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Abstract. As one of the most lethal malignancies worldwide,
hepatocellular carcinoma (HCC) has a high mortality rate,
which is mainly due to the complex and multi-step aberra-
tions in gene expression associated with it. Small nucleolar
RNAs (snoRNAs), non-coding RNAs that are 60-300 nucleo-
tides in length, have been proposed to be closely associated
with numerous human diseases, including HCC. However,
the current knowledge regarding their clinical significance
and mechanistic roles in HCC is limited. The present study
comprehensively analyzed the snoRNA expression profiles
in HCC and identified several ones that were dysregulated.
The potential regulatory mechanisms of these snoRNAs were
assessed via gene functional enrichment analyses. Univariate
and multivariate Cox regression analyses were performed
to identify snoRNAs that are independently associated with
the risk of mortality. Subsequently, a prognostic index (PI)
for survival prediction was established, which may serve as
a prognostic biomarker for patients with HCC (hazard ratio,
3.023; 95% confidence interval: 1.785-5.119; P<0.001). In addi-
tion, a series of bioinformatics analyses were performed to
identify potential differences in the perturbation of pathways
between high- and low-risk groups. The PI developed in the
present study was determined to have a moderate predictive
value regarding the clinical outcome for HCC patients.
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Introduction

Liver cancer ranks as one of the most lethal malignan-
cies worldwide, with 42,220 new cases and 30,200 deaths
estimated for the United States for 2018 (1). Hepatocellular
carcinoma (HCC) is the predominant histological subtype of
liver cancer and places a heavy burden on human health (2,3).
HCC is associated with multiple etiological factors, including
hepatitis C and B virus infection, exposure to toxins and
alcohol abuse (4,5). Therapeutic strategies combining surgical
resection and molecular targeted treatment have provided
encouraging results and improved the outcomes for HCC
patients. However, the prognosis for patients with unresect-
able advanced-stage HCC remains poor (6,7). Sorafenib was
the only systemic drug available for treating advanced HCC
until the recent approval of regorafenib, another multi-kinase
inhibitor (8,9). However, sorafenib and regorafenib have
a low durable response rate and their benefit for survival is
limited (10). Hence, novel prognostic biomarkers and a deeper
understanding of the exact molecular mechanisms in HCC are
urgently required to improve its clinical management.

While it was previously assumed that genes encoding
non-coding RNAs have no function, accumulating evidence
has proved that several non-coding RNAs, including long
non-coding RNA (IncRNA) and microRNA (miRNA), have
vital regulatory roles in cellular biology and physiological
processes. Of note, small nucleolar RNAs (snoRNAs), which
are non-coding RNAs that are 60-300 nucleotides in length,
were proposed to be closely associated with various human
diseases, including cancer (11,12). Several studies have
reported that certain snoRNAs act as diagnostic or prognostic
biomarkers and as therapeutic targets for HCC (13,14). Several
in vitro and in vivo studies indicated that certain snoRNAs
are involved in the regulation of the genesis and biological
behavior of HCC, including cell proliferation, migration,
apoptosis, cell cycle and metastasis. In spite of this, the
function of snoRNAs in HCC remains limited and requires
further elucidation. Systematic investigation of the expression
profiles and clinical significance of snoRNAs in HCC may
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provide a deeper understanding of their roles in HCC and
contribute to the development of novel therapeutic strategies.
Gong et al (15) developed an online database of snoRNAs
in cancers (SNORic), which provides expression profiles in
>10,000 samples of different tumor types using calculations
based on The Cancer Genome Atlas (TCGA) database. The
database provides expression profiles of snoRNAs for analysis.

The present study comprehensively analyzed differentially
expressed snoRNAs in HCC and provided an overview of their
clinical significance. Subsequently, several functional enrich-
ment analyses were performed to elucidate the functional
roles of key snoRNAs. More importantly, survival-associated
snoRNAs were identified to develop a prognostic index
(PI), which may be utilized as a risk score model for HCC
patients. Via these efforts, the present study aimed to propose
a foundation and comprehensive view of snoRNAs in HCC
and identify novel biomarkers to effectively predict clinical
outcomes.

Materials and methods

Data preparation and pre-processing. The snoRNA gene
expression profiles of 1,524 HCC patients were downloaded
from the online database SNORic (http://bioinfo.life.hust.edu.
cn/SNORic/) (15). The expression value of snoRNAs was normal-
ized and quantified as reads per kilobase per million mapped reads
(RPKM). Only snoRNAs with an average RPKM of >1 across
all samples were used for further analysis. The corresponding
clinical information of the HCC patients was also downloaded
from the TCGA database (https:/portal.gdc.cancer.gov/).

Screening of differentially expressed snoRNAs. Two different
strategies, including analysis with the ‘limma’ package
in R (http://www.bioconductor.org/packages/release/
bioc/html/limma.html) and an independent-samples t-test
via SPSS 24.0 (IBM Corp., Armonk, NY, USA), were used
to identify snoRNAs which were significantly differentially
expressed between HCC and non-tumor tissues. For the
limma test, the threshold for the significantly differentially
expressed snoRNAs was considered a Ifold changel=2 and a
false discovery rate (FDR) of <0.05. For the t-test, snoRNAs
were considered differentially expressed when P<0.05. Genes
that were identified by the two differential analyses simulta-
neously were defined as differentially expressed snoRNAs.

Functional annotation of snoRNAs. To further explore the
potential functional roles of the differentially expressed
snoRNAs, the top 10 most significantly differentially
expressed snoRNAs were selected and messenger RNAs
(mRNAs) with expression levels correlated with these
snoRNAs were obtained from SNORic. Next, these mRNAs
were subjected to functional enrichment analysis using the
ClusterProfiler package (16), in order to identify the enrich-
ment of the snoRNAs in various Gene Ontology (GO)
categories and Kyoto Encyclopedia of Genes and Genomes
(KEGG) processes. ClusterProfiler also calculated corrected
P-values to prevent a high FDR in multiple testing. GO and
KEGG terms/pathways with corrected P-values of <0.05 were
considered to be significantly enriched among the associated
genes.
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Survival analysis of key driver genes. snoRNAs that were
candidate prognostic biomarkers were then selected. To obtain
more accurate results/avoid immortal-time bias, patients with
<90 days of overall survival (OS) were removed prior to survival
analysis (17). The patients were followed up for a duration of
91-3,675 days. The association between snoRNA expression
and OS was performed by using univariate Cox regression.
Candidate prognostic snoRNAs were then subjected to multi-
variate Cox regression. A survival-predicting algorithm PI, an
index calculated for each patient according to their snoRNA
expression pattern, was built according to the expression values
of each independent snoRNA and weighted by the contribu-
tion of each snoRNA to OS (18). The ‘survivalROC’ package
in R (https://CRAN.R-project.org/package=survivalROC) was
used to evaluate the performance of the algorithm in predicting
the prognosis of the HCC patients. The ability of the models
(PI) to predict the outcomes was calculated at 2,000 days, as
only few events occurred after this time-point.

Gene set enrichment analysis (GSEA). GSEA was performed
to analyze the deregulated pathways between patients with
a high and low risk according to the predictive model/PI
established (19). First, GSEA generated an ordered list of all
genes based on their association with the PI. Subsequently, the
pre-defined KEGG pathways were calculated with an enrich-
ment score (ES) and nominal P-value. Finally, each pathway
was given a normalized ES (NES) and an FDR calculated for
the ES. Pathways with NES >1 and FDR <0.05 were consid-
ered significant. The different risk groups served as phenotype
labels.

Results

Identification of differentially expressed snoRNAs. A total
of 372 HCC and 50 non-tumor tissues were included in the
present analysis. A total of 453 snoRNAs with an average
RPKM of >1 were obtained. Of these, 133 differentially
expressed snoRNAs were assessed using the limma statistical
package, including 119 that were upregulated and 14 that were
downregulated (Ifold changel=2 and FDR <0.05). As indicated
in the volcano plot, most of these differentially expressed
snoRNAs were upregulated (Fig. 1). Furthermore, 71 upregu-
lated and 272 downregulated snoRNAs were identified using
the t-test. A total of 68 overlapping snoRNAs (54 upregulated
and 14 downregulated snoRNAs) between these methods were
identified (Table I). In addition, 65 snoRNAs and 275 snoRNAs
were identified by either limma analysis only or the t-test only,
respectively. Analysis of the chromosomal distribution of the
genes encoding the differentially expressed snoRNAs revealed
that the genes encoding these snoRNAs are mostly located on
chromosome 1 (Fig. 2).

Functional characteristic of snoRNAs in HCC. Functional
enrichment analysis of 1,149 mRNAs associated with
differentially expressed snoRNAs was performed using clus-
terProfiler. Biological processes (BP), cell composition (CC)
and molecular function (MF) were the three categories of GO
terms. In the BP category, the three most enriched items were
‘ribosomal ()RNA metabolic process’, ‘TRNA processing’
and ‘ribosome biogenesis’ (Fig. 3A). In the category CC, the
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Figure 1. Differentially expressed snoRNAs in hepatocellular carcinoma. (A) Heatmap of the differentially expressed snoRNAs. Blue represents differentially
expressed snoRNAs and red represents snoRNAs with no significant difference in expression. snoRNA, small nucleolar RNA; FDR, false discovery rate.

mRNAs were mainly concentrated in the terms ‘cytosolic
ribosome’, ‘cytosolic part’ and ‘ribosomal subunit’ (Fig. 3B).
‘Structural constituent of ribosome’, ‘cadherin binding
involved in cell-cell adhesion’ and ‘protein binding involved
in cell adhesion’ were the more prominent terms enriched

by the mRNAs in the MF category (Fig. 3C). More interest-
ingly, KEGG analysis indicated that the mRNAs associated
with the HCC-specific snoRNAs were most significantly
enriched in the pathways ‘Ribosome’, ‘Cell cycle’ and ‘DNA
replication’ (Fig. 4). Among these pathways, ‘Ribosome’ was
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Figure 1. Continued. Differentially expressed snoRNAs in hepatocellular
carcinoma. (B) Volcano plot for the differentially expressed snoRNAs.
The x-axis indicates the log2 Ifold changel and the y-axis indicates the
-logl0 FDR. Blue represents differentially expressed snoRNAs and
red represents snoRNAs with no significant difference in expression.
The volcano plot was generated based on the results from the limma
package. snoRNA, small nucleolar RNA; FDR, false discovery rate.
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the most significant pathway and included 42 genes when
the background of the functional enrichment analysis was
set to ‘Homo sapiens’ (https://www.kegg.jp/dbget-bin/www_
bget?pathway-+hsa03010).

Prognostic predictors for HCC patients. After removing
patients with <90 days of OS, 330 HCC patients were included
in the further analysis. The prognostic value of the differ-
entially expressed snoRNAs was assessed using univariate
Cox regression. A total of 22 snoRNAs with P<0.05 were
identified, which were therefore able to predict the survival of
HCC patients. These snoRNAs were then subjected to multi-
variate Cox proportional regression analysis, which identified
9 snoRNAs as independent prognostic indicators for HCC.
Finally, the PI was calculated based on these 9 snoRNAs as
follows: [expression of SNORA (SNOR, H/ACA box)24]
x 0.0655 + (expression of SNORA7) x 0.0991 + (expression
of SNORAG3) x 0.1196 + (expression of U3_chr§-2) x 0.2590
+ (expression of U3_chr9) x 0.2464 + [expression of SNOR,
C/D box (SNORD)I9B] x 0.0613 + (expression of hTR)
x 0.1653 + (expression of SNORD36C) x 0.0830 + (expression
of U44) x 0.0964. The expression of SNORD36C was markedly

Figure 2. Location of differentially expressed snoRNAs in the genome. The outer ring is the chromosomal ideogram with the chromosome numbers displayed.
At the center of the circle, is a Venn diagram is presented. A total of 68 overlapping snoRNAs between limma analysis and the t-test were identified. In addition,
65 snoRNAs and 275 snoRNAs were identified by either limma analysis only or the t-test only, respectively. snoRNA, small nucleolar RNA.
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Figure 3. Gene ontology analysis of small nucleolar RNA-associated genes in the categories (A) biological process, (B) cellular component and (C) molecular
function. rRNA, ribosomal RNA; ncRNA, non-coding RNA; ER, endoplasmic reticulum; SRP, signal recognition particle.

downregulated in HCC tissues and the remaining snoRNAs
were significantly upregulated in HCC tissues (Fig. 5).

The HCC patients were divided into a high-risk
group (n=165) and a low-risk group (n=165) according to the

threshold of the median PI value (Fig. 6A). The patients were
followed up for a duration of 91-3,675 days. The dependence of
the overall survival status (dead or alive) on the snoRNA-based
risk scores of the HCC patients was also plotted, displaying



YANG et al: snoRNA-BASED PROGNOSTIC SIGNATURE FOR HCC

KEGG

Cellular'senescence

Ribosomal RNAs

3353

Ribosomal proteins

Count
6
pool by folate
42
P. adjust
0.05
e
Small cell lung cancer
Drug metabolism - other enzymes
0.00
Bacteria | Arhaea 25 | 5 165
|zss I 55 | s8s
EF-Tu[ 510 | 13 [ 14 [ 15 | 12 [ s19 | 122 | 53 |reLig] L9 |
Sae | 13e | Lt |L23he| L8 | Sise | Li%e | 536 | B=| L::al-llz

[(s17 [ w4 [ a4 |

[ 15 [sia [ s [ L0 | 115 |Secy

[ L6 ]
Sile | 12% | 126 | sS4 | Lile | 529 [S158e] 19 | 132 [L1ge | L%

Sk | L% |L27As]

EF-Tu,G

R
Sl e T T [ u7 [ L3 | s
T34 | Lid | [Tstse | siee | sve | Lizs Li3Ae| S16s |

57 512 L7A ApaC8
[LGme] w2 T ue [ u
mEE ]

[ |

EF-Ts  IF2 IF3 RF1

52 | s15 ] | as | 120 | 134 | L] [m] [ [ sie] s |
S13e |

[ Jm] [ [ FsyFih[sie e ] [st ] [s2o] [sa] [

L10s | [ L13e |15 | [(L21e | [12% | [131e | (1354 | [137% | [137Ae) [ 139 | [ L20e | [ Late | [La2 ]

[sae ] [Tsee ] [Ts8e ] [Cs17e | [S15e ] (528 ] (525 ] [(526e | [(57e | [S27e ] (522 | (5200 ][]

Lée || Lighe || 120s |[ 120 || L28s |[ 129 || L36s |[ L3%s

Small subunit (Thermus aguaticus)

571 Cstoe ] Gsize ] (5216 ]

Figure 4. KEGG pathway analysis of small nucleolar RNA-associated genes. (A) Top 10 significantly enriched KEGG pathways. All pathways were determined
based on the ‘Homo sapiens’ category of the KEGG database. (B) Ribosome was the most significant KEGG pathway (https:/www.kegg.jp/dbget-bin/www_

bget?pathway-+hsa03010). KEGG, Kyoto Encyclopedia of Genes and Genomes.

inferior survival for patients in the high-risk group (Fig. 6).
Patients in the high-risk group had a significantly shorter
median survival time than those in the low-risk group (hazard
ratio=2.778, 95% confidence interval: 1.904-4.051, P<0.001;
Fig. 7A). This result indicated the patients in the high-risk
group have a 2.78-fold increased risk of death compared
with those in the low-risk group. The area under the receiver
operating characteristic curve was 0.731, which indicated a
moderate survival prediction ability of the PI (Fig. 7B). In the
multivariate analysis (Table II), the risk model/PI that was

proposed was demonstrated to be an independent prognostic
factor, suggesting its independent prognostic value.

Deregulated pathways between high- and low-risk groups.
To identify disturbed biological signaling pathways between
the high- and low-risk groups, GSEA analysis was performed.
Among all of the pre-defined KEGG pathway-associated gene
sets, spliceosome, cell cycle and DNA replication signaling
pathways were identified to be significantly linked with the
survival risk estimated by the PI (Fig. 8), suggesting that
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Figure 5. Differential expression of the 9 key snoRs between HCC and non-tumor tissues. White lines represent median value and white blocks represent the mean
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Table II. Univariate and multivariate analyses of factors affecting the overall survival of hepatocellular carcinoma patients from
The Cancer Genome Atlas by Cox regression analysis.

Univariate analysis

Multivariate analysis

Variables Hazard ratio (95%CI) P-value Hazard ratio (95%CI) P-value
Age, years

(=60 vs. <60 years) 1.045 (0.717-1.523) 0.818

Gender (male vs. female) 0.875 (0.593-1.292) 0.503

Pathological stage (I-II vs. III-IV) 2.964 (1.978-4.440) <0.001 1.392 (0.188-10.297) 0.746
Tumor stage (T1-T2 vs. T3-T4) 3.028 (2.070-4.427) <0.001 1.714 (0.231-12.705) 0.598
Lymph node metastasis (positive vs. negative) 2.507 (0.611-10.287) 0.202

Distant metastasis (positive vs. negative) 4911 (1.536-15.701) 0.007 1.395 (0.329-5.909) 0.652
Histological grade (G1-G2 vs. G3-G4) 1.098 (0.743-1.623) 0.640

Tumor status (with tumor vs. tumor free) 3.610 (2.322-5.613) <0.001 3.313 (1.940-5.659) <0.001
Vascular tumor cell type (micro+macro vs. none) 1.352 (0.852-2.146) 0.200

Prognostic index (high vs. low risk) 2.853 (1.903-4.278) <0.001 3.023 (1.785-5.119) <0.001

CI, confidence interval.

>
)
f=]

= Low-risk
° = High-risk
g 15
@
~ 10
]
T 5
0 T - .
0 100 200 300
B 4000 - - Dead
. = Alive
W .
§ 3000
g ‘ .
= 20004 -- .
=1
@ & .
10001 -
o e T
0 100 200 300
C ACAZE 15
@ SNORAT I
5 SNORAES 10
= Us o
g U3 _ched
8 sNORDIDE 5
E wrn
(1] ] I I SNORDIGC 0
(000 AT 00 0 A AR
Low-risk High-risk

Figure 6. snoRNA risk score analysis for HCC patients. (A) Stratification of
HCC patients in the risk score vs. snoRNA signature plot into low- and high-risk
score groups. The x-axis displays the order of patients based on risk score
and the y-axis the snoRNA signature. (B) Survival status (dead or alive) and
overall survival time of HCC cases with different expression of the signature
snoRNAs. The patients were followed up for a duration of 91-3,675 days. The
x-axis displays the order of patients based on risk score and y-axis the survival
time of patients. (C) Heatmap of the included snoRNAs in the prognostic signa-
ture. snoRNA, small nucleolar RNA; HCC, hepatocellular carcinoma.

patients in the high-risk group may have inferior survival due
to the above cancer-associated signaling pathways.

Discussion

Patients with HCC are at a substantial risk of metastasis,
recurrence and death, although the treatment methods have
markedly improved. A deeper understanding of the molecular
mechanisms is required to develop appropriate treatment
protocols and promote precision medicine. The present study
comprehensively analyzed the expression profiles of snoRNAs
in HCC and identified an overall elevation in the expression of
certain snoRNAs. Furthermore, the potential functional terms
and pathways of snoRNAs were determined, which mainly
involved ribosome-associated processes and the cell cycle.
Considering the indispensable function of certain snoRNAs
in HCC, a prognostic method based on 9 snoRNAs was devel-
oped to stratify HCC patients into subgroups with different
risks of mortality. Based on the GSEA analysis, disruption
of the spliceosome may be the major contributor to the poor
survival of patients in the high-risk group.
Hepatocarcinogenesis is considered a multi-step process,
with various molecular factors, including snoRNAs, involved
in its development and progression. To date, only few studies
that have delineated the clinical significance and molecular
mechanisms of snoRNAs in HCC. Hence, the present study
comprehensively investigated the expression profiles of
snoRNAs in HCC and observed an overall upregulation of
snoRNAs in HCC tissues. Several HCC-associated oncogenic
snoRNAs, which are upregulated in HCC, have been previ-
ously reported, whereas downregulated snoRNAs may act
as tumor suppressors. Several of the dysregulated snoRNAs
identified in the present study were also reported in previous
studies; for instance, Fang er al (14) indicated that SNORD
126 (chr14_20794608_20794685) was highly expressed
in HCC compared with non-tumorous samples. They also
identified that upregulated SNORDI126 was associated with a
shorter survival rate of HCC patients. However, these results
were the opposite of the present results, according to which
SNORDI126 was downregulated in HCC tissues. The limited
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number of cases in their study (only 30 HCC tissues) may be
the major reason for this difference. Wu et al (20) reported that
the overexpression of SNORD76 is associated with decreased
survival of HCC patients. In vitro and in vivo functional
studies consistently indicated that SNORD76 promoted HCC
cell growth and tumorigenicity. The high expression levels
of another markedly upregulated snoRNA, SNORD78, has
also been validated in HCC, and knockdown of SNORD78
significantly suppressed the proliferation, migration and inva-
sion of liver tumor cells (21). These studies have facilitated a
better understanding of the function of snoRNAs in HCC and
provided novel ideas for early diagnosis and the development
of precision medical treatments. The present analysis broadens
the scope and promotes the search for novel snoRNAs as
diagnostic and prognostic markers in HCC.

At present, the rudimentary understanding of the roles of
snoRNAs in HCC limits their clinical application. Therefore,
functional enrichment analysis was performed to determine
the precise biological processes that were deregulated by the
aberrant expression of snoRNAs in HCC. It was identified
that snoRNAs may be involved in the pathways of ribosome
structure and cell cycle, which indicated that snoRNAs signifi-
cantly affect cell growth. Indeed, snoRNAs often combine
with ribonucleoproteins (RNPs) to form stable and functional
snoRNP particles, which is necessary for the effective and
accurate formation of ribosomes (22). Ribosomes are consid-
ered to be the processing plants for protein synthesis in cells,
but in tumor cells, this molecular machinery is misaligned
and cellular metabolism is deregulated (23). Upregulated
cell proliferation is usually accompanied by changes in the
ribosome production rate. Perturbations of ribosome and
ribosome-associated pathogenesis have been reported to be
associated with multiple cancer types (24,25). In HCC, several
tumor suppressors and oncogenes have been identified to either
affect the development of the mature ribosome or to regulate
the activity of proteins (26). Therefore, dysregulated snoRNAs
presumably exert an oncogenic or tumor suppressor function
and may regulate the malignant phenotype by altering the
ribosome synthesis machinery.

The highlight of the present study is that it was the first, to the
best of our knowledge, to propose a snoRNA-based prognostic
signature for HCC patients. For a decade, TCGA has collected
large-scale molecular profiles and clinicopathologic annotation
data, which has made it possible to identify key features that
determine the clinical outcome of HCC patients (17).Identifying
the distinct molecular features of each tumor patient makes it
possible to lay a foundation for the development of personal-
ized medicine (27). Several previous studies have proposed
molecular prognostic signatures based on the expression levels
of IncRNAs (28), miRNAs (29) and mRNAs (30). However, a
snoRNA-based risk score has not been described to the best
of our knowledge. snoRNAs are stable and measurable in
peripheral plasma and serum, which gives snoRNAs a unique
advantage as potential molecular biomarkers for the diagnosis
and prognosis of tumor patients (11,31).

To the best of our knowledge, the present study was the first
to propose a prognostic signature based on snoRNAs, which
had a satisfactory ability to predict survival. The present study
also improved the current understanding of the molecular
mechanisms of HCC. The prospective molecular mechanisms
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of the key deregulated snoRNAs were also assessed. Of note,
abnormal alternative splicing events may be the cause for the
adverse clinical outcomes for patients with a high prognostic
index in the high-risk group. Of note, several snoRNAs have
been reported to have a role in pre-mRNA splicing (32).
However, the key snoRNAs identified in the present study have
not been reported. Hence, the specific regulatory mechanisms
of snoRNAs in splicing in HCC should be further explored in
the future.

In summary, the present study was the first to propose a
prognostic signature based on 9 snoRNAs in HCC, each of
which is an independent risk factor. Numerous genes with
statistically significant prognostic associations were identified
for further study. These snoRNAs may be utilized as novel
therapeutic targets or molecular markers for HCC with high
clinical significance. The results of the present in silico analysis
should be verified by in vivo and in vitro experiments in the
future. The potential functional terms and molecular pathways
of mRNAs associated with the snoRNAs were also assessed.
The prognostic signature established in the present study may
be a clinically useful tool that is easily incorporated into a clin-
ical RNA-sequencing program to individualize HCC therapy.
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