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Abstract. Juvenile myelomonocytic leukemia (JMML) is a 
rare but severe primary hemopoietic system tumor of child-
hood, most frequent in children 4 years and younger. There 
are currently no specific anticancer therapies targeting 
JMML, and the underlying gene expression changes have 
not been revealed. To define molecular targets and possible 
biomarkers for early diagnosis, optimal treatment, and prog-
nosis, we conducted microarray data analysis using the Gene 
Expression Omnibus, and constructed protein-protein interac-
tion networks of all differentially expressed genes. Modular 
bioinformatics analysis revealed four core functional modules 
for JMML. We analyzed the Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway 
functions associated with these modules. Using the CMap 
database, nine potential anticancer drugs were identified that 
modulate expression levels of many JMML-associated genes. 
In addition, we identified possible miRNAs and transcrip-
tion factors regulating these differentially expressed genes. 
This study defines a new research strategy for developing 
JMML-targeted chemotherapies.

Introduction

Juvenile myelomonocytic leukemia (JMML) is an infrequent 
but aggressive hematological system tumor of infancy and 
childhood with poor prognosis. Signs and symptoms include 
fever, thrombocytopenia, hemorrhage, lymphadenopathy, high 
fetal hemoglobin levels and progressive hematologic anemia, 
hepatosplenomegaly, and clonal proliferation of myelo-
monocytic cells (1-3). The most effective treatment currently 
available is allogeneic hematopoietic stem cell transplanta-
tion (HSCT). However, the overall survival at 5 years after 

transplant is only 52-63% due to treatment-related toxicity and 
frequent disease relapse (3-7). In addition, some patients lack 
a suitable human leukocyte antigen-matched donor, thus novel 
chemotherapeutic regimens are needed to further improve 
outcome.

Malignant tumors are a major cause of mortality in 
children, and traditional cancer treatments such as chemo-
therapy, radiotherapy and surgery carry severe side effects 
or do not markedly improve prognosis. As an aggressive 
myeloproliferative neoplasm, response to conventional 
chemotherapy is weak, thus most JMML patients require 
early allotransplantation (6,7). Alternatively, gene module 
analysis of JMML may facilitate the screening of anticancer 
drugs targeting specific anomalies in gene expression. In the 
present study, we performed gene module analysis to identify 
gene expression signatures of JMML and to illuminate the 
functions of these altered genes and protein networks in 
disease pathogenesis.

While there are voluminous studies on anticancer drug 
pharmacokinetics and efficacy against solid tumors, there 
have been few studies focusing on JMML. Drugs that target 
JMML-associated genes can be an effective anticancer 
approach, either alone or in combination with traditional 
modalities. Modular analysis of bioinformatic data is emerging 
as a valuable strategy for systematic and comprehensive 
analysis of regulatory signaling pathways relevant to disease 
etiology and drug treatment effects (8,9). In the present study, 
we used modular analysis bioinformatics methods to search 
for differentially expressed genes and their key functional 
group(s) and networks in JMML.

Genes differentially expressed in leukemic cells 
compared to normal cells were classified into upregulated 
and downregulated groups. These differentially expressed 
genes were then compared to differentially expressed 
genes in cells treated with small molecules from the CMap 
database by converting them into probe setters based on 
the HG‑U133A platform. Genes were then assigned enrich-
ment values between‑1 and 1 according to whether specific 
small molecules stimulated the expression state in leukemia 
cells (closer to 1) or normal cells (closer to -1). Based on 
this analysis, we identified drugs that regulate key nodes of 
JMML-associated regulatory networks. The large number of 
genes and drugs identified provide many possible targets and 
effective chemotherapies for JMML.
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Materials and methods

Screening for differentially expressed genes in JMML. We 
downloaded JMML microarray data from the GEO platform 
(https://www.ncbi.nlm.nih.gov/geo/) [data code GSE71449 
(human)] (10).

The criteria for data selection were gene chip expression 
profiling data accrued over the last three years (since 2014) 
with clear disease and normal control groups in the data set. 
The disease queried was ‘Juvenile myelomonocytic leukemia’. 
The largest number of GSE71449 samples were obtained by 
such a standard. While our analysis is indeed limited to all 
disease-related data sets in the database, further analysis of 
other data sets, including miRNA chips, is already under 
way as no single data set represents all genes associated with 
a disease. The mechanisms of any disease are only revealed 
by direct experimental study, but these gene chip results may 
identify genes with greater probability of involvement. The 
single-chip DEG analysis can only reveal that in the current 
data set, these differentially expressed genes (DEGs) are most 
likely to be related to disease.

Array Express was retrieved, and the results retrieved with 
the same search criteria coincided with those in GEO. There 
was no larger sample size under the same screening criteria. 
GEO data sets are included in the EBI database, thus there is 
no mention of it.

The database provides tissue sample results from 44 
JMML patients and seven healthy donors obtained using 
the Agilent‑041648 CMGG Human V1.1 60k [Probe Name 
Version] microarray platform. We used the R software 
bagaffy (11) (Version1.50.0, http://www.bioconductor.
org/packages/release/bioc/html/affy.html) to read the down-
loaded microarray matrix data and the robust multi-array 
average method (12,13) to perform standardized data prepro-
cessing (including Background correction, Normalization, and 
Expression calculation). We performed annotation for probes 
in the platform annotation file and deleted probes that did 
not match the gene symbols used. When the same gene was 
reflected by different probes, we adopted the average as the 
final expression value.

For the two data groups (JMML and controls), we 
screened for differentially expressed genes using the R bag 
Limma microarray analysis package (14) and adopted the 
BH‑corrected T test to identify genes significantly over‑ or 
under expressed. For every differentially expressed gene, we 
assumed a threshold P<0.05 and log|FC| >0.58. Differentially 
expressed genes were selected based on a threshold |logFC| 
>0.58, corresponding to a fold change >1.5 or ≤1.5 (15). We 
then used the common enrichment analysis tool DAVID (16) 
(version 6.8) and subjected genes with enrichment ≥2 and 
significance threshold of hypergeometric test P<0.05 to Gene 
Ontology (GO) (17) function and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) (18) pathway analyses.

For observing the function of differentially expressed 
genes intuitively, we used the ClueGO (19) plug-in (version 
2.2.6, http://apps.cytoscape.org/apps/ClueGO) of Cytoscape 
software (20) and constructed separate GO BP and KEGG 
pathway cross-linked enrichment graphs for upregulated 
and downregulated genes using P<0.05 as the significantly 
enriched threshold.

Building and analyzing modules of differentially expressed 
genes. We used the STRING (21) database bank to predict 
possible protein-protein interaction (PPI) networks for all 
differentially expressed proteins and genes with parameter 
PPI score 0.4 (medium confidence). Networks with average 
interaction strengths at protein nodes were constructed using 
Cytoscape.

Interaction networks may contain nodes in which the 
interactions are closed among the constituent genes. These 
nodes thus represent distinct biological processes. There are 
many methods to define nodes by PPI cluster analysis but 
MCODE (22) was chosen because it is the most common. We 
applied MCODE to calculate the scores of every node, with 
higher scores indicating a greater degree of separation from 
other nodes and stronger association with specific processes. 
We choose nodes with score ≥5 and node number ≥5 for 
subsequent GO and KEGG pathway analyses.

Screening for drugs that regulate functional modules. The 
CMap database (23,24) stores the genome-wide expression 
profiles of human cells treated with various active small mole-
cules. In total, CMap contains data from 6,100 small molecule 
interference experiments (with normal control groups) using 
1,309 small molecules, for a total of 7,056 different expression 
profiles.

We analyzed gene expression differences between normal 
cells and leukemia cells and then compared the responses of 
differentially expressed genes to identify those with similar or 
opposite effects (upregulation vs. downregulation) on normal 
cells. We divided the genes differentially expressed between 
normal and leukemia cells into upregulated and downregulated 
subgroups. Then we transformed the HG‑U133A platform 
probe set results and compared them to the set of differen-
tially expressed genes under small molecule treatment from 
the CMap database to obtain enrichment values. In this case, 
enrichment values range from-1 and 1, with those closer to 1 
influenced to a greater extent by small molecules in normal 
cells and those with values closer to ‑1 influenced to a greater 
extent by small molecules in leukemia cells.

For key modular gene screening, we constructed connec-
tivity maps and used the gene expression differences in human 
cells treated with small molecules to identify drugs affecting 
the expression levels of genes associated with the disease.

Identification of possible miRNAs regulating target genes. 
We identified potential miRNA targeting genes within PPIs 
using Webgestalt (http://www.webgestalt.org/) (25) tools 
and overrepresentation enrichment analysis methods with a 
threshold P<0.05 by hypergeometric tests and BH correction 
for enriched gene number and count ≥5.

Identification of possible transcription factors regulating 
target genes. Based on the transcription factor-regulated 
network data in the ITFP database and TRANSFAC bank, 
we searched for transcription factors regulating differen-
tially expressed genes and further screened the differentially 
expressed target genes regulated by these transcription factors 
for network integration. We performed network integration for 
the obtained TF‑Target, miRNA‑Target, and PPI network and 
constructed integration networks using Cytoscape.
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Statistical analysis. t-tests were used to screen for differen-
tially expressed genes and to evaluate the enrichment obtained 
by GO_BP‑ and KEGG‑based methods. A P<0.01 was 
considered statistically significant. With respect to each herbal 
component, Fisher's exact test was used to evaluate the genes 
in modules. Based on the above data, we set P<0.01 for each 
component.

Results

Screening for differentially expressed genes in JMML. We 
downloaded the JMML expression data from the GEO data-
base, and identified 700 upregulated and 737 downregulated 
genes at threshold levels of P<0.05 and log|FC| >0.58. From 
these genes, we constructed heat maps (Fig. 1). We then 
performed GO and KEGG pathway enrichment analyses for 
upregulated and downregulated mRNA muster, and according 
to the screening threshold value obtained GO terms and 
KEGG pathways including these differentially expressed 
genes. Fig. 2A shows the top five GO Biological Process (BP) 
terms and KEGG pathways including upregulated mRNAs 
and Fig. 2B shows these same results for downregulated 
mRNAs.

We used clueGO to perform GO and KEGG pathway 
analysis for all upregulated and downregulated differentially 
expressed genes (Fig. 3A and B). ClueGO provides kappa 
coefficients that can be used to divide the pathways into func-
tional groups. In the figure, different colors indicate pathway 
enrichment results and correlations between two pathways 
are reflected by a connecting line. The sizes of nodes reflect 
the P-value. Fusion of enrichment results was performed 
when different terms were enriched for the same gene. In the 
figure, GO terms are indicated by different colors. Thus, one 
color indicates a functional group. The size of the term nodes 
depends on the threshold P-value, increasing as P gets smaller.

Key genes and PPI networks constructed from differen-
tially expressed genes. Combined with the PPI database, we 
constructed the network figures for differentially expressed 
genes (Fig. 4). The PPI network of differentially expressed 
genes contained 908 nodes and 5,053 related pairs. The rela-
tionships among the nodes are closed. Table I lists the top 10 
highest degree nodes obtained from the PPI network and Fig. 4 
shows the PPI network constructed from the differentially 
expressed genes, with pink nodes indicating upregulated and 
blue nodes the downregulated genes.

Figure 1. We downloaded data from the GEO database (experimental number GSE71449) and obtained 700 upregulated and 737 downregulated genes using 
threshold P<0.05 and log|FC| >0.58 was threshold. We constructed the heat map for the obtained differentially expressed genes through screening.
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Figure 2. GO and KEGG pathway enrichment analysis of the upregulated and downregulated mRNA sets. According to the screening threshold, the GO terms 
and KEGG pathways involving these differentially expressed genes were obtained. (A) Top five GO BP terms and KEGG pathways for upregulated mRNAs. 
(B) Top five GO BP terms and KEGG pathways for downregulated mRNAs. GO, Gene Ontology; BP, Biological process; KEGG, Kyoto Encyclopedia of Genes 
and Genomes; DEG, differentially expressed gene.

Figure 3. The enrichment and crosslink figure of GO BP and KEGG pathways. We used clueGO to perform GO and KEGG pathway analysis for all upregu-
lated (A) differentially expressed genes. 
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Modular analysis. We obtained a total of 10 modules from 
the PPI network, of which four had scores >3 (Fig. 5). We 
also performed functional enrichment analysis for the genes 
of modules. Fig. 6 shows the top five GO BP terms and 
KEGG pathways in module 1, the four KEGG pathways and 
top five GO BP terms in module 2, the four GO BP terms in 
module 3 (no KEGG pathways were enriched), and the top five 
GO BP terms and KEGG pathways in module 4.

For module 1, pathway analysis indicated that differentially 
expressed genes were most strongly (lowest P-value) related to 

Regulation of cell proliferation. For module 2, differentially 
expressed genes were most strongly related to Pathways 
in cancer. In module 3, the strongest relationship was with 
Transcription, DNA‑templated, and in module 4 the strongest 
relationship was with Immune response.

Small drug molecules related to diseases. We performed small 
molecule drug analysis for the 4 modules using the CMap 
database and threshold P<0.05. The regulatory effects on each 
module are shown in Fig. 7.

Figure 3. Continued. We used clueGO to perform GO and KEGG pathway analysis for all downregulated (B) differentially expressed genes. ClueGO revealed 
correlations among channels by calculating the kappa coefficients. We divided the path into several functional groups according to the kappa coefficients to 
reveal several networks. Different colors represent different paths. When the two paths have relevance, they are connected by a straight line. The size of the 
node represents the P-value of the GO term, with smaller P-values indicated by larger nodes. When the same gene is enriched to different terms, the term is 
plotted in a variety of colors. The same color term represents a functional group. The minimum P-value of the same functional group is termed as the maximum 
node. GO, Gene Ontology; BP, Biological process; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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Statistical relationships between modular genes and small 
drugs. We used local perl script and performed Pubmed 
searches for the analyzed modular genes and the corresponding 
small molecules, and constructed the network figures shown in 
Fig. 8. The P-values were considered in descending order, and 
the drugs with the 10 smallest P-values were used for subse-
quent analyses. A total of 40 drugs were identified as possible 
regulators of the 4 modules. To obtain novel anticancer drugs, 
we conducted a literature review of the cancer-related research 
on the 24 drugs with greatest effects on gene expression. In 
cancer treatment, the number of publications reflects the extent 
of research on a given drug's potential efficacy. Multiple drugs 
have been researched extensively and already certified to be 
effective anticancer drugs, such as etoposide and phospho-
nothreonine (the number of relevant publications was >100). 
Others, however, have not been fully studied for their anti-
cancer efficacies, such as disulfiram, ursolic acid, miconazole, 

Figure 4. Combining the PPI database, the network diagram was constructed for the differentially expressed genes. The PPI network of differentially expressed 
genes contained 908 nodes and 5,053 related pairs. There is a close relationship between the nodes. Table I provides the degree node for the PPI network 
scoring top ten. The PPI network based on differential gene construction is shown. The pink nodes show the upregulated genes and the blue nodes the down-
regulated genes. PPI, protein-protein interaction.

Table I. The top 10 highest degree nodes obtained from the 
PPI network.

Gene Degree Betweenness Closeness

MAPK1 283.0 142874.9 0.54246414
CD4 218.0 93239.1 0.49266702
OAS3 212.0 110066.46 0.48373333
CD79A 173.0 59164.633 0.47862798
NFKBIA 157.0 37323.453 0.48424986
BCL6 154.0 42434.684 0.4748691
EGR2 138.0 33878.51 0.4512438
PLEK 134.0 53153.11 0.45509282
TRIB3 115.0 24556.303 0.44591936
RASL11A 112.0 16269.245 0.44923228

PPI, protein-protein interaction.
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thioridazine, loperamide, monastrol (the number of relevant 
publications was ≤10), and others, such as nadolol, tetracaine 
and levomepromazine have never been studied with respect to 
cancer. Publication numbers for drug are shown in Fig. 9.

Identification of candidate miRNAs regulating differentially 
expressed genes. We identified candidate miRNAs that may 
regulate the differentially expressed genes using a screening 
threshold of P<0.05. For upregulated genes, we identified 10 

Figure 5. We obtained a total of 10 modules from the PPI network, including 4 modules (A and B) with scores >3. Upregulated genes are in red and downregu-
lated genes in blue.
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candidate miRNAs (Table IIA) and for the downregulated 
genes four candidate miRNAs (Table IIB).

Identification of candidate transcription factors regu-
lating differentially expressed genes. For the upregulated 

differentially expressed genes, we identified 22 differ-
entially expressed transcription factors (TFs). For the 
downregulated differentially expressed genes, we identified 
19 differentially expressed TFs. The results are summarized 
in Table III.

Figure 5. Continued. We obtained a total of 10 modules from the PPI network, including 4 modules (C and D) with scores >3. Upregulated genes are in red 
and downregulated genes in blue.
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Figure 6. Functions of the genes in each module revealed by GO BP and KEGG analyses. (S) The top five GO BP terms and KEGG pathway results for 
module 1. (B) The four KEGG pathways and top five GO BP terms in module 2. (C) The four GO BP terms in module 3 (no enrichment to KEGG pathways). 
(D) Top five GO BP terms and KEGG pathway results in module 4. Pathways of greatest significance in each module were Regulation of cell proliferation in 
module 1, Pathways in cancer, Transcriptional dysregulation in cancer, and Signal transduction in module 2, Transcription, DNA‑templated in module 3, and 
Immune response in module 4. GO, Gene Ontology; BP, Biological process; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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Discussion

Currently the only curative treatment option for JMML is 
hematopoietic stem cell transplantation (HSCT). However, 
disease recurrence remains a major cause of treatment 
failure (7). Clinical symptoms are caused by hematopoietic 
insufficiency and excessive proliferation of leukemic mono-
cytes and granulocytes, leading to hepatosplenomegaly, 
lymphadenopathy, skin rash and respiratory failure (3,7,26). 
A serious obstacle to the research of JMML is the lack of 
suitable experimental models, impeding the development 
and pre-clinical evaluation of novel therapeutic approaches. 
Primary JMML leukemia cells cannot be maintained in 
culture as they differentiate and become apoptotic (27), while 
an immortalized cell line derived from JMML cells has not yet 
been successfully established (28). The generation of induced 
pluripotent stem cell lines originating from JMML cells was 
reported, but conceptually such systems are limited by their 
artificial nature and the risk of further transformation during 
reprogramming (29). Therefore, it is important to identify 
tumor‑promoting processes, such as dysregulation of specific 
genes and networks, and develop targeted therapies.

In the present study, we combined the genome-wide gene 
chip information already available from JMML tissues and 
used modular analysis bioinformatics procedures to identify 
molecular targets and small molecule compounds that affect 
their expression. For this purpose, modular analysis is a valu-
able and well established bioinformatic method that is useful 

Figure 7. Small drugs affecting the 4 modules (A‑D) according to the CMap 
database. Shown are the top 10 results with threshold P<0.05. Drug were 
found that affected each module.

Table II. Identification of candidate miRNAs regulating differ-
entially expressed genes (DEGs).

A, miRNAs for upregulated DEGs

miRNA P‑value

AGTCAGC, MIR‑345 0.002846737
CAGGTCC, MIR‑492 0.003876902
ACCAATC, MIR‑509 0.011602863
CCAGGTT, MIR‑490 0.017555181
TGCACTG, MIR‑148A, 0.023681008
MIR-152, MIR-148B
TGAGATT, MIR‑216 0.030489785
TCCAGAT, MIR‑516‑5P 0.033806763
AGTCTTA, MIR‑499 0.034998955
GTGTCAA, MIR‑514 0.037442107
AAAGGGA, MIR‑204, MIR‑211 0.040666691

B, miRNAs for downregulated DEGs

miRNA P‑value

GGCACTT, MIR‑519E 0.002921036
TCCGTCC, MIR-184 0.037734308
GTAAGAT, MIR‑200A 0.040359704
AGCATTA, MIR‑155 0.04249545
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Figure 8. We used local perl script and performed Pubmed searches for each small molecule, and constructed network figures (Pink genes in module 1, red 
genes in module 2, purple genes in module 3, and yellow genes in module 4). Arrows represent small molecule drug regulatory relationships. The line thickness 
represents the volume of existing research on these small molecule drugs and genes, with thicker lines indicating more extensive research (more publications). 
Blue V indicates small molecule drugs.

Figure 9. To evaluate potential efficacy, we conducted a literature appraisal of 24 small molecules. The number of publications is indicative of the extent of 
study on cancer. Those with fewer publications may be novel anticancer drugs. Of those identified, many are confirmed to be anticancer drugs, for example 
etoposide and phosphonothreonine (>100 relevant publications), while others have not been studied extensively for anticancer efficacy, for example disulfiram, 
ursolic acid, miconazole, thioridazine, loperamide and monastrol (≤10 relevant publications). A few, such as nadolol, tetracaine, and levomepromazine, have 
never been examined for anticancer properties.
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for analysis of both large-scale protein networks and single 
proteins and genes. Moreover, this method has been used to 
study the development and treatment of multiple diseases. 
After the enrichment analysis, we found that genes related to 
the hematopoietic cell lineage and to regulation of immune 
responses were significantly downregulated, while chemokine 
signaling pathway and inflammatory response genes were 
significantly upregulated compared to healthy tissue.

Hematopoietic progenitors produce a myriad of diverse 
lineages, including progenitors with lymphoid, myeloid, 
and erythroid potential, prior to hematopoietic stem cells. 
Previous pathway analyses revealed that genes related to 
hematopoietic cell lineages were significantly downregulated 
in JMML (30-34), and we further found that genes related 
to regulation of immune responses were also significantly 
downregulated. Anticancer treatment leads to dense immune 
infiltrate, including many CD8+ and CD4+ cells, concomitant 
with tumor regression, at both treated and untreated lesions, 
consistent with generation of a tumor‑specific systemic immune 
response (35). Several studies have indicated the synergistic 
potential of various immunomodulatory agents (36-39). 
Therapies that enhance or impede immune responses are 
essential but optimal timing and the administration route are 
important detemising results, such as increased survival and 
immune responses, leading to complete tumor regression in 
some cases (40-42).

Rminants of efficacy. Preclinical studies combining these 
agents have shown proThe PI3K/Akt and MAPK signaling 
pathways have been shown to mediate chemokine-induced 
migration of multiple cell types. Modular analysis suggested 
that the Chemokine signaling pathway (module 1) was strongly 
related to JMML morbidity. In addition to regulation of cell 
proliferation, differentiation, invasion, and inflammation, 
chemokines are widely involved in the regulation of cancer. 
Analysis of module 1 revealed that regulation of cell prolifera-
tion was significantly increased and strongly related to JMML 
occurrence. Further, analysis of all 4 functional modules 
revealed complex interactions among a number of genes 
involved in Chemokine signaling pathway and Regulation of 
cell proliferation. Chemokines are small proteins expressed 
in response to injury or infection and during normal immune 
surveillance. Chemokines are involved in leukocyte trafficking 
and regulate tumor metastasis, proliferation, differentiation 
and angiogenesis (43-46).

Module 2 contained genes primarily involved in Pathways 
in cancer, Transcriptional dysregulation in cancer, and Signal 
transduction, suggesting that module 2 contains clusters of 
key tumor‑promoting genes. Accumulation of driver somatic 
alterations in genes modifies critical cellular processes leading 

to cancer (47,48). In recent years, the catalog of driver genes 
known to take part in the development of malignancies has 
expanded due to whole-exome and whole-genome analyses 
of large tumor sets by large international consortia (49,50). 
In addition to upregulation of oncogenes, downregulation of 
anticancer proteins or dysregulation of subcellular localization 
may also contribute to JMML.

Cancer cells scatter from tumors in hoards and build new 
tumors in distant tissues and organs (51,52). In over 90% of 
fatal cancers, metastasis is the cause of death. Tumors contain 
a heterogeneous population of cells in an organized hierarchy 
akin to normal tissue. Tumor progression, invasiveness, and 
self-renewal are attributes of smaller subfractions of cancer 
cells. Tumor initiation by disseminated cancer cells relies on 
their ability to self-renew and initiate metastatic tumors.

Genes in module 3 were primarily involved in Response 
to hypoxia, Negative regulation of transcription from 
RNA polymerase II promoter, Regulation of transcription, 
DNA‑templated, and Transcription, DNA‑templated. We found 
that among these pathways, transcription, DNA‑templated was 
most strongly related to JMML occurrence. The identification 
and detection of specific nucleic acids (either DNA or RNA) is 
an enabling technology for forensic analysis (53), recognition 
of genetic mutations (54) and pathogen identification (55). For 
many methods, quantification of nucleic acids is important 
for identifying a given DNA sequence. For example, in many 
forms of cancer (56), oncogene copy number increases and 
deletion of tumor-suppressor genes can be found. In addition 
to measuring changes in gene copy number, quantitative detec-
tion of circulating DNAs can be a useful diagnostic tool for 
identifying cancer (57).

The genes in module 4 are closely associated with extra-
cellular matrix organization and immune responses. Much 
effort has been devoted to determining how cellular compo-
nents of the tumor promote cancer development and initiate 
formation of a niche conducive to growth (58). Alternatively, 
the importance of non-cellular components of the niche 
during cancer progression is well documented, particularly 
extracellular matrix (ECM) organization (59-62). In addition 
to a stable structure with supportive functions in maintaining 
tissue morphology, the ECM is a surprisingly dynamic and 
versatile part of the cell milieu influencing fundamental 
aspects of cell biology (63). For major developmental 
processes, the ECM directly or indirectly regulates almost all 
cellular behaviors (64-67). Indeed, in diseases such as cancer, 
abnormal ECM dynamics may be a strong determinant of 
clinical outcome (68). How disruption of ECM dynamics 
contributes to tumor development is a challenging issue in 
cancer biology.

Table III. Identification of candidate transcription factors (TFs) regulating differentially expressed genes (DEGs).

TFs for upregulated DEGs TFs for downregulated DEGs

ABTB2, AHCTF1, BATF, CORO7, ERG, FGD5, FOXN2,  CCNE1, CDC20, CKAP5, FAM129B, KRT7, LGR4, MKL2,
IFIH1, IFIT1, IFIT2, IFIT3, ING1, INPP5A, LASP1, PARP14,  NFIA, REXO1, SMARCA4, SPEN, TLE2, TRIM10, TRIM27, 
PLEK, PTBP2, SAMD9, STAT1, TANK, TTC7B, WDR1 TTC16, ZBTB4, ZNF497, ZNF750, ZNF771
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The local immune response has also emerged as an 
important element in the multistep process of cancer devel-
opment (69). Observations that some tumors arise from 
chronic inflammation sites have led to speculation of a 
strong connection between tumor onset and inflammatory 
pathways. In addition, some tumors are infiltrated by both the 
innate and adaptive arms of the immune system, thus many 
different immune cells are present within the tumor micro-
environment (70). Elements of both the innate and adaptive 
immune systems have been reported to act both as pro- or 
anti-tumorigenic factors depending on the relative balance. 
The intercellular communication between infiltrating immune 
cells and cancer cells modulates this immune response so as to 
positively influence tumor development (71).

We found the module 2 was most strongly related to JMML 
occurrence. There are likely synergistic interactions among 
module 2 genes.

Many investigations have attempted to screen for 
well-tolerated and affordable anti-neoplastic medications, and 
a myriad of drugs with cytotoxicity against human cancer 
cell lines have been described (72,73). In our study, we also 
screened for drugs with curative potential against JMML 
through modulation of associated gene pathways. In 1999, 
Mayer et al (74) first identified monastrol, a cell‑permeable 
small molecule with antimitotic activity but without neuronal 
cytotoxicity. Through inhibition of kinesin Eg5, monastrol can 
induce the mono-astral conformation of microtubules (75,76). 
Several subsequent studies have clarified the anti-mitotic 
mechanisms of monastrol (77-79), but few studies have investi-
gated its anticancer activity (80-82).

In both canine and human cancer patients, the peripherally 
acting µ-opiate receptor agonist loperamide hydrochloride is 
recommended as a treatment for chemotherapy-related diar-
rhea (83,84). Loperamide was shown to dose-dependently 
induce apoptosis and suppress the proliferation of human liver, 
lung, bone, and breast cancer cell lines (85). In human cancer 
cell lines, the mechanism underlying apoptosis induction has 
not been fully elucidated, although the caspase 3 pathway has 
been implicated (85) and loperamide will exert anticancer 
properties at clinically relevant doses. In the clinic, loperamide 
would be an attractive drug for JMML because of its minimal 
side effects and low price. Our bioinformatic analysis revealed 
a potential role for loperamide in JMML treatment. Further 
studies are needed to establish mechanisms of antitumor 
activity.

Originally, thioridazine (TDZ) was used as a therapy for 
psychotic disease (86,87). In addition, it has been used to treat 
drug-resistant microorganisms (88,89). Recently TDZ was 
reported to have potent effects on various types of cancer cells, 
including anti-angiogenesis and apoptosis promotion of breast 
and ovarian cancers cells (90,91). In addition, TDZ induced 
cytotoxicity of cervical (92), prostate (93), gastric (94), and 
pancreatic cancer cells (95). TDZ also has selectivity in 
leukemia as a dopamine receptor inhibitor (96,97).

A few publications have suggested that miconazole has 
anticancer effects (98). Miconazole is a common treatment 
for superficial fungal infection and a prominent systemic anti-
fungal agent. In different human neoplastic cell lines, Wu et al 
demonstrated that miconazole could induce cell cycle arrest. 
This growth arrest was dose-dependent and related to the p53 

signaling pathway (99). Anticancer effects of miconazole were 
reported on 4T1 (breast cancer) and 5637 (bladder cancer) cell 
lines.

Ursolic acid (UA) was found to have a biphasic response 
against three breast cancer cell lines (100). Another study (101) 
reported that disulfiram suppressed tumor growth by killing 
cancer cells and was even effective in combination with DHA. 
Indeed, UA could act as a substitute for clioquinol.

Compared to treatments targeting individual genes, treat-
ment with agents affecting larger gene groups may have better 
efficacy as anticancer therapy. The aim of the present research 
was to identify possible molecular targets for cancer treat-
ment and potential anticancer drugs. We searched for drugs 
that regulate the essential functional modules of JMML using 
the DrugBank Small Molecule database, and found several 
drugs already shown to have anticancer effects, including 
nadolol, disulfram, ursolic acid, micronazole, thioridazine, 
loperamide, monastrol, tetracaine, and levomepromazine. In 
contrast, other drugs identified have never been examined for 
anticancer efficacy, such as tetracaine, levomepromazine and 
nadolol. Nonetheless, effects on differentially expressed genes 
in JMML suggest therapeutic potential.

The nine drugs identified are potential therapies for JMML. 
Many widely used and studied drugs have never been examined 
for effects against cancer, such as tetracaine, levomeproma-
zine and nadolol. According to our enrichment analyses, these 
agents hold potential for JMML treatment. We searched the 
Pubmed database and found several RCTs on these drugs, but 
no published clinical RCTs supporting anticancer effects on 
JMML. In the future, we plan to perform RCTs on these nine 
drugs examining possible therapeutic efficacy against JMML.

When designing therapeutic regimens for JMML, possible 
adverse reactions must be considered. It is thus noteworthy 
that the drugs identified here are in clinical use with well 
described safety profiles. When tumor cell proliferation 
reaches the highest activity, drugs interfering with the cell 
cycle or targeting proliferation pathways are significantly 
more potent.

MicroRNAs are endogenous 20‑25 nucleotide non‑coding 
RNAs found in eukaryotes that regulate gene expression at the 
level of translation. Mature miRNAs are produced by sequential 
cleavage of longer primary transcripts. Then the RNA‑induced 
silencing complex RISC induced by RNA is assembled to 
recognize target mRNAs by base complementary pairing, and 
the target mRNA is degraded or suppressed according to the 
degree of complementarity. Recent studies have shown that 
the silencing complex degrades the target mRNA or inhibits 
the translation of the target mRNA. Through gene silencing, 
miRNAs regulate diverse processes including growth, virus 
defense, hematopoiesis, organ formation, cell propagation, 
apoptosis, and fat metabolism, among others. Transcription 
factors (TFs) are proteins with special structures that regulate 
gene expression at the level of the genome. The transcription 
initiation of eukaryotes is complex and requires the assistance 
of multiple protein cofactors. Transcription factors form a 
transcription initiation complex with RNA polymerase II. 
Both miRNAs and TFs regulate genes, thus differentially 
expressed genes (DEGs) are predicted by miRNAs and TFs, 
which further extends the number of potential targets. Like 
differentially expressed genes, the prediction of miRNAs and 
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TFs involved in differential expression also provides clues to 
disease mechanisms.

In conclusion, our study used multiple bioinformatic 
methods to identify 4 gene modules associated with JMML. 
In addition, we identified 40 drugs based on the CMap data-
base that can alter expression and function of the 4 modules. 
We performed Fisher's exact test to precisely screen for drugs 
with the strongest effects on module regulation. Through our 
study, we identified nine drugs that have considerable potential 
as new anticancer drugs. Moreover, the study provides a new 
research template for future research on JMML-targeted anti-
cancer treatments through detailed analyses of core functions. 
In the future, we will conduct follow-up studies to verify the 
anticancer effects of the selected drugs.
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