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Abstract. Gastrointestinal cancer (GIC) is a worldwide public 
health problem with a high mortality rate. Mitochondrial DNA 
(mtDNA) mutations in the displacement loop (D‑loop) region 
are quite common in various types of primary human cancers; 
however, their role in the pathogenesis of GIC is controversial. 
In the present study, tumor and para‑tumor tissues were 
selected from 18 patients with gastric cancer (GC), 21 patients 
with colon cancer (CC) and 30 patients with rectal cancer 
(RC). The mtDNA D‑loop was analyzed by sequencing and 
reverse transcription‑quantitative polymerase chain reac-
tion. Furthermore, DNA oxidative damage and DNA repair 
functioning were detected by immunohistochemistry. The 
results demonstrated that increased mtDNA deletion was not 
evident in GIC; however, significant DNA oxidative damage 
was significant in RC by detecting 8‑hydroxyguanine expres-
sion. In addition, over‑activated DNA repair was identified in 
CC and RC through the detection of 8‑oxo‑20‑deoxyguanosine 
glycosylase 1 expression. The mtDNA D‑loop had a specific 
mutation hotspot region, and the level of mtDNA D‑loop 
mutations was correlated with the progression of the GIC. 

The mutations of the mtDNA D‑loop were primarily 
homoplasmic in GIC and often transitioned at pyrimidine 
sites. Mitochondrial microsatellite instability, including 
the formation of poly‑cytidine stretches, was common in 
GIC. These results demonstrate the occurrence of mtDNA 
D‑loop mutations in GIC in Chinese patients and support the 
correlation of these mutations with carcinoma progression. 
Over‑activated DNA repair function possibly repairs the GIC 
mtDNA lesions.

Introduction

Gastric cancer (GC) and colorectal cancer (CRC) are world-
wide public health problems; GC is the fourth most common 
type of carcinoma and the second most common cause of 
carcinoma‑associated mortality, and CRC is the second most 
common cause of carcinoma‑associated mortality with an 
annual incidence of 1,000,000 cases and an annual mortality 
of >500,000 cases (1). In China, the incidence of GC ranks 
third among all malignant tumors and the mortality rate 
was 26.3/100,000 in 2005 (2); the incidence of CRC ranked 
fourth of all cancer types and the estimated mortality rate was 
ranked the fifth leading cause of cancer‑associated mortality 
in all cancer types in 2011 (3). However, the pathogenesis of 
these diseases remains to be fully elucidated. Previous studies 
have focused on the induced oncogenes and inhibited tumor 
suppressor genes, as well as the dysfunction of mismatch 
base repair in nuclear DNA, which does not fully explain the 
pathogenesis and development of these diseases. Mitochondria 
can generate adenosine triphosphate via oxidative phosphory-
lation and in turn control essential cellular activities. The 
displacement loop region (D‑loop) is the main noncoding 
area of mitochondrial DNA (mtDNA). mtDNA mutations in 
the D‑loop region and somatic mtDNA mutations have been 
described to be common in various types of primary human 
cancer types including hepatocellular carcinoma, and bladder, 
breast and lung cancers (4,5); however, their role in the patho-
genesis of gastrointestinal cancer (GIC) is controversial. In the 
present study, whether somatic mtDNA and D‑loop mutations 
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occurred in Chinese patients with GIC and their association 
with disease progression were investigated.

Materials and methods

Patients and tissues. Tumor and para‑tumor tissues were 
obtained from GC and CRC patients who underwent surgical 
tumor resection at the Fourth General Surgery Division, 
Shandong Cancer Hospital (Jinan, China) between February 
2012 and August 2012. Tumor tissues were pathologically 
diagnosed as GC or CRC, and para‑tumor tissues were 
confirmed to be non‑cancerous by experienced pathologists. 
The inclusion criteria included: i) Preoperative pathological 
biopsy and postoperative histopathology confirmed the diag-
nosis of GIC; ii) patients without other diagnosed tumors or 
diseases; and iii) patients or their families all provided signed 
informed consent. The exclusion criteria included: ii) Patients 
with incomplete clinical data available; ii) patients diagnosed 
with other types of tumors and diseases; and iii)  patients 
and their families who refused to provide informed consent. 
Patient demographics and clinical characteristics are listed 
in Table  I. Among the participants, there were 18 patients 
with GC, 21 patients with colon cancers (CC) and 30 patients 
with rectal cancer (RC); their average ages were 55.1, 54 and 
57.4 years, respectively. Men appeared to be over‑represented, 
accounting for 13/18 GC patients, 13/21 CC patients and 20/30 
RC patients. The majority of these patients were diagnosed with 
tumor node metastasis (TNM) stages II‑III and grades I‑III. 
The present study was approved by the Ethics Committees 
of Shandong Cancer Hospital. Written informed consent was 
obtained from all study participants.

Immunohistochemistry staining. GI tissues were fixed with 
10% formalin at 4˚C for 24 h and then paraffin‑embedded; 
sections 4‑µm‑thick were cut and immunohistochemical 
staining was performed. Tissue sections were first deparaf-
finized and rehydrated, followed by heat‑induced epitope 
retrieval at 95‑100˚C, washing with 100% Ethanol  2 for 
5 min, 90% Ethanol 1 for 5 min, 70% Ethanol 1 for 5 min and 
ddH2O 1 for 5 min, and then treated with a 10 mmol/l citrate 
buffer (pH 6.0). Next, 3% H2O2 was used to block endogenous 
peroxidase and sections were blocked with PBS containing 
10% fetal bovine serum (Gibco; Thermo Fisher Scientific, 
Inc., Waltham, MA, USA) at room temperature for 1  h. 
Then, sections were incubated with anti‑8‑hydroxyguanine 
(oxo‑G; cat. no. 4354‑MC‑050; Trevigen, Inc., Gaithersburg, 
MD, USA) and anti‑8‑oxo‑20‑deoxyguanosine glycosylase 1 
(OGG1; cat.  no.  NBP2‑52724; Novus Biologicals, LLC, 
Littleton, CO, USA) antibodies, diluted with blocking reagent 
(1:1,000), overnight at 4˚C, followed by incubation with a 
biotin‑free horseradish peroxidase‑conjugated secondary 
antibody (cat. no. pv9005; Beijing Zhongshan Golden Bridge 
Biotechnology Co., Ltd., Beijing, China); diluted with blocking 
reagent (1:1,000) for 1 h at room temperature. Visualization 
was performed with 3,3'‑diaminobenzidine. The slides 
were viewed and photographed under a fluorescent inverted 
microscope (Olympus IX71; Olympus Corporation, Tokyo, 
Japan), and positively stained cells were counted using Image 
Pro Plus 6.0 software (Media Cybernetics, Inc., Rockville, 
MD, USA).

DNA isolation, and cloning and sequencing of the mtDNA 
D‑loop. Total DNA from the tumor and para‑tumor tissues was 
isolated using a DNA extraction kit (Qiagen China Co., Ltd., 
Shanghai, China) following the manufacturer's protocol, and 
polymerase chain reaction (PCR) was performed to amplify the 
mtDNA D‑loop region using high‑fidelity Platinum Taq poly-
merase (Invitrogen; Thermo Fisher Scientific, Inc.). The primer 
pairs and PCR procedure for the D‑loop in the present study 
have been described in our previous study (6). The pGEM‑18T 
vector (Takara Biotechnology Co., Ltd., Dalian, China) was 
used to clone the PCR products, and 10‑12 randomly selected 
clones/samples were sequenced on an ABI  3730 genetic 
analyzer (Thermo Fisher Scientific, Inc.). The D‑loop nucleo-
tide sequences from each clone were analyzed and manually 
adjusted using NCBI BLAST(blast.ncbi.nlm.nih.gov/Blast.cgi) 
and free BioEdit software (version 7.1.3; Ibis Therapeutics, 
Carlsbad, CA, USA). All sequences have been submitted to 
GenBank (accession nos. KY402468‑KY403500).

Reverse transcription‑quantitative PCR (RT‑qPCR). 
The RT‑qPCR assay for mtDNA deletion quantification 
was performed using the SYBR Green (Beijing  Biomed 
Biotechnology Co., Ltd., Beijing, China)method based on the 
relative nicotinamide adenine dinucleotide hydride dehydro-
genase subunit 1 (ND1)/ND4‑quantification method as well 
as 2‑ΔΔCq as previously reported (6,8‑11), and was performed 
using the TaqMan 7900HT system (Thermo Fisher Scientific, 
Inc.). The primers used in the present study were as follows: 
Reference gene, Homo  sapiens mitochondrion complete 
genome (Gen‑Bank NC 012920); ND1 forward, 5'‑CCC​TAA​
AAC​CCG​CCA​CAT​CT‑3' and reverse, 5'‑TGG​AAT​CGA​GAG​
TGG​TAG​CGA​G‑3'; ND4 forward, 5'‑CCA​TTC​TCC​TCC​TAT​
CCC​TCA​AC‑3' and reverse, 5'‑TTT​ATA​TCA​AAT​TGG​TTT​
TGT​AGT​CTA​ACA​C‑3' (synthesized by Invitrogen; Thermo 
Fisher Scientific, Inc.). The procedures were similar to those 
described in our previous report (7,12). Briefly, 250 nM probe 
and 300 nM primer were used in the PCR reaction mix. The 
qPCR thermocycling conditions were as follows: 5 min at 
95˚C, followed by 50 cycles of 15 sec at 95˚C and 1 min at 
60˚C. qPCR reactions were performed in triplicate for each 
sample. Double‑distilled water was used as a control reaction 
and was subjected to the same conditions as the test reactions.

Sequence analysis. The sequences were analyzed as previously 
described (13‑15). Briefly, the obtained nucleotide sequences 
from each clone were assembled and error checked using the 
Vector NTI suite 7.0 ContigExpress software package (Thermo 
Fisher Scientific, Inc.). The sequences were then aligned to the 
reference sequence (Gen‑Bank NC 012920) using the Clustal W 
multiple sequence alignment program (www.ebi.ac.uk/Tools/
msa/clustalw2/), then the nucleotide mutations were identified 
and calculations were performed. Shannon entropy (www.hiv 
.lanl.gov/content/sequence/ENTROPY/entropytwo.html), as a 
measure of variation in mtDNA D‑loop sequence alignments, 
was used to determine whether there were more highly vari-
able areas in tumors when compared with the para‑tumors. 
The sequences were then aligned to the reference sequence 
using the MITOMASTER web tool in the Mitomap data-
base (www.mitomap.org/) to check for mtDNA mutations. 
Microsatellite instability (MSI), a simple repetitive sequence 
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change caused by a mismatch repair gene mutation, was also 
examined in 69 Chinese patients via alignment of sequences to 
the reference sequence.

Statistical analysis. The results are presented as the 
mean ± standard error of the mean. Statistical significance 

was determined by one‑way analysis of variance with post hoc 
correction using the Tukey's multiple comparison test. 
Nonparametric Mann‑Whitney, Chi‑square, or Fisher's exact 
tests were used to compare nonparametric data. All statistical 
analyses were performed using SPSS software (version 16.0; 
SPSS Inc., Chicago, IL, USA), and P<0.05 was considered to 
indicate a statistically significant difference.

Results

No increased mtDNA loss was observed in GIC. In the present 
study, whether mtDNA deletions occurred in GIC were 
assessed via qPCR. The ND1 gene is located in the minor arc 
of mtDNA and is rarely deleted; however, the ND4 gene is 
located at the major arc of mtDNA and is frequently deleted. 
ND1/ND4 relative qPCR was used to detect mtDNA dele-
tions via the 2‑ΔΔCq method in the present study. The results 
demonstrated that the relative amount of mtDNA copies were 
99.44% in GC tumors and 99.58% in GC para‑tumors, 99.44% 
in CC tumors and 99.35% in CC para‑tumors, and 99.32% in 
RC tumors and 99.13% in RC para‑tumors (Fig. 1). No signifi-
cant mtDNA deletions were noted in the GC, CC or RC tumor 
tissues when compared with para‑tumor tissues. Furthermore, 
the relative amount of mtDNA copies between the different 
clinical carcinoma stages were compared; however, no mtDNA 
deletions in stage III‑IV GC, CC or RC were identified (data 
not shown).

DNA oxidative damage and over‑activated DNA repair in 
GIC. Oxidative damage has been reported in the mtDNA of 
tumor cells (16). DNA oxidative damage commonly produces 
oxo‑G, and OGG1initiates base excision repair, which removes 
oxo‑G damaged DNA (17). In the present study, the expres-
sion of oxo‑G and OGG1 was determined in GIC tumor and 
para‑tumor tissues using immunohistochemistry staining, as 
described in our previous studies (7,18). No significant increases 
were observed in oxo‑G (92±1 vs. 90±2%) or OGG1 (94±1 
vs. 92±2%) expression in GC tissues when compared with 
para‑GC tissues (Fig. 2A and B). In addition, no significant 
difference in oxo‑G expression was observed between CC 
tissues  (94±1%) and para‑CC tissues  (84±4%), but OGG1 
expression was higher in CC tissues (97±1%) when compared 
with para‑CC tissues  (83±1%; Fig.  2C and  D). However, 
oxo‑G (94±4 vs. 83±1%) and OGG1 (97±1 vs. 41±7%) expres-
sion levels were increased in RC tissues when compared with 
para‑RC tissues (Fig. 2E and F). These results indicated that 
oxidative damage and over‑activated DNA repair functioning 
occurred in GIC.

Somatic mtDNA D‑loop mutations in GIC. To identify somatic 
mutations in the D‑loop of mtDNA in GIC, Shannon entropy 
was used to identify highly variant regions in the D‑loop 
of mtDNA. The results revealed that GC had two highly 
variant regions located at nucleotide position  (np) 75‑173 
and np 314‑447; CC had a highly variant region located at 
np 307‑476, which was similar to the second highly variant 
region of GC; and RC had two highly variant regions located 
at np 16069‑16177 and np 517‑576, which were significantly 
different from the locations in GC and CC (Fig. 3A). Then, 
the sequences in the mtDNA D‑loop region from tumor and 

Table  I. Demographics and clinical characteristics of the 
patients recruited to the present study.

	 Carcinoma type
	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
	 Gastric	 Colon	 Rectum
	 cancer	 cancer	 cancer
Characteristics 	 (n=18)	 (n=21)	 (n=30)

Sex (male)	 13	 13	 20
Age (years)
  Mean	 55.1	 54.0	 57.4
  Range	 40‑68	 30‑71	 34‑75
TNM stage (n)
  I	   0	   0	   4
  II	   2	 10	   9
  III	 14	   5	 14
  IV	   2	   6	   3
Grade (n)
  I	   2	   7	   5
  II	   6	 12	 20
  III	 10	   1	   5
  IV	 0	   1	   0
Type of surgery (n)
  Local resection	 10	 17	 16
  Organ resection	   8	   4	 14
  Multiorgan resection	   0	   0	   0
CEA (n ≥5 µg/l)	   5	 11	 10
CA19‑9 (n ≥37 U/ml)	   6	 10	   3
CA72‑4 (n ≥6 U/ml)	   6	 N/A	 N/A
Risk factors
  Tobacco use (n)
    Current	   7	   7	   3
    Former	   3	   2	   3
    Never	   8	 12	 24
Alcohol use (n)
  Current	   8	   4	   3
  Former	   1	   3	   1
  Never	   9	 14	 26
  Family history (n)	   1	   3	   1
  Polyps (n)	   1	   3	   1
  Inflammatory disease (n)a	   3	   2	   0
  Unhealthy diet (n)b	   1	   0	   0

aInflammatory diseases  including Crohn's disease, ulcerative colitis 
or long‑term stomach inflammation. bAs determined by the dietary 
guidelines for Chinese residents (2016) (6). N/A, not applicable.
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para‑tumor tissues from 18 GC, 21 CC and 30 RC patients 
were directly analyzed. The results demonstrated a total of 
221 mutations in 196 sequences from the tumor tissues of the 
18 patients with GC; this number was significantly higher than 
that observed in the paired para‑tumor tissues, which contained 
141 mutations in 179 sequences (P<0.05). Similarly, a high 
frequency of mutation(s) was identified in the 21 patients with 
CC (153 mutations in 155 sequences from the tumor tissues vs. 
107 mutations in 154 sequences from the para‑tumor tissues) 
and the 30 patients with RC (166 mutations in 183 sequences 
from the tumor tissues vs. 104 mutations in 168 sequences 
from the para‑tumor tissues; both P<0.05; Table II). These 
results indicated that all three types of GIC contained more 
somatic mutations than the normal para‑tumor tissues. Based 
on the delineation of the functional regions of the mtDNA 
D‑loop in previous reports (19,20), the mutation sites were 
analyzed, and it was revealed that these mutations clustered in 
the replication origin of the H‑strand (P<0.05) and conserved 
sequence block 2. Furthermore, GC and RC also possessed 
somatic mutation(s) in an unknown functional region (P<0.05; 
Fig. 3B; Table II).

More severe mtDNA D‑loop mutations are observed in 
advanced stages of GIC. It is well known that tumor staging is 
an important prognostic factor for malignant neoplasms (21). 
In the present study, the mutation rate of the mtDNA D‑loop 
region between tumors of different stages and para‑tumor 
tissues were compared. The results demonstrated that the mean 
mutation rate of the mtDNA D‑loop region was significantly 
higher in stage  III‑IV GC tissues when compared with in 
para‑tumor tissues (1.46±1.02 vs. 0.75±0.38; P<0.05); however, 
the increase in the D‑loop mutation rate was not significant 
in stage I‑II GC (1.04±0.22 vs. 0.84±0.05; P>0.05; Fig. 4A). 
Similar analysis revealed that early and advanced stages of 
CC and RC had a significantly higher D‑loop mutation rate 
when compared with para‑tumors: 1.01±0.43 vs. 0.55±0.16 

in stage I‑II CC; 1.62±1.39 vs. 0.66±0.41 in stage III‑IV CC; 
0.94±0.39 vs. 0.72±0.32 stage  I‑II RC; and 1.39±1.56 vs. 
0.73±0.37 stage III‑IV RC (all P<0.05). The mutation rates of 
stage III‑IV tumors were greater when compared with those of 
stage I‑II tumors (Fig. 4B and C). These results indicated that 
the later the GC stage, the more severe the mtDNA D‑loop 
mutations.

Homoplasmic mutations of the mtDNA D‑loop in GIC. 
Certain studies have indicated that mtDNA mutations in the 
coding regions of CRC are primarily transitions; A‑T and G‑C 
are common in the D‑loop region (22). In the present study, 
the mutation types in the mtDNA D‑loop in GIC were also 
analyzed. The results revealed that of the single‑base muta-
tions, transitions accounted for 83.86% in GC, 96.74% in CC 
and 93.9% in RC. The T‑C base substitution was the most 
common (44.11% in GC, 52.29% in CC and 45.12% in RC), 
followed by C‑T (20.10% in GC, 22.88% in CC and 18.29% 
in RC); and the G‑A transition was relatively rare (2.94% in 
GC, 5.23% in CC and 2.44% in RC; Table III). These results 
suggested that the mutations of the mtDNA D‑loop were 
primarily homoplasmic in GIC and were often transitions at 
pyrimidine sites.

Mitochondrial MSI (mtMSI) in GIC. mtMSI has been reported 
to frequently occur in GC and CRC (23,24). In the present 
study, the mtMSI in 69  Chinese  patients with GIC were 
analyzed. It was revealed that polynucleotide stretches were 
common and resulted from a 1‑3 cytosine insertion or cytosine 
deletion. Among them, the percentage of sequences containing 
a continuous 10‑cytosine stretch was 11.7% in GC, 13.8% 
in CC 11.7 and 20.9% in RC. The percentage of sequences 
containing a continuous 7‑cytosine stretch was 40.3% in GC, 
68.6% in CC 11.7 and 47% in RC (Table IV). Furthermore, 
repeated AC stretches were observed in GC, which were 
caused by a 1‑2 CA insertion or CA deletion, and the total 

Figure 1. No increases in mtDNA loss were observed in gastrointestinal cancer. The calculated percentage of mtDNA copies are presented for tumor and 
para‑tissues from patients with gastric, colon and rectum cancer. mtDNA, mitochondrial DNA.
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Figure 2. DNA oxidative damage and over‑activated DNA repair in gastrointestinal cancer: (A and B) Gastric cancer, (C and D) colon cancer and (E and F) 
rectum cancer. (A, C and E) Representative immunohistochemical staining demonstrating the morphology of tissues (magnification, x20). (B, D and F) Graphs 
comparing the number of immunohistochemically‑positive cells between the tumor and para‑tumor groups. P<0.05, as indicated. oxo‑G, 8‑hydroxyguanine; 
OGG1, 8‑oxo‑20‑deoxyguanosine glycosylase 1.

Figure 3. Somatic mitochondrial DNA D‑loop mutations in gastrointestinal cancer. (A) Difference in Shannon entropy between tumor and para‑tumor tissues 
in gastrointestinal cancer. Residue‑specific entropy was computed and significant sites (P<0.05) are presented in red on the plots. (B) A diagrammatic sketch 
presenting the mtDNA D‑loop mutations clustered in the replication OH1, the CSB2 and the unknown functional regions. OH1, origin of the H‑strand; CSB2, 
conserved sequence block 2.
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Figure 4. More severe mitochondrial DNA D‑loop mutations are present in the advanced stages of gastrointestinal cancer: (A) Gastric, (B) colon and (C) rectum 
cancer. Stages I‑II were defined as early cancer stages and stages III‑IV as advanced cancer stages. P<0.05, as indicated.

Table II. Distribution of mtDNA D‑loop mutations in gastrointestinal cancer.

	 Gastric cancer	 Colon cancer	 Rectum cancer
	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑  
	 Tumor	 Para‑tumor		  Tumor	 Para‑tumor		  Tumor	 Para‑tumor
Mitomap	 (na=196)	 (n=179)	 P‑value	 (n=153)	 (n=154)	 P‑value	 (n=183)	 (n=168)	 P‑value

OH1	 135	  87	 <0.05	   68	   40	 <0.05	   85	   48	 <0.05
OH2	‑	‑	‑	      16	   12	 >0.05	   18	   12	 >0.05
CSB1	     1	    1	‑	     6	     4	‑	‑	‑	‑   
TFX	‑	‑	‑	        3	     0	‑	‑	‑	‑   
TFY	‑	‑	‑	        1	     0	‑	‑	‑	‑   
CSB2	   17	    8	 >0.05	   17	   16	 >0.05	   16	   11	 >0.05
HPR	‑	‑	‑	        1	     1	‑	‑	‑	‑   
CSB3	‑	‑	‑	‑	‑	‑	‑	‑	‑        
MT4H	‑	‑	‑	‑	‑	‑	‑	‑	‑        
MT3H	     1	    0	‑	    15	   11	 >0.05	‑	‑	‑  
LSP	‑	‑	‑	        1	     0	‑	‑	‑	‑   
TFL	‑	‑	‑	‑	‑	‑	‑	‑	‑        
TFH	     9	    7	‑	‑	‑	‑	         3	     0	‑
HSP1	‑	‑	‑	‑	‑	‑	‑	‑	‑        
TAS	    7	    6	‑	      1	     1	‑	‑	‑	‑   
UNKNOW	   51	  32	 <0.05	   25	   22	 >0.05	   44	   33	 <0.05
Sum	 221	 141	 <0.05	 154	 107	 <0.05	 166	 104	 <0.05

The data were statistically analyzed using a nonparametric paired Chi‑square test. na refers to the sequence number. The value in the table 
equals the base mutation number. OH, replication origin of H‑strand; CSB, conserved sequence block; LSP, L‑strand promoter; mt‑/mtDNA, 
mitochondrial DNA; TF, mtTF1 binding site; TFY, mtTF1 binding site; HPR, Replication primer; MT4H, mt4 H‑strand control element; MT3H, 
mt3 H‑strand control element; TFL, mtTF1 binding site; TFH, mtTF1 binding site; HSP1, Major H‑strand promoter; TAS, Termination‑associated 
sequence; UNKNOW, unknown functional area.
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percentage of this sequence was 37.2%  (Table  IV). The 
formation of the polynucleotide stretch is presented in Fig. 5. 
These results suggested that mtMSI occurs in Chinese patients 
with GIC.

Discussion

It is thought that the inactivation of mitochondrial energy 
metabolism does not occur in cancer cells with mutations in 
mitochondrial genes; however, the mitochondrial bioener-
getic and biosynthetic state may be altered through a series 
of modulations of signal transduction pathways between the 
nucleus and mitochondria (25,26). Although certain studies 

do not support the idea of D‑loop alterations of the mtDNA 
genome and their carcinogenic role in CRC (27,28), increased 
mtDNA mutations, deletions and even mitochondrial dysfunc-
tion have been identified in GIC (29‑33), and even in certain 
precancerous lesions, including ulcerative colitis lesions 
and adenomatous polyps (34). Mitochondrial dysfunction is 
associated with tumor development and progression  (35). 
Various mtDNA mutations have been observed to modify 
tumor progression depending on the level of respiratory 
complex I (36), and defective mitochondrial respiration may 
be restored and tumor‑forming ability regained via mitochon-
drial acquisition (37). In GC, the mtDNA repair system does 
not appear to be disrupted (38). The present study supports the 

Table IV. Mitochondrial microsatellite instability in gastrointestinal cancer.

	 CCCCCTCCCC 	  	 CACACACA
	 (16184‑16193a,	 CCCCCCC	 CA (515‑524 
	 T→C,(C)10b) (%)	 (303‑309, (C)7) (%)	 (CA) 5) (%)
	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑  
	 Gastric	 Colon	 Rectum		  Gastric	 Colon	 Rectum		  Gastric
Type	 cancer	 cancer	 cancer	 Type	 cancer	 cancer	 cancer	 Type	 cancer

C1 insert	 7.1	 7.2	 7.7	 C1 insert	 34.7	 45.1	 35.0	 CA1 insert	 4.1
C2 insert	 3.6	 3.9	 4.4	 C2 insert	 5.6	 15.0	 10.9	 CA2 insert	 1.5
C3 insert	 1.0	 2.0	 2.2	 C3 insert	 0	 5.9	 1.1	 CA1 deletion	 31.6
C1 deletion	 0	 0.7	 6.6	 C3 deletion	 0	 2.6	   0	‑	‑ 
Sum	 11.7	 13.8	 20.9	 Sum	 40.3	 68.6	 47	 Sum	 37.2

aRefers to the mutation site; bRefers to the repeat base number.

Table III. Subtypes of single base mutation in gastrointestinal cancer.

	 Gastric cancer	 Colon  cancer	 Rectum  cancer
	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑  
Mutation subtype	 Sites	 Tumor	 PCT (%)	 Sites	 Tumor	 PCT (%)	 Sites	 Tumor	 PCT (%)

Transition
  A‑G	 12	 34	 16.67	 6	 25	 16.34	 6	 46	 28.05
  G‑A	 4	 6	 2.94	 6	 8	 5.23	 3	 4	 2.44
  C‑T	 14	 41	 20.10	 10	 35	 22.88	 8	 30	 18.29
  T‑C	 18	 90	 44.11	 18	 80	 52.29	 13	 74	 45.12
  Sum			   83.86			   96.74			   93.9
Transversion
  A‑C	 2	 11	 5.39	 1	 4	 2.61	 1	 8	 4.88
  A‑T	 1	 1	 0.49	 0	 0	 0	 0	 0	 N/A
  C‑A	 0	 0	 0	 1	 1	 0.65	 1	 1	 0.61
  C‑G	 0	 0	 0	 0	 0	 0	 1	 1	 0.61
  G‑C	 1	 1	 0.49	 0	 0	 0	 0	 0	 N/A
  T‑G	 1	 20	 9.80	 0	 0	 0	 0	 0	 N/A
  Sum			   16.14			   3.26			   6.1

Where ‘Sites’ denotes the number of mutation sites; ‘Tumor’ denotes the absolute counts of base mutations in a tumor; and ‘PCT (%)’ denotes 
the percentage of base mutations in tumors. N/A, not applicable; PCT, percentage.
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Figure 5. Formation of polynucleotide stretches. (A and B) The formation of polynucleotide C stretches.
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occurrence of mtDNA D‑loop mutations, but does not provide 
evidence of mtDNA deletions in Chinese patients with GIC; 
more severe mtDNA D‑loop mutations may be identified in the 
advanced stages of GIC.

A previous study focused on the location of the 
tumorigenic mtDNA D‑loop mutations, and identified carcino-
genesis‑specific nucleoside sites and poly‑C variations (39). In 
addition, one study indicated that the np 16189 T‑C transition 
of the mtDNA D‑loop may contribute to polyC instability in 
GC (19). Furthermore, another previous study reported that 
the minor haplotype of nucleotide 16290T and the frequent 
haplotype of nucleotide 16298T in the hypervariable segment 
1 region were associated with a high survival rate of CRC, and 
the nucleotide site of 16290 was an independent predictor of 
CRC (40). However, a controversial opinion is that site‑specific 
nucleotide mutations may result from mtDNA heterogeneity, 
and may not contribute to carcinogenesis and/or tumor 
progression (41). Thus, single nucleotide polymorphisms in the 
D‑loop of mtDNA have been reported to be associated with 
an increased risk of GC and CC, including the frequent alleles 
of 73G/A, 146T/C, 195T/C, 324C/G, 16261C/T and 16304T/C; 
additionally, the majority of mtDNA mutations are transi-
tions (42‑44). In the present study, the T‑C transition was the 
most common and clustered in specific areas in GIC; poly‑C 
variations were evident in GIC.

It has been reported that mtMSI is a frequent occurrence in 
CRC (45), and mtDNA D‑loop mutations and mtMSI appear 
to be associated with reactive oxygen species, apoptosis and 

proliferation in GC (46). To the best of our knowledge, no 
association has been identified between mtDNA mutations 
and mtMSI status, and no mtMSI‑positive GC cases have 
exhibited large deletions in mtDNA (44). Furthermore, mtMSI 
appears to be particularly frequent at the D310 locus; however, 
the high prevalence of mtMSI was not associated with the 
prognosis of patients with CRC (23,47). Notably, a previous 
study reported that stromal mtMSI may have possibly served 
an independent role in the pathogenesis of CC (48). In the 
present study, in addition to the poly‑C stretch, a CA repeat 
sequence that was involved in GC‑associated mtMSI may have 
been identified in GC.
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