessary for the stimulation of the prolifera-
tive response to GPCR agonists that act via PKD (77,78). It 
was shown that stimulation of intestinal epithelial IEC-18 cells 
with angiotensin II (GPCR agonist) induces rapid cytoplasmic 
accumulation of YAP and concomitant increase of YAP phos-
phorylation at Ser 127 and Ser 397 (77). However, addiitonal 
research using human pancreatic cancer cell lines PANC-1 and 
MiaPaCa-2 revealed that the stimulation of tumor cells with 
insulin and neurotensin promoted YAP nuclear localization 
and decreased YAP phosphorylation at Ser 127 and Ser 397, 
which was mediated by PI3K and PKD. In addition, this would 
subsequently induce the expression of YAP/TEAD-regulated 
genes including connective tissue growth factor (CTGF), 
cysteine-rich angiogenic inducer 61 (CYR61) and CXCL5. 
siRNA-mediated knockdown of YAP/TAZ, PI3K inhibitor 
A66 and PKD family inhibitors/siRNAs, would prevent the 
increase in the mRNA levels of CTGF, CYR61 and CXCL5 
in response to insulin and neurotensin stimulation (78). This 
indicates that PI3K or PKD can promote the crosstalk between 
insulin receptor and GPCR signaling systems by inducing 
YAP/TEAD-regulated gene expression in pancreatic cancer 
cells (Fig. 4).

Nuclear YAP/TAZ in tumorigenesis. The mechanisms of 
YAP/TAZ translocation are complicated. Apart from the 
aforementioned pathway, studies on signaling molecules 
involved in YAP/TAZ nuclear translocation are still underway. 
For instance, apoptosis-stimulating protein of p53 1 (ASPP1) 
is able to inhibit the interaction between YAP and Lats1 (79), 
therefore enhancing nuclear accumulation of YAP/TAZ and 
YAP/TAZ-dependent transcriptional regulation. Eventually, 
the nuclear YAP/TAZ could inhibit apoptosis and enhance 
cell migration.

Figure 3. Regulation of the Wnt pathway via YAP/TAZ. The canonical Wnt 
pathway can decompose β-catenin destruction complex and promote the 
accumulation of β-catenin in the nucleus where the β-catenin/TCF4 complex 
binds to a DNA enhancer element within the first intron of the YAP gene to 
trigger YAP expression in colorectal cancer (CRC) cells. However, in the 
cytoplasm, YAP/TAZ suppresses the nuclear translocation of β-catenin, 
which results in the inhibition of the Wnt pathway. In contrast, the Wnt 
pathway also stabilizes TAZ through its phosphorylation by GSK3. P, phos-
phorylation; ↓, activation; ⊥, inhibition.

Figure 4. The effect of GPCR signaling on YAP/TAZ. S1P and LPA inhibit Lats1/2 kinases by activating G12/13- or Gq/11-coupled receptors, resulting in YAP 
activation and nuclear localization. Conversely, epinephrine and glucagon stimulate GPCRs and increase the activity of Lats1/2 kinase to inactivate YAP (left). 
Insulin and neurotensin promote striking YAP nuclear localization and decreased YAP phosphorylation by PI3K/PKD in GPCR signaling, which accelerates 
tumorigenesis. In contrast, the PKD family inhibitors (CRT0066101 and κb NB 142-70) and PDK siRNA can prohibit this process (medium). Angiotensin II 
increases the phosphorylation of YAP by stimulating GPCRs, which may induce the cytoplasmic accumulation of YAP and reduce the expression of Ctgf and 
Areg. GPCRs, G-protein-coupled receptors; S1P, sphingosine-1-phosphate; LPA, lysophosphatidic acid. P, phosphorylation; R, insulin/neurotensin receptor; 
↓, activation; ⊥, inhibition.
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Accumulation of YAP/TAZ broadly participates in the 
expression of cancer-related genes. It was reported that YAP/TAZ 
promote cell growth by modulating amino acid signaling to 
mTORC1 (mammalian target of rapamycin 1) (80,81). In the 
progress of amino acid-induced mTORC1 activation, particu-
larly under nutrient-limiting conditions, YAP/TAZ potentiate 
mTORC1 activity by increasing the expression of high-affinity 
LAT1 (L-type amino acid transporter), a heterodimer of 
SLC7A5 and SLC3A2. In addition, the YAP/TAZ-TEAD 
complex directly induces the transcription of SLC7A5, which 
forms a dimer with SLC3A2 in order to increase LAT1 
expression and provide a competitive growth advantage for 
tumor cells (80). At the same time, YAP/TAZ also inhibit 
tumor-suppressor genes including DNA-damage-inducible 
transcript 4 (DDIT4) and TNF-related apoptosis-inducing 
ligand (TRAIL) that are inhibitors of mTORC1 (81). Herein, 
we directly address that YAP/TAZ can function as oncogenes 
by repressing antiproliferative and cell-death genes (Fig. 5A).

In breast cancer, estrogen stimulation activates YAP/TAZ 
via the G protein-coupled estrogen receptor (GPER) (82). 
Moreover, GPER mediates the expression of CTGF, CYR61, 

EDN1 and EGR1 that are well-established YAP/TAZ target 
genes (83). In addition, TEAD factors of YAP/TAZ and 
activator protein-1 (AP-1) form a complex that synergisti-
cally activates target genes involved in the control of S phase 
entry and mitosis (84). Moreover, wild-type p53 (wtp53) 
is described as a tumor-suppressor gene, while mutations 
in this gene (mtp53) occur in many human cancers and 
promote oncogenic capacity. WIP, phosphorylated by AKT2 
in downstream of mtp53, induces YAP/TAZ activation and 
translocation into the nucleus with consequent activation of 
YAP/TAZ oncogenic targets (85). From another perspective, 
TAZ forms a complex with the cell-polarity determinant 
Scribble. This complex disrupts the inhibitory association of 
TAZ with the Hippo kinases Mst1/2 and Lats1/2 (86), which 
promote tumorigenesis. In addition, YAP/TAZ also promote 
and maintain transforming growth factor-β (TGFβ)-induced 
tumorigenic phenotypes in late-stage breast cancer cells. The 
TEAD transcription factors of YAP/TAZ interact with TGFβ-
induced SMAD2/3 in the nucleus, eventually promoting the 
gene expression of NEGR1 and UCA1 that are necessary for 
maintaining tumorigenic activity (87). Therefore, YAP/TAZ 

Figure 5. Nuclear YAP/TAZ promote tumor cell proliferation, inhibit apoptosis and enhance cell migration. (A) S1P and LPA promote YAP/TAZ nuclear 
translocation by S1P2/Rho GTPase/F-actin polymerization. Moreover, ASPP1 inhibits the interaction between YAP and Lats1, which promotes YAP/TAZ 
nuclear translocation. As a result, YAP/TAZ can enhance cell proliferation, inhibit apoptosis and increase the activation of mTORC1 by regulating the expres-
sion of SLC7A5, DDIT4 and Trail. (B) WIP induces YAP activation and translocation into the nucleus with consequent activation of YAP/TAZ oncogenic 
targets. In the nucleus, YAP/TAZ both promote the gene expression of NEGR1 and UCA1 that are necessary for maintaining tumorigenic activity. On the 
contrary, the cell-polarity determinant scribble could disrupt the inhibitory association of TAZ with Mst1/2 and Lats1/2 (left). However, estrogen stimulation 
activates YAP/TAZ nuclear translocation, and then promotes YAP/TAZ-targeted genes, which enhances cell proliferation, migration, and mitosis (right). S1P, 
sphingosine-1-phosphate; LPA, lysophosphatidic acid; ASPP1, apoptosis-stimulating protein of p53 1. P, phosphorylation; ↓, activation; ⊥, inhibition.
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are involved in the tumor phenotype and convergence of TAZ/
YAP-TEAD-TGFβ signals are critical for late-stage breast 
cancer phenotypes (Fig. 5B).

Nuclear YAP/TAZ also function as transcriptional regu-
lators of the Hippo pathway controlling tumorigenesis and 
tumor progression in other cancers including lung cancer, 
oral squamous cell carcinoma (OSCC), and glioblastoma 
(GBM) (37,88,89). In murine tumor propagating cells (TPCs) 
marked with Sca1 and CD24, the knockdown of YAP/TAZ 
was found to decrease the migration and metastatic potential 
of lung cancer cells (89). However, the concrete mechanism 
of YAP/TAZ in TPCs is still under investigation. Moreover, 
nuclear YAP/TAZ activity drives OSCC cell proliferation, 
survival and migration. In detail, the transcriptional signature 
regulated by YAP/TAZ significantly correlates with gene 
expression changes occurring in human OSCCs including 
CCNE2, CDK2, CDC6, PCNA, AURKA and PLK4, which 
has been identified by The Cancer Genome Atlas (TCGA) (37). 
Additionally, patients with a mesenchymal (MES) gene 
expression signature exhibit poor overall survival and treat-
ment resistance in glioblastoma. TAZ is directly recruited to a 
majority of MES gene promoters as a complex with TEAD2, 
resulting in high-grade tumors with MES features (88). The 
usual perception is that nuclear YAP/TAZ function as regula-
tors of the Hippo pathway in tumorigenesis; however, when 
the Hippo pathway is ‘on’, phosphorylated YAP/TAZ in the 
cytoplasm act as a retardant for SHP2 nuclear translocator. 
Namely, only the non-phosphorylated YAP/TAZ promote 
nuclear translocalization of SHP2. This effect stimulates 
TCF/LEF- and TEAD-regulated genes via parafibromin 
(a tumor-suppressor factor) dephosphorylation leading to 
malignant neoplasms and developmental disorders (90).

5. YAP/TAZ in oncotherapy

YAP/TAZ, two transcriptional co-activators of the Hippo 
pathway, are receiving increased attention owing to their 
fundamental roles in organ growth and tumor cell prolifera-
tion (7). In particular, the participation of YAP/TAZ in cancer 
indicates the potential of YAP/TAZ as targets for designing 
anticancer drugs. Fortunately, some inhibitors, directly and 
indirectly suppressing the activation of YAP/TAZ, have been 
demonstrated to significantly contribute to effective cancer 
treatment (91-93). Herein, we highlighted some possible routes 
for therapeutic intervention.

Regulation of tumor metabolism by targeting YAP/TAZ. The 
Warburg effect, reprogramming the metabolism of cancer 
cells towards aerobic glycolysis, supports oncogenic signaling 
to promote tumor malignancy. Herein, phosphofructokinase 1 
(PFK1), regulating the first committed step of glycolysis, 
binds to the YAP/TAZ transcriptional co-factors TEADs and 
increases their transcriptional activity (94), whereas 2-deoxy-
D-glucose (2-DG), as an inhibitor of glycolysis, inhibits 
YAP/TAZ transcriptional activity and transforming capacity 
in multiple ways. On the one hand, 2-DG increases the activity 
of Lats1, the kinase that phosphorylates YAP at Ser 127. 
On the other hand, 2-DG promotes the interaction between 
AMP-activated protein kinase (AMPK) and phosphorylated 
YAP (95). However, tumor cellular energy stress induces 

YAP phosphorylation due to the AMPK-dependent activation 
of Lats, and AMPK can also directly phosphorylate YAP at 
Ser 94, thus disrupting the YAP-TEAD interaction (96). In 
other words, energy stress induces YAP cytoplasmic reten-
tion and its phosphorylation at Ser 127, ultimately inhibiting 
YAP transcriptional activity. In addition, AMPK phosphory-
lates angiomotin-like 1 (AMOTL1) at Ser 793 and increases 
AMOTL1 steady-state protein levels, which contributes to YAP 
inhibition (97). Therefore, tumor growth can be suppressed by 
knockdown of YAP/TAZ or inhibited through the treatment 
with metformin or AMP mimic aminoimidazole carboxamide 
ribonucleotide (AICAR) that activates AMPK (95). Metformin, 
as a widely used oral antidiabetic agent, has been reported 
to increase AMPK activity and YAP/TAZ phosphorylation 
in primary mouse hepatocytes after treatment with different 
doses of metformin for 4 or 8 h. Furthermore, after the treat-
ment of AICAR for 4 h, interaction disruption between YAP 
and TEAD has also been found in primary mouse hepato-
cytes with induced YAP/TAZ phosphorylation (96). These 
findings suggest that aerobic glycolysis endows cancer cells 
with particular metabolic properties, while energy stress and 
inhibition of glucose metabolism could inhibit YAP/TAZ. 
Additionally, these results provide molecular mechanisms for 
the correlation between cellular metabolism and tumorigen-
esis in oncotherapy (Fig. 6A).

In addition to aerobic glycolysis mentioned above, the 
activity of YAP/TAZ was recently found to be regulated 
by other metabolic pathways such as mevalonate synthesis, 
nutrient-sensing LKB1-AMPK and TSC-mTOR pathways (98). 
Among them, the mevalonate-YAP/TAZ axis plays a vital role 
in proliferation and self-renewal of breast cancer cells, due to 
the activation of YAP/TAZ promoted by increased levels of 
mevalonic acid (99). Hence, YAP/TAZ regulation is greatly 
beyond the regulation by core Hippo kinases, and these new 
regulatory mechanisms significantly open unexplored routes 
for therapeutic intervention.

Agents of Hippo, Wnt and GPCR signaling pathways via the 
regulation of YAP/TAZ. YAP and its paralog protein TAZ are 
downstream effectors of the Hippo tumor-suppressor pathway 
and they can be inhibited through phosphorylation-induced 
cytoplasmic retention and degradation (100). Recently, in 
polarized Madin-Darby canine kidney (MDCK) cells, some 
scholars found that knockdown of the AMOT family protein 
AMOTL2 decreased YAP tight junction localization, reduced 
the accumulation of nuclear YAP, attenuated YAP phosphory-
lation, and induced the expression of YAP target gene (101). 
It was implied that AMOTL2 has an inhibitory effect on 
YAP. Quickly, the conjecture was confirmed in low metastatic 
CL1-0 lung cancer cells and in a nude mouse model. AMOT 
upregulation was transduced from nuclear translocation to 
cytoplasmic sequestration of YAP/TAZ, leading to decreased 
expression of Cyr61 (a growth factor) (102). These findings 
suggest that AMOT is a crucial tumor suppressor and it has 
bne potential to be a prognostic biomarker and therapeutic 
target for cancer. Moreover, high mobility group A1 (HMGA1) 
and its downstream molecule cyclin E2 (CCNE2) exert their 
stimulatory effect on cell migration by regulating YAP cellular 
localization and activity, which is called the HMGA1/CCNE2/
YAP axis. However, CDK inhibitors induce the translocation 
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of YAP from the nucleus to the cytoplasm, which can interdict 
the axis (103).

The Hippo pathway regulates cellular proliferation and 
tumorigenesis, which is also controlled by non-receptor tyro-
sine phosphatase 14 (PTPN14). It was demonstrated that the 
PPXY domain of PTPN14 binds to WW domain of Kibra, 
independently and cooperatively promoting the activation and 
stability of the Lats1 protein (104). Similarly, PPXY motifs of 
PTPN14 and WW domains of YAP can also form a protein 
complex, confirming the function of PTPN14 as a negative 
regulator of YAP. Meanwhile, PTPN14 inhibits YAP-mediated 
transcriptional activities and sensitizes cancer cells to various 
anticancer agents such as cisplatin, erlotinib and S12 (105). 
In addition, in bladder cancer, Kruppel-like factor 5 (KLF5) 
serves as a modulator to promote cell cycle progression by 
inducing cyclin D1 expression. Notably, curcumin was found to 
downregulate the expression of YAP/TAZ and to protect KLF5 
protein from proteasome degradation both in human bladder 
cancer 5637 cells and in xenografted nude mouse models (106). 
On the basis of these studies, some drug molecules have been 
verified to play a role in inhibiting YAP in cancer treatment. 
In uveal melanoma (UM), the activity of cancer-associated 
Gq/11 mutants was found to be mediated by YAP. Inversely, 
the YAP inhibitor verteporfin blocked the growth of UM 
cells containing Gq/11 mutations (28). Moreover, the results 
have been also validated by animal experiments. Experiments 
using breast cancer cell lines (MDA-MB-231, MDA-MB-
453, HBC-4, HBC-5, MCF-7, BSY-1, ZR-75-1 and SKBR-3) 
indicates that dasatinib, statins and pazopanib can inhibit the 
nuclear localization and target gene expression of YAP/TAZ 
by promoting phosphorylation and proteasomal degradation 
of YAP/TAZ (107).

As discussed above, cytoplasmic YAP/TAZ, as down-
stream elements of the Wnt/β-catenin cascade, are involved 
in the degradation and sequestration of β-catenin in the Wnt 
pathway (66). YAP/TAZ activation by the Wnt pathway can be 
prevented by the reactivation of β-catenin destruction complex 
with the treatment of tankyrase inhibitors (43). Furthermore, 
it has been revealed that β-catenin-active cancers are depen-
dent on a signaling pathway involving YAP1, one of YAP 
isoforms. The tyrosine kinase YES1 phosphorylates YAP1. 
Consequently, YAP1 and the transcription factor TBX5 form a 
complex with β-catenin. In addition, this complex is essential 
to the transformation and survival of tumor cells. Moreover, 
the phosphorylation of YAP1 promotes the localization of this 
complex and the expression of antiapoptotic genes including 
BCL2L1 and BIRC5. Importantly, the YES1 inhibitor dasatinib 
can successfully inhibit the proliferation of β-catenin-active 
tumor cells (108).

Furthermore, GPCR is able to upregulate YAP/TAZ 
activity depending on the specific subset of GPCRs including 
Gα12/13-, Gα11- and Gαi/o-coupled receptors (28). GPCRs are 
also prominent pharmacological targets, suggesting that their 
selective inhibition may blunt YAP/TAZ activity. However, the 
99 mechanisms of targeting YAP/TAZ in these two pathways 
warrant further research (Fig. 6B).

Agents for treatment resistance through the downregulation 
of YAP/TAZ. Actin remodeling is the result of oncogenic 
actin signaling pathway activation or inactivation of several 
important actin-binding proteins that have tumor-suppressor 
functions (109). Although the influence of actin remodeling 
on cancer drug resistance remains unclear, there is research 
verifying that YAP/TAZ become activated in response to 

Figure 6. YAP/TAZ as therapeutic targets in multiple mechanisms. (A) Tumor cell metabolism is inhibited by various molecules, including 2-DG, AICAR, 
metformin and AMOTL1. (B) Various molecules and medicines, including AMOTL2, CDK inhibitors, PTPN14, curcumin, dasatinib, statins, pazopanib and 
verteporfin, serve as inhibitors of YAP/TAZ in the Hippo pathway and are conducive to cancer treatment. However, tankyrase inhibitors and dasatinib can 
inhibit the proliferation of tumor cells in the Wnt pathway. There are also inhibitors that can reduce tumor cell proliferation by inhibiting GPCRs. (C) Various 
molecules and technologies, including cytochalasin D, vlebbistatin, okadiac acid, TESK1, miRNA-141 and shRNAs, can reduce treatment resistance and 
promote tumor cell sensitivity to oncotherapy. (D) miRNA-338-3p and miR-9-3p can target TAZ in HCC treatment. Other miRNAs, including miR-375, 
miR-129-5p, miR-506 and miR-361, can target YAP and serve as tumor suppressors. 2-DG, 2-deoxy-D-glucose; AICAR, 5-aminoimidazole-4-carboxamide 
ribonucleotide; AMOTL1, angiomotin like 1; GPCRs, G-protein-coupled receptors; HCC, hepatocellular carcinoma. ↓, activation; ⊥, inhibition.
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changes in the cytoskeleton. The activation of YAP/TAZ stim-
ulates the actin remodeling of the extracellular matrix (110). 
BRAF V600E mutant melanoma cells, resistant to the BRAF 
inhibitor PLX4032 (vemurafenib), exhibit an increase in actin 
stress fiber formation, which promotes the nuclear accu-
mulation of YAP/TAZ. Actin dynamics regulator TESK1, 
identified by siRNA library screening, serves as a potential 
target of PLX4032-resistance in melanoma cells via promoting 
YAP/TAZ localization (111). Similarly, cytochalasin D or 
blebbistatin inhibit actomyosin and actin polymerization, 
respectively, causing YAP/TAZ localization in the cytoplasm 
and a decrease in the viability of vemurafenib-resistant 
cells (112). Although post-translational modification, particu-
larly Mst/Lats-mediated phosphorylation at serine 127, has 
been confirmed to regulate the activity of YAP, its dephosphor-
ylation and acetylation are still unclear. However, researchers 
have demonstrated that via cisplatin treatment, the catalytic 
subunit of protein phosphatase-1 (PP1A) interacts with YAP2 
and dephosphorylates YAP2, which consequently induces the 
nuclear accumulation and transcriptional activation of YAP2; 
whereas, the inhibition of PP1 by okadiac acid (OA) increased 
the phosphorylation of YAP2 and sensitized ovarian cancer 
cells to cisplatin treatment both in vivo and in vitro (113). 
However, YAP2 is deacetylated by Sirtuin 1 (SIRT1), and the 
deacetylation of YAP2 upregulates YAP2/TEAD binding, 
leading to YAP2 transcriptional activation and cell growth in 
hepatocellular carcinoma (HCC) cells; whereas, the knock-
down of SIRT1 was found to block the cisplatin-induced 
nuclear translocation of YAP2 and enhance the chemosensi-
tivity of HCC cells to cisplatin treatment (114). Similarly, it was 
revealed that miRNA-141 reduced the cisplatin resistance in 
esophageal squamous cell carcinoma (ESCC) cell lines (KYSE 
series) via directly targeting the 3'-untranslated region of YAP1 
and downregulating YAP1 expression, which has a crucial role 
in apoptosis induced by DNA-damaging agents (115).

Taxol (paclitaxel) resistance represents a major chal-
lenge in breast cancer treatment, but a recent study reports 
its close relation to TAZ overexpression (85). Short hairpin 
RNA (shRNA)-mediated knockdown of both Cyr61 and 
CTGF (downstream transcriptional targets of TAZ) was 
found to reverse TAZ-induced Taxol resistance in breast 
cancer cells (85). Likewise, TAZ was found to function as an 
oncogene in non-small cell lung cancer (NSCLC), and it was 
knocked down by shRNA in NSCLC cell lines, suppressing 
tumor cell proliferation and anchorage-independent growth 
in vitro (116) (Fig. 6C).

MicroRNA (miRNA-associated treatment by modu-
lating YAP/TAZ (Table II). miRNAs, non-coding small 
RNAs (117-121), are implicated in cell development, cell prolif-
eration, differentiation and apoptosis of cancers (121-128). 
Recent studies have identified that the hyperexpression of 
miRNAs are essential for abnormal proliferation and survival 
of cancer cells though their effect on the Hippo pathway (129). 
This gives us a hint that miRNAs may provide novel potential 
for cancer treatment.

In HCC, YAP is involved in HBx-mediated hepatocarcino-
genesis. And TAZ is upregulated by preS2. HBx and preS2, 
transactivators encoded by HBV, can promote YAP/TAZ 
at the protein level but not at the mRNA level. Surprisingly, 
miRNA-338-3p downregulates TAZ and interdicts preS2, 
while miRNA-338-3p inhibitor restores the expression of TAZ, 
suggesting that miRNA-338-3p directly targets TAZ (130). 
In addition, in experiments using HCC cell lines (HepG2, 
HuH1, HuH7, HLE, HLF, PLC and SKHep1) and HCC clinical 
samples (frozen HCC tissue), miR-9-3p, as a tumor-suppressor 
miRNA, was found to target TAZ and reduce TAZ expression. 
Treatment with miR-9-3p mimic inhibited the cell prolifera-
tive ability and downregulated the phosphorylation of Erk1/2, 
AKT and β-catenin (cancer promotion factors) (131). Notably, 
YAP, as a potent oncogenic trigger and independent prognostic 
risk factor of HCC, was found to be targeted by miR-375. 
miR-375 was found to be able to inhibit the proliferation and 
invasion of HCC cells (PLC/PRF/5 and MHCC-97L), and 
it plays a potential therapeutic role in HCC treatment (132). 
Coincidentally, miRNAs are also identified to participate in the 
treatment of ovarian, breast and lung cancer. In experiments 
using ovarian cancer cell lines (OV56, OVCAR4, TOV-21G, 
COV362, TOV-112D, SKOV3, COV644, CaOV3, A2780, 
OV90, COV434 and COV504), miR-129-5p directly repressed 
YAP and TAZ expression. This repression led to inactivation of 
TEA domain (TEAD) transcription and the downregulation of 
Hippo downstream genes including connective tissue growth 
factor (CTGF) and cyclin A. Thus, miR-129-5p contributes 
to the subsequent inhibition of cell proliferation, survival and 
tumorigenicity in ovarian cancer cells (133), but it is not known 
whether YAP or TAZ is targeted by this miRNA. Recently, the 
negative correlation of miR-506 with YAP was demonstrated in 
clinical human breast cancer tissues. A study using MDA-MB-
231 breast cancer cell line, MCF-7 breast cancer cell line and 
MCF-10A cell line demonstrated that ectopic miR-506 expres-
sion significantly suppressed cell proliferation and affected the 
cell cycle via targeting YAP (134). Similarly, both in human 

Table II. miRNAs as potential inhibitors of YAP/TAZ in oncotherapy.

miRNAs Molecular mechanisms in modulating YAP/TAZ

miR-27/155 Silencing of the transcripts of WWC1 (upstream molecules of the Hippo pathway); 
 silencing of the Lats2 gene (inhibitors of YAP/TAZ in the Hippo pathway)
miRNA-338-3p/9-3p Directly downregulates TAZ
miR-375/506/361 Target YAP
miR-129-5p Directly reduces YAP/TAZ expression, inactivates TEAD transcription, downregulates
 Hippo downstream genes (CTGF and cyclin A)
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lung cancer cell line A549 and lung cancer tissues, miR-361 
was found to be a tumor suppressor in the same way (135). On 
the other hand, there is increased evidence supporting the func-
tion of miRNAs as a target of YAP/TAZ in NSCLC cell lines. 
In detail, YAP/TAZ inducd transcription of the MCM7 gene 
and its hosted microRNAs including miR-25, miR-93 and miR-
106b, thereby promoting cell proliferation in human H1299 and 
H1975 cells (136). In summary, these studies provide evidence 
for a novel modulation mechanism of inhibiting the pro-tumori-
genic functions of YAP/TAZ through miRNAs. It goes without 
saying that, miRNAs function as a novel mechanism for YAP/
TAZ regulation. However, their potential in the clinical inter-
vention of human cancers warrants further research (Fig. 6D).

6. Conclusion

It is well-known that the Hippo pathway, an evolutionarily 
conserved signaling pathway, is involved in regulating organ 
size through controlling the balance of cell proliferation and 
apoptosis. YAP/TAZ, two key downstream terminal effectors 
in this pathway, are negatively regulated by its phosphoryla-
tion. Accompanied by deactivated Hippo pathway, YAP/TAZ 
are translocated into the nucleus and promote the transcription 
of downstream genes through their binding with TEAD. As a 
result, they facilitate cell proliferation and the amplification 
of stem cells. Meanwhile, cell apoptosis is also inhibited for 
the promotion of organ size. However, co-overexpression of 
YAP/TAZ and deactivation of the Hippo pathway are signifi-
cantly observed in many malignant cancers, including liver and 
breast cancer. Moreover, YAP/TAZ also function as modula-
tors of the Wnt pathway and participate in GPCR signaling, 
playing a vital role in tumorigenesis and tumor progression.

Due to the pivotal effects of YAP/TAZ on organ growth 
and tumor cell proliferation, it cannot be ignored that targeting 
YAP/TAZ may be a potential therapeutic strategy for many 
human cancers. Based on this, direct or indirect inhibition 
of YAP/TAZ may effectively restrain tumor cell growth, 
suggesting a novel method for oncotherapy.
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