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Abstract. Lung cancer is the top cause of cancer‑associated 
mortality in men and women worldwide. Small cell lung cancer 
(SCLC) is a subtype that constitutes ~15% of all lung cancer 
cases. Long non‑coding RNAs (lncRNAs), possessing no or 
limited protein‑coding ability, have gained extensive attention 
as a potentially promising avenue by which to investigate the 
biological regulation of human cancer. lncRNAs can modulate 
gene expression at the transcriptional, post‑transcriptional and 
epigenetic levels. The current review highlights the developing 
clinical implications and functional roles of lncRNAs in 
SCLC, and provides directions for their future utilization in 
the diagnosis and treatment of SCLC.
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1. Introduction

Lung cancer, recognized as the leading cause of cancer‑ 
associated mortality worldwide, is classified into small 
cell lung cancer (SCLC) and non‑SCLC (NSCLC). SCLC 
constitutes ~15% of all confirmed cases of lung cancer 
worldwide (1‑3). Distinct from NSCLC, SCLC is unique in 
its inclination for quick metastasis and sensitivity to initial 
systemic cytotoxic chemotherapy. Systemic chemotherapy is 
the solid foundation of treatment for the limited and extensive 
stages of this disease. Nevertheless, the commonly adopted 
management standard of platinum‑oriented chemotherapy has 
reached an efficacy bottleneck, mainly due to chemoresistance 
and relapse in SCLC patients (4). Despite plentiful clinical 
trials in the past four decades, systematic treatment for SCLC 
patients has not changed markedly. As a result, the majority 
of patients live for only 1 year or less following diagnosis, 
with the overall 5‑year survival rate staying low at <7% (5). 
The widely employed technique to diagnose SCLC from a 
tiny amount of malignant cells, in combination with a lack of 
proved predictive biomarkers that would require tissue biopsies 
and relatively rare surgical resection, has cut down the source 
of SCLC tissue for more profound studies (5). In NSCLC, a 
growing number of gene fusions or mutations instruct treat-
ment selections for specific patient subgroups, particularly 
those with anaplastic lymphoma kinase or epidermal growth 
factor receptor (EGFR) (6) mutations. In marked contrast, 
numerous experimental and targeted agents regarding SCLC 
have failed to yield convincing clinical benefits (7). Novel and 
effective therapies for SCLC patients are urgently required. 
Regarding the molecular mechanisms of carcinogenesis, 
medical communities have mostly concentrated on genes with 
protein‑coding capacity. Unexpectedly, the ENCODE project 
identified that up to three‑quarters of the human genome 
could be transcribed, though <3% of it encodes protein. This 
unexpected fact indicated that non‑coding RNAs (ncRNAs) 
make up the vast majority of the human transcriptome (8). 
Long ncRNAs (lncRNAs) are >200 nucleotides in size and 
possess no or a very low protein‑coding ability. Bioinformatics 
platforms and high‑throughput sequencing emerging in recent 
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years have facilitated uncovering the mystique of lncRNAs, 
which function as key molecules in wide‑ranging cellular 
processes, including cell growth, adhesion, proliferation and 
apoptosis (9,10). lncRNA deregulation is involved in numerous 
human diseases, and there is also increasing evidence 
suggesting that lncRNAs are involved in SCLC pathogen-
esis and clinical outcomes (11‑15). Digging deeper into the 
biological functions and molecular mechanisms of lncRNAs 
will enable researchers to further understand the biology of 
SCLC and develop lncRNA‑oriented therapeutics.

2. Molecular mechanisms of lncRNAs

What is lncRNA? The manifestation of lncRNAs owes much 
to the studies on the size, function and evolution of the human 
genome. Along with the development of DNA‑RNA hybrid-
ization techniques, scientists have gradually become aware 
that the majority of the genome, which was initially labeled 
as ‘junk DNA’, does not encode proteins  (16). However, 
subsequent studies demonstrating that small nucleolar RNAs 
(snoRNAs) and small nuclear RNAs (snRNAs) have a certain 
impact on post‑transcriptional RNA processing propelled 
further investigation into non‑coding sequences (17,18). In 
the early 2000s, whole‑transcriptome sequencing arose and 
carried forward the identification and annotation of numerous 
lncRNAs  (19‑21). ncRNAs can be large or small in size. 
Linearized ncRNAs with a length of >200 bp and with no 
or low protein‑coding ability are known as lncRNAs. Small 
ncRNAs (<200  bp) are categorized into PIWI‑interacting 
RNAs, small interfering RNAs, microRNAs (miRNAs) and 
classical housekeeping ncRNAs, including transfer RNAs, 
ribosomal RNAs, snRNAs and snoRNAs. The FANTOM5 
project has identified 19,175 potential functional lncRNAs in 
the human genome (22), yet few of them have been thoroughly 
investigated (23). Accumulating studies have supported the 
theory that at different levels, aberrant expression of lncRNAs 
serves crucial roles in cancer development, affecting cell 
growth, proliferation, apoptosis and metastasis via diverse 
mechanisms (12,13,15,24).

Four archetypes of lncRNAs. lncRNAs are a set of ubiquitous 
genes participating in various biological mechanisms. There 
are four archetypes in which lncRNAs execute their molecular 
functions, namely as signals, decoys, guides and scaffolds (25). 
The signal archetype of lncRNAs may serve as markers of 
functionally significant biological events, as their expression 
exhibits cell type, time and space specificity. For example, 
lncRNA homeobox (HOX) transcript antisense intergenic 
RNA (HOTAIR) located in the HOXC locus exists in posterior 
and distal cells, whereas another HOXC lncRNA, Frigidair, is 
expressed in an anterior pattern. Conversely, lncRNA HOXA 
transcript at the distal tip (HOTTIP), located in the far end of 
the human HOXA cluster, is expressed in distal cells (26,27). 
The decoys archetype is a type of lncRNA that regulates 
transcription through binding to and then carrying away 
protein targets, yet it does not exert extra functions. Decoys 
display as ‘molecular sinks’ for chromatin modifiers, tran-
scription factors or other regulatory factors, all of which are 
RNA‑binding proteins (25). For instance, by directly binding 
to and sequestering nuclear transcription factor Y subunit that 

drives a DNA damage‑induced apoptotic program, lncRNA 
p21‑associated ncRNA DNA damage‑activated suppresses 
apoptotic gene expression to facilitate cell cycle arrest, leading 
to the promotion of cell survival (28). Knockdown of lncRNAs 
of this archetype may imitate the gain‑of‑function of the 
target proteins, while a rescue phenotype could be induced by 
loss‑of‑function of the lncRNA and its effector (25). The guides 
archetype of lncRNA can bind chromatin modifying proteins 
and direct the localization of ribonucleoprotein complexes to 
specific targets in a cis or trans manner. The well‑known cis 
mechanism, mammalian X inactivation center, specifies a set of 
ncRNAs, X‑inactive specific transcript (Xist) included (29,30). 
A 1.6‑kb lncRNA, RepA RNA, stemming from the 5' end of 
Xist, produces polycomb repressive complex 2 (PRC2) in cis. 
PRC2 is involved in extra X‑chromosome inactivation (31). In 
contrast to cis‑regulatory lncRNAs, certain lncRNAs serve 
their chromosome‑wide transcriptional roles in trans, such 
as lncRNA HOTAIR, which is capable of directing PRC2 
to target genes in trans (32‑34). The scaffolds archetype of 
lncRNA can act a platform where components are assembled, 
precisely regulating the sophisticated molecular interactions 
and signaling transductions involved in diverse biological 
signaling processes (35). For example, telomerase catalytic 
activity necessitates the combination of two common telom-
erase units, the telomerase RNA (TERC) and the telomerase 
reverse transcriptase (TERT). TERC is an essential lncRNA 
unit that offers the template for repeat synthesis, and it also 
possesses domains that promote TERT binding, catalytic 
activity and stability of the complex  (36). Certain morbid 
states, including dyskeratosis congenital, presumably result 
from mutations altering the equilibrium between different 
conformations of TERC, more specifically, through destruc-
tion of the RNA scaffold structure where modular biding sites 
for telomeric regulatory proteins are located (37).

lncRNAs modulate gene expression at distinct levels. 
lncRNAs exert functions in an enormous range of biological 
processes by promoting or inhibiting the transcription and 
translation of protein‑coding genes. Unlike highly conserved 
small ncRNAs that participate in gene silencing transcription-
ally and post‑transcriptionally (38‑40), lncRNAs are poorly 
conserved and can modulate target gene expression via various 
mechanisms at different levels.

Transcriptional level. At the transcriptional level, lncRNAs 
have the following roles: i) Functioning as decoys for RNA 
polymerase  II or transcription factors (TFs) to inhibit 
their binding to enhancers or promoters of target genes, 
therefore specifically promoting or repressing target gene 
expression (26); ii) alteration of TF localization or modification 
to promote or inhibit gene transcription (40); iii) interaction 
with DNA to form a triple helix structure, thereby affecting 
target gene transcription (41); and iv) presenting as competi-
tive endogenous RNAs (ceRNAs) to inhibit the transcription 
of target genes (42).

Post‑transcriptional level. At the post‑transcriptional 
level, lncRNAs have the following roles: i)  Providing 
different transcripts by regulating pre‑mRNA alternative 
splicing  (43); ii)  combining with mRNAs to synthesize 
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double‑stranded RNA complexes, thereby effectively 
enhancing the stability of mRNAs (44); and iii) interaction 
with miRNAs to regulate signaling events (45).

Epigenetic level. At the epigenetic level, lncRNAs have the 
following roles: i) The regulation of histone modifications, 
including acetylation, methylation and ubiquitination, among 
others  (46); ii) participating in chromatin remodeling and 
conformational alterations by combining with chromatin 
modification complexes that are crucial for gene transcrip-
tion (47); and iii) participating in gene silencing via modulating 
DNA methylation in the promoter region of target genes (48).

To summarize, lncRNAs participate in diverse tran-
scriptional, post‑transcriptional and epigenetic molecular 
mechanisms, covering regulation of chromatin structure or 
modification, transcription, splicing and translation, there-
fore regulating a multitude of physiological and pathological 
courses, including cell proliferation, differentiation, apoptosis, 
the heat shock response, cancer development and chemoresis-
tance (49‑51). Amongst these functions, the regulation of gene 
expression is of paramount significance in elucidating how 
lncRNAs promote or suppress tumorigenesis. Genome‑wide 
studies of tumor samples have verified plentiful lncRNAs that 
are linked to distinct types of cancer. Dysregulated expres-
sion of lncRNAs can stimulate carcinogenesis and metastasis. 
However, from an overall perspective, the function of lncRNAs 
may not be one‑sided, and could be tumor‑promoting or 
tumor‑suppressing.

3. Expression of lncRNAs in SCLC

Representing one of the largest classes of transcripts, lncRNAs 
possess highly diverse characteristics and functions. Progress 
in high‑throughput sequencing technology has accelerated 
the identification of lncRNAs as key regulatory molecules 

participating in various cellular processes and their dysregula-
tion in human diseases. Although only a few lncRNAs have 
been well described thus far, accumulating evidence suggests 
that lncRNAs contribute to tumor biology. Given the afore-
mentioned difficulties, breakthroughs in SCLC research 
remain stagnant compared with those in other types of cancer. 
However, it remains worthwhile to investigate the research 
status of SCLC from an lncRNA point of view, as this field 
may open novel and optimistic windows to elucidate SCLC 
molecular mechanisms. In the following text, previous find-
ings in the expression of lncRNAs in SCLC are reviewed. 
The roles that HOTTIP, HOTAIR, taurine upregulated gene 1 
(TUG1), colon cancer‑associated transcript 2 (CCAT2) and 
plasmacytoma variant translocation 1 (PVT1) serve in SCLC 
are discussed and also briefly presented in Table I. A sche-
matic diagram of these genes in SCLC and their mechanisms 
is shown in Fig. 1. The dysregulations and functions of these 
five lncRNAs in other malignancies are also summarized, as 
a contrast and enlightenment to their roles in SCLC (Table II).

HOTTIP. HOTTIP, as the lncRNA encoded by the HOTTIP 
gene that is located at the HOXA locus, was initially identi-
fied in human fibroblasts distributed in anatomically distal 
regions of the body (52). Wang et al (53) verified the direct 
coupling of HOTTIP and the adaptor protein, WD repeat 
domain  5 (WDR5) to target WDR5/lysine methyltrans-
ferase  2A complexes across HOXA, thereby impelling 
histone lysine  4 trimethylation and the transcription of 
various 5'  HOXA genes. Multiple studies confirmed the 
positive correlation between the expression level of HOTTIP 
and HOXA genes in a variety of malignancies (52,54‑56). 
In brief, HOTTIP could activate HOX genes by recruiting 
histone‑modifying enzymes to suppress tumor‑suppressor 
genes. Sun  et  al  (57,58) completed pioneering studies 
unveiling the underlying molecular mechanism of HOTTIP 

Table I. Information of five lncRNAs involved In SCLC.

	 Genomic				    Publication
lncRNA	 location	 Dysregulation	 Functions	 Mechanism	 year	 (Refs.)

HOTTIP	 7p15.2	 Upregulation	 Chemoresistance, shorter	 HOTTIP/miR‑574‑5p/EZH1	 2017, 2018	 (57,58)
			   survival, clinical stage	 axis, HOTTIP/miR‑216a/
				    BCL‑2 axis
HOTAIR	 12q13.13	 Upregulation	 Lymphatic invasion,	 Regulation of HOXA1	 2013, 2016	 (66,67)
			   chemoresistance	 methylation and target genes
TUG1	 22q12.2	 Upregulation 	 Chemoresistance, clinical	 Regulation of LIMK2b via	 2017	 (76)
			   stage and shorter survival	 binding with EZH2
CCAT2	 8q24.21	 Upregulation 	 Malignant status, poor	 Unknown 	 2016	 (85)
			   prognosis
PVT1	 8q24.21	 Upregulation	 Lymph node metastasis, 	 Unknown	 2016	 (95)
			   distal metastasis, and
			   clinical stage

SCLC, small cell lung cancer; HOTTIP, HOXA transcript at the distal tip; EZH1, enhancer of zeste homolog  1; BCL‑2, B‑cell 
leukemia/lymphoma‑2; HOTAIR, HOX transcript antisense intergenic RNA; TUG1, taurine upregulated gene 1; CCAT2, colon cancer‑associated 
transcript 2; PVT1, plasmacytoma variant translocation 1; HOXA1, homeobox A1; LIMK2b, LIM domain kinase 2; EZH2, enhancer of zeste 
homolog 2; miR, microRNA; lncRNA, long non‑coding RNA.
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in SCLC utilizing a series of experiments conducted in vitro 
and in vivo. At first, gene expression array analysis revealed 
the overexpression of HOTTIP in H69 and H69R cell lines, 
and the result was further supported by the significant 
overexpression of HOTTIP, as detected by reverse transcrip-
tion‑quantitative polymerase chain reaction (RT‑qPCR) in 
50 clinical SCLC tissues prior to chemotherapy, compared 
with their non‑cancerous counterparts. In addition, higher 
HOTTIP expression was significantly associated with a poorer 
prognosis. Manipulation of HOTTIP loss‑ and gain‑ of func-
tion experiments in SCLC cell lines also demonstrated that 
HOTTIP overexpression contributed to cell proliferation, as it 
led to a decreased number of G2‑phase cells and an increased 
number of S‑phase cells. In vivo, HOTTIP loss and gain of 
function experiments conducted in xenograft nude mice 
showed that mice with knockdown of HOTTIP had a smaller 
mean tumor volume in comparison to those in the negative 
control group. Afterwards, by employing web‑based bioin-
formatics platform RNA22‑seq (https://cm.jefferson.edu/), 
miR‑574‑5p and enhancer of zeste homolog 1 (EZH1) were 
predicted to possess targeted binding sites for HOTTIP, and this 
association was later verified by RT‑qPCR. Therefore, it was 
assumed that HOTTIP may exert its effect on SCLC through 
a regulatory network of miRNA‑574‑5p‑HOTTIP‑EZH1 (57). 

Notably, the hypothesis was verified by a subsequent 
co‑transfection dual luciferase reporter assay, indicating 
that HOTTIP acts as an oncogene by sponging miR‑574‑5p 
to abrogate the expression of polycomb group protein EZH1 
induced by miR‑574‑5p, thereby promoting the progression 
of SCLC (57). In another study by Sun et al (58), a similar 
experimental design was applied to investigate the role of 
HOTTIP in SCLC, and the association of HOTTIP with 
SCLC chemoresistance was also investigated, which enriched 
the clinical value of the study. The expression of HOTTIP 
and HOXA13 was markedly upregulated in SCLC cell lines 
and biopsy samples. Overexpression of HOTTIP impaired 
the anti‑chemoresistance effects of etoposide, irinotecan and 
cisplatin toward SCLC cells in vitro and in vivo, whereas 
knockdown of HOTTIP exhibited a reversed effect. In addi-
tion, the finding that knockdown of HOTTIP suppressed 
HOXA13 expression, combined with the result of a rescue 
experiment by HOXA13 overexpression implied that HOTTIP 
exerts its function in SCLC chemoresistance and progression 
partly via manipulating HOXA13. Likewise, the online bioin-
formatics tool RNA22‑seq excavated miR‑216a as possessing 
targeted binding sites with HOTTIP, and unexpectedly, an 
atoptosis‑related gene, B‑cell leukemia/lymphoma‑2 (BCL‑2). 
Subsequent experiments confirmed that HOTTIP could 

Figure 1. Schematic diagram of five lncRNAs expressed in SCLC and their mechanisms. lncRNAs exert their oncogenic effect on SCLC through interactions 
with various molecules involved in multiple pathways. Blue lines represent mechanisms that have been investigated in SCLC, while blue dotted lines represent 
mechanisms that have been investigated in other malignancies, but not yet in SCLC. Black curves with arrows at both ends represent targeting associations. 
Detailed information can be found in the main text. SCLC, small cell lung cancer; HOTTIP, HOXA transcript at the distal tip; EZH1, enhancer of zeste 
homolog 1, BCL‑2, B‑cell leukemia/lymphoma‑2; HOTAIR, HOX transcript antisense intergenic RNA; TUG1, taurine upregulated gene 1; CCAT2, colon 
cancer‑associated transcript 2; PVT1, plasmacytoma variant translocation 1; MUC5AC, mucin 5AC; ASTN1, astrotactin 1; PCDHA1, protocadherin α 1; 
PTK2B, protein tyrosine kinase 2 β; NTM neurotrimin; DNMT3b, DNA methyltransferase 3 β; DNMT1, DNA methyltransferase 1; HOXA1, homeobox A1; 
EZH2, enhancer of zeste homolog 2; LIMK2b, LIM domain kinase 2; EMT, epithelial‑to‑mesenchymal transition; NOP2, NOP2 nucleolar protein; TSHR, 
thyroid stimulating hormone receptor; AMPKβ2, AMP‑activated protein kinase β‑2; miRNA, microRNA; lncRNA, long non‑coding RNA.
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Table II. Differential expression and mechanisms of five lncRNAs in SCLC and other malignancies.

lncRNA	 Malignancy	 Dysregulation	 Functions/mechanisms	 (Refs.)

HOTTIP	 SCLC	 Upregulation	 Chemoresistance, tumor progression. HOTTIP/miR‑574‑5p/EZH1	 (57,58)
			   network, HOTTIP/miR‑216a/BCL‑2 network
	 Liver cancer	 Upregulation	 Metastasis and tumor progression. Regulation of HOXA13 	 (55)
	 Gastric cancer	 Upregulation	 Cell proliferation, migration and invasion. Regulation of HOXA13	 (54,117)
			   and HOTTIP/miR‑331‑3p/HER2 network
	 Pancreatic cancer	 Upregulation	 Cell cycle, proliferation and invasion. Regulation of HOXA13	 (56)
	 Prostate cancer	 Upregulation	 Cell proliferation and apoptosis. Regulation of HOXA13, BAX	 (118)
			   and BCL‑2
HOTAIR	 SCLC	 Upregulation	 Cell proliferation, lymphatic invasion, and chemoresistance. 	 (66,67)
			   Regulation of HOXA1 methylation and target genes
	 Breast cancer	 Upregulation	 Metastasis, invasion, poor prognosis, and shorter survival. 	 (80,119)
			   Regulation of Wnt signaling pathway
	 Colorectal	 Upregulation	 Metastasis, poor prognosis, and low survival. Chromatin	 (120‑122)
	 cancer		  modification and EMT
	 Cervical cancer	 Upregulation	 FIGO stage, aggression and lymph node metastasis. Regulation	 (123‑125)
			   of microRNA
	 Gastric cancer	 Upregulation	 Venous infiltration, lymph node metastasis, chemoresistance and	 (126‑129)
			   tumor staging. Regulation of E‑cadherin, regulation of
			   PI3K/AKT/MRP1 genes
TUG1	 SCLC	 Upregulation	 Clinical stage, chemoresistance, and shorter survival. 	 (76)
			   Regulation of LIMK2b
	 Liver cancer	 Upregulation	 Cell proliferation, apoptosis, metastasis and glycolysis. Regulation	 (69,130)
			   of KLF2 transcription. Regulation of AMPKβ2 and HK2
	 Gastric cancer	 Upregulation	 Cell proliferation and cell cycle arrest. Regulation of	 (74)
			   cyclin‑dependent protein kinase inhibitors
	 Pancreatic	 Upregulation	 Cell proliferation and cell migration. Regulation of EZH2 and EMT	 (131)
	 cancer
	 Bladder	 Upregulation	 Cell proliferation and apoptosis. Regulation of Wnt/β‑catenin	 (72,132)
	 cancer		  pathway
CCAT2	 SCLC	 Upregulation	 Malignant status and poor prognosis	 (85)
	 Colorectal	 Upregulation	 Lymph node metastasis, cell proliferation and differentiation. 	 (77,133)
	 cancer		  Regulation of microRNA
	 Ovarian cancer	 Upregulation	 FIGO stage, cell proliferation, migration, and invasion. 	 (82,134)
			   Regulation of microRNA
	 Prostate cancer	 Upregulation	 EMT, cell proliferation, invasion, and migration. Regulation of EMT	 (83)
	 Breast cancer	 Upregulation	 Cell proliferation, invasion, chemoresistance, and poor prognosis.	 (80,81)
			   Regulation of Wnt signaling pathway
PVT1	 SCLC	 Upregulation	 Lymph node metastasis, distal metastasis, and clinical stage	 (95)
	 Gastric	 Upregulation	 Lymph node invasion, cell proliferation and invasion. Regulation	 (89,135,136)
	 cancer		  of microRNA
	 Livercancer	 Upregulation	 Cell proliferation and cell cycling. Regulation of NOP2	 (90)
	 Pancreatic	 Upregulation	 Cell proliferation, migration, shorter survival and poor prognosis. 	 (92,137)
	 cancer		  Regulation of microRNA
	 Thyroid cancer	 Upregulation	 Cell proliferation and cell cycle arrest. Regulation of EZH2	 (91)
			   and TSHR

SCLC, small cell lung cancer; HOTTIP, HOXA transcript at the distal tip; EZH1, enhancer of zeste homolog  1, BCL‑2, B‑cell 
leukemia/lymphoma‑2; HOXA13, homeobox A13; HER2, erb‑b2 receptor tyrosine kinase 2; BAX, BCL‑2 associated X; HOTAIR, HOX 
transcript antisense intergenic RNA; TUG1, taurine upregulated gene 1; CCAT2, colon cancer‑associated transcript 2; PVT1, plasmacytoma 
variant translocation 1; HOXA1, homeobox A1; EMT, epithelial‑to‑mesenchymal transition; FIGO, International Federation of Gynecology 
and Obstetrics; PI3K, phosphatidylinositol 3‑kinase; AKT, protein kinase B; MRP1, multidrug resistance‑associated protein 1; LIMK2b, LIM 
domain kinase 2; KLF2, Kruppel like factor 2; MPKβ2, AMP‑activated protein kinase subunit β2; HK2, hexokinase 2; NOP2, NOP2 nucleolar 
protein; EZH2, enhancer of zeste homolog 2; TSHR, thyroid stimulating hormone receptor; miR, microRNA; lncRNA, long non‑coding RNA.
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function as a competing ‘sponge’ through binding miR‑216a, 
thereby diminishing its silencing effect toward BCL‑2, 
contributing to the chemoresistance and progression of 
SCLC (58). Although the aforementioned findings may only 
be the tip of the iceberg, they widen the landscape of research 
into the molecular mechanism of SCLC, as a novel network 
composed of lncRNA, miRNA and specific cancer‑related 
genes is put forward, providing inspiration for developing 
prognostic and therapeutic agents.

HOTAIR. HOTAIR is one of the most well‑characterized 
lncRNAs and is overexpressed in certain malignancies, 
including breast, colorectal, hepatocellular, gastrointestinal 
and non‑small cell lung cancer (59). First identified in 2007, 
HOTAIR resides in the HOXC locus. Previous reports 
revealed that the molecular mechanism of HOTAIR is its 
transcription from the HOXC gene as an antisense transcript 
and then binding to PRC2 (composed of EZH2, polycomb 
protein SUZ12 and polycomb protein EED) and lysine‑specific 
demethylase/CoREST/REST complex as a scaffold, leading 
to catalyzation of trimethylation of histone H3 on lysine 
27 (H3K27) and spontaneous demethylation of H3K4, and 
repression of the transcription of HOXD genes  (27,60). 
With regard to DNA methylation, EZH2, a compartment 
of PRC2, directly interacts with DNA methyltransferases. 
This interaction assists in maintaining DNA methylation 
and stabilizing the repression of certain genes, including 
various tumor suppressors  (61). As targets of HOTAIR, 
the homeobox‑containing genes are a set of regulators that 
transcriptionally encode DNA‑binding homeodomains that 
participate in controlling normal development  (51,62). In 
addition, abnormal expression of HOX genes is associated 
with oncogenesis and paramorphia  (61,63). Additionally, 
by inducing epithelial‑to‑mesenchymal transition (EMT), 
HOTAIR associates with tumorigenesis (64). HOTAIR also 
triggers ubiquitin‑mediated proteolysis via interaction with 
RNA‑binding protein MEX3B and E3 ubiquitin‑protein 
ligase DZIP3  (65). Ono et al  (66) studied the association 
of HOTAIR with SCLC cellular processes and clinical 
characteristics. The study assessed HOTAIR expression in 
35 surgically resected SCLC tissues and 10 SCLC cell lines, 
and observed that expression of HOTAIR in pure SCLC 
was markedly overexpressed compared with that in those 
combined with lung adenocarcinoma (LUAD), large cell 
carcinoma or large cell neuroendocrine carcinoma, and that 
HOTAIR overexpression was clearly associated with relapse 
and lymphatic invasion. In vitro experiments indicated that 
the expression of HOTAIR in half of the SCLC cell lines was 
elevated compared with that in normal cells. Knockdown 
of HOTAIR reduced cellular invasiveness and proliferative 
activity of SBC‑3 cells. Gene expression analysis revealed 
that a reduction in HOTAIR led to upregulated expression of 
mucin production‑related genes, including mucin 5AC, and 
cell adhesion‑related genes, including astrotactin 1 and proto-
cadherin α1, and downregulated expression of genes such as 
neurotrimin and protein tyrosine kinase 2β, participating in 
neuronal growth and signal transduction, respectively (66). 
Recently, Fang et al (67) investigated the role of HOTAIR 
expression in the chemoresistance of SCLC and its underlying 
mechanism. The study assessed the impact of HOTAIR on 

SCLC chemoresistance in vitro and observed that HOTAIR 
expression was also markedly upregulated in drug‑resistant 
cell lines compared with that in the parental cell lines. The 
study showed that downregulated expression of HOTAIR 
promoted cell cycle arrest and apoptosis to increase sensitivity 
to antitumor drugs, while repressing tumor growth in vivo. 
In addition, increased HOXA1 methylation was observed 
in the drug‑resistant cells. An enzyme‑linked immunosor-
bent assay revealed that a reduction of HOTAIR lessened 
HOXA1 methylation via reducing the expression of DNA 
(cytosine‑5)‑methyltransferase (DNMT)3b and DNMT1. 
RNA immunoprecipitation validated the interaction between 
HOXA1 and HOTAIR. Together, these findings indicated that 
HOTAIR mediates chemoresistance by increasing HOXA1 
methylation. Hence, HOTAIR could serve as a possible target 
for novel therapeutics to combat chemoresistance. Based on 
these previous findings, lncRNA HOTAIR is involved in 
the relapse and lymphatic invasion in SCLC patients, and 
it could also act as a biomarker for prognosis and chemo-
therapy response, and as a therapeutic target to overcome the 
chemoresistance of SCLC.

TUG1. TUG1 was initially described as a spliced and poly
adenylated lncRNA necessary for the development of 
photoreceptors in mice retina (68). Increasing evidence has 
demonstrated that TUG1 serves a crucial role in a number of 
human tumors, including hepatocellular carcinoma, osteosar-
coma, glioma, esophageal, gastric and bladder cancer (69‑74). 
Aberrant expression of PRC2‑related lncRNAs is involved 
in tumorigenesis and progression. In a previous study, TUG1 
was found to be induced by p53, prior to binding to PCR2 
and influencing certain genes involved in the modulation of 
mitosis, spindle construction and cell‑cycle phasing  (34). 
Yang et al  (75) revealed that a combination of methylated 
PRC2 and TUG1 manipulates the relocation of growth‑control 
genes between interchromatin granules and polycomb bodies 
in response to growth signals, therefore portraying a role 
that TUG1 serves in the relocation of transcription units 
to coordinate gene expression  (75). Niu et al  (76) investi-
gated the functions of TUG1 in the cell proliferation and 
chemoresistance of SCLC, and its underlying molecular 
mechanism  (76). The study analyzed TUG1 expression in 
tissue samples from SCLC patients (n=33) who had undergone 
biopsy or bronchofiberscopy, and elevated TUG1 expression 
was found in cancerous tissues compared with that in adjacent 
non‑cancerous tissues. Statistical analysis showed that higher 
expression of TUG1 was associated with shorter survival time, 
advanced clinical stage and cigarette smoking. In vitro Cell 
Counting Kit‑8 and colony formation assays indicated that 
silencing TUG1 markedly reduced cell growth. The results 
from flow cytometry analysis conducted to assess the effect of 
TUG1 on cell apoptosis suggested that knockdown of TUG1 
promoted apoptosis and led to a significant accumulation 
of G1‑phase cells, and that downregulated TUG1 expres-
sion increased apoptosis in H44DDP and H69AR cell lines 
exposed to anticancer drugs. The chemoresistance‑inducing 
ability of TUG1 in vivo was further investigated using a mouse 
xenograft model, and the result was consistent with that of the 
in vitro experiment. Moreover, TUG1 could modulate LIM 
domain kinase 2 expression through binding with EZH2, and 
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subsequently led to increased cell growth and chemoresistance 
in SCLC. Outcomes of this study could be guidance to the 
development of innovative TUG1‑directed prognostic and 
therapeutic strategies.

CCAT2. CCAT2 was first introduced in 2013 as an lncRNA 
located in the 8q24 gene desert region, and it possesses a 
tumor‑related single nucleotide polymorphism rs6983276. 
Additionally, overexpression of CCAT2 in colon cancer was 
observed, and it was considered to serve an oncogenic role, 
promoting colorectal cancer cell proliferation and motility, 
metastasis and chromosomal instability by regulating myc 
and Wnt pathways (77). A CCAT2 genetic polymorphism, 
rs6983267, is associated with platinum‑based chemotherapy 
sensitivity in lung cancer patients (78). Since its discovery, the 
oncogenic role of CCAT 2 has been increasingly demonstrated 
in different tumors, including gastric, breast, lung, liver, 
colon, cervical, ovarian, bladder, prostate and esophageal 
cancer (79‑84). The stimulatory effects on the Wnt/β‑catenin 
signaling pathway, cancer metabolism and EMT may underlie 
its oncogenic action (79). CCAT2 is upregulated in an esti-
mated two‑thirds of breast cancer patients (80). High CCAT2 
expression was associated with a poor curative effect from 
cyclophosphamide/methotrexate/fluorouracil‑containing adju-
vant chemotherapy in breast cancer patients with lymph node 
metastasis (80). Chen et al (85) detected CCAT2 expression 
in 102 human SCLC tissues, 15 paired non‑tumor tissues, 
SCLC cell lines (DMS‑53 and H446) and a normal bronchial 
epithelial cell line (16HBE). The association between clinico-
pathological factors and CCAT2 expression was subsequently 
analyzed. The study reported that CCAT2 level was signifi-
cantly overexpressed in SCLC tissue and cell lines compared 
with that in normal lung tissues. Subgroup analyses also 
indicated that higher expression of CCAT2 was correlated 
with malignant status and poor prognosis in SCLC patients. 
Moreover, knockdown of CCAT2 to inhibit SCLC cell growth 
and metastasis in vitro was observed. To conclude, CCAT2 
may serve as an oncogene and a negative prognostic indicator 
in SCLC.

PVT1. PVT1 is an lncRNA homologous to the mouse plas-
macytoma variant translocation gene (Pvt1), which was first 
identified as being frequently involved in a variant transloca-
tion in plasmacytoma in the mid‑80s in mice (86,87). Soon 
after, the PVT1 locus emerged as a site of variant transloca-
tions in Burkitt lymphoma. Subsequent studies support the role 
of PVT1 as a cancer risk locus in relation to the well‑known 
myc oncogene (88). PVT1 presents the capacity to facilitate 
cell growth and suppress cell apoptosis in the tumorigenesis 
of various types of cancer, including gastric (89), liver (90), 
thyroid (91) and pancreatic (92) cancer, and non‑small cell 
lung cancer (93). The expression of PVT1 in tumor samples of 
these types of cancer is elevated. In vitro and in vivo experi-
ments conducted by Wang et al (90) demonstrated that PVT1 
promotes cell proliferation, cell cycling and the acquisition 
of stem cell‑like properties in hepatocellular carcinoma cell 
by stabilizing NOP2 nucleolar protein  (90). However, the 
underlying mechanisms of the functional exertion of PVT1 
and its interaction with downstream targets remain largely 
unknown. Partially known molecular functions of PVT1 can 

be categorized into three key pathways: Partaking in DNA 
rearrangement, encoding microRNAs and intercommuni-
cating with myc (94). Recently, Huang et al (95) first identified 
the role of PVT1 in SCLC. In the study, PVT1 expression was 
detected in SCLC tissues, paired normal gastric tissues and 
two SCLC cell lines. Meanwhile, the association of PVT1 
expression levels with clinical features of 120 enrolled SCLC 
patients was analyzed. RT‑PCR analysis showed that PVT1 
expression was significantly higher in SCLC tissues and cell 
lines than in their normal counterparts, and positive correla-
tions between PVT1 overexpression and the status of clinical 
stage, lymph node metastasis and distal metastasis in SCLC 
were noted. Furthermore, multivariate analysis revealed that 
PVT overexpression could be an independent prognostic 
biomarker for the survival of SCLC patients. Cell migra-
tion and invasion were significantly suppressed in vitro by 
silencing of PVT1 in SCLC. To conclude, PVT1 possesses 
the potency to be a novel marker and a prospect to develop 
targeted therapy for SCLC. However, further investigations 
are required for thorough elucidation of the molecular mecha-
nism of PVT1 in SCLC.

Thus far, the present review has summarized and discussed 
five lncRNAs (HOTTIP, HOTAIR, TUG1, CCAT2 and PVT1) 
involved in SCLC. However, these lncRNAs are also involved 
in NSCLC, which accounts for ~85% of all lung cancer 
cases. It is of merit to include information on the roles that 
these lncRNAs serve in NSCLC, as a contrast and possibly, 
enlightenment. HOTTIP was reported to be significantly 
upregulated in NSCLC and to function as an oncogene by 
regulating HOXA13, which coincides with the findings 
observed in other malignancies, implying that HOXA13 is a 
key element through which HOTTIP promotes carcinogen-
esis (96). Moreover, overexpression of HOTTIP was found 
to motivate LUAD cell proliferation and chemoresistance via 
regulating the protein kinase B (AKT) signaling pathway (97). 
As for HOTAIR, multiple studies also demonstrated its over-
expression in NSCLC, and it is involved in the initiation and 
development of NSCLC through interacting with unc‑51‑like 
autophagy‑activating kinase 1 to suppress autophagy (98), 
targeting caveolin 1 (99) and miR‑613 (100). Based on the 
available literature, there is controversy with regard to the 
expression of TUG1 in NSCLC. Studies by Lin et al  (101) 
and Zhang et al (102) revealed that TUG1 was downregulated 
in NSCLC, while a study by Liu et al (103) showed that it 
was upregulated. According to the study by Liu et al, TUG1 
could inhibit apoptosis by silencing BCL‑2 associated X 
via interacting with EZH2 (103). TUG1 RNA could target 
PRC2 in the promotor region of CUGBP Elav‑like family 
member  1  (CELF1) and CELF1 expression was therefore 
negatively regulated (101). Zhang et al (102) suggested that 
TUG1 acted as a growth regulator in NSCLC partly through 
controlling HOXB7. CCAT2 exerted overexpression in 
NSCLC (104,105), and could promote oncogenesis via overex-
pression of zinc finger and BTB domain containing 7A (104). 
With regard to PVT1, it is of note that accumulating recent 
studies (106‑109) investigated the roles of upregulated PVT1 
in NSCLC via the ceRNA‑regulated network, which is a 
trending hotspot in the research field. PVT1 was demonstrated 
to exert its oncogenic functions by sponging miR199a5p (106), 
miR‑126 (107), miR‑497 (108) and miR‑195 (109).
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4. Conclusions and future directions

SCLC is a fatal disease with an aggressive and brutal 
nature; it comprises ~15% of all lung cancer cases. The 
management of SCLC remains challenging, while disease 
outcome has remained poor, mainly due to limited options 
for effective treatment. The majority of the cases are at an 
irreversible advanced stage when diagnosed and rapidly 
develop treatment resistance despite a high success rate of 
initial chemotherapy and radiation. The pathogenesis of 
SCLC has been investigated by researchers across the world; 
nevertheless, the implicit molecular mechanism remains 
mostly unidentified. In light of next‑generation sequencing 
techniques and bioinformatics tools, lncRNAs have been 
shown to exert distinguishable functions in a broad range 
of human diseases, including the most concerning types of 
cancer. Although great discoveries and advances in cancer 
pathogenesis and therapeutics have been made over the 
decade, the elucidation of the SCLC molecular mechanism 
and its frontline treatment have developed slowly due to 
obstacles from various aspects, including difficulty in sample 
collection, research funding, late diagnosis, rapid progression 
and chemoresistance. Investigation into the role of lncRNAs 
in SCLC is underway, yet no lncRNAs have been extensively 
investigated, let alone clinically utilized for prognosis, 
diagnosis or therapeutic design. According to the available 
published literature, the current research state of SCLC is 
relatively superficial compared with that of NSCLC. Thus, 
more research is urgently required.

Despite the aforementioned challenges, there have 
been certain notable novel findings that have the potential 
to advance the field. Given the scarcity of SCLC tissues, a 
multidisciplinary, interoperable, cross‑institutional approach 
is required to collect adequate SCLC tissues for more trans-
lational research projects. Emerging techniques, including 
next‑generation sequencing and bioinformatics, have created 
opportunities to conduct larger scale and deeper studies on 
SCLC. The past decade has witnessed the emergence of 
lncRNAs involved in various types of cancer. For example, 
lncRNA prostate cancer antigen 3 and lncRNA highly 
upregulated in liver cancer can be detected in prostate and 
liver cancer, respectively, and serve as sensitive diagnostic 
markers (110,111). As an intensively studied lncRNA, lncRNA 
metastasis‑associated lung adenocarcinoma transcript  1 
is found to be involved in multiple malignancies, including 
lung, colon, breast and liver cancer, indicating its general 
participation in cancer cell proliferation (112). Overexpression 
of lncRNA antisense noncoding RNA in the INK4 locus is 
observed in a number of types of cancer and is associated 
with a poor prognosis in gastric and prostate cancer (113). 
lncRNA CCAT1 could be used as a clinically detectable 
marker to predict the therapeutic responsiveness of bromodo-
main and extraterminal inhibitors in patients with colorectal 
cancer (114). lncRNA maternally expressed gene 3, which 
acts as a tumor‑suppressor via promoting p53 accumulation 
and recruiting PRC2, is downregulated in multiple primary 
human tumors (115). As these lncRNAs have been verified 
as promising predictive markers for diagnosis, prognosis 
and chemotherapy sensitivity in cancer patients, they also 
have the potential to lead to a greater understanding of 

SCLC tumorigenesis and chemoresistance, and could serve 
as efficient therapeutic targets. The diagnostic sensitivity 
and specificity may be enhanced by joint detection of dispa-
rate lncRNAs, and this may become particularly useful 
in non‑invasive screening for early‑stage SCLC patients. 
The functional roles of lncRNAs involve diverse signaling 
pathways and investigation into these pathways may yield 
crucial signaling targets that could be blocked to impede 
tumor progression. Signaling pathways frequently altered 
in cancer include phosphoinositide 3‑kinase/AKT, Kirsten 
rat sarcoma viral oncogene homolog/V‑raf murine sarcoma 
b‑viral oncogene homolog B1, retrovirus‑associated DNA 
sequences/mitogen‑activated protein kinase, EGFR, fibroblast 
growth factor receptor, Wnt and myc, among others (116). 
Currently, among nearly 20,000 identified lncRNAs, only 
five have been investigated in SCLC. Therefore, more efforts 
should be put into this field of great potential. As a large 
genetic information treasury and a potential opening to 
combat diseases, lncRNAs will play no small part in identi-
fying SCLC mechanisms.
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