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Abstract. miRNA-gene axes have been reported to serve an 
important role in the carcinogenesis of pancreatic cancer (PC). 
The aim of the present study was to systematically identity 
the microRNA signature and hub molecules, as well as hub 
miRNA-gene axes, and to explore the potential biomarkers 
and mechanisms associated with the carcinogenesis of PC. 
Eleven microRNA profile datasets were obtained from the 
National Center for Biotechnology Information (NCBI) Gene 
Expression Omnibus (GEO) and ArrayExpress databases, 
and a meta-analysis was performed to identify the differen-
tially expressed miRNAs (DEMs) between tumor tissue and 
normal tissue. Subsequently, a diagnostic regression model 
was constructed to identify PC based on The Cancer Genome 
Atlas (TCGA) miRNA sequence data by using the least 
absolute shrinkage and selection operator (LASSO) method. 
In addition, GSE41368 was downloaded, and a weighted gene 
co-expression network analysis (WGCNA) was performed 
to obtain the gene module associated with carcinogenesis by 
using the TCGAbiolinks and WGCNA packages, respectively. 
Finally, miRNA-gene networks were constructed and visual-
ized using Cytoscape software, followed by Gene Ontology 

(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
analyses based on the Database for Annotation, Visualization, 
and Integrated Discovery (DAVID). A total of 14 DEMs were 
identified, and a 5‑microRNA‑based score generated by the 
LASSO regression model provided a high accuracy for iden-
tifying PC [area under the curve (AUC)=0.918]. In addition, 
44 miRNA-mRNA interactions were constructed, and 4 hub 
genes were screened on the basis of the above bioinformatic 
tools and databases. Furthermore, 14 biological process (BP) 
functions and 6 KEGG pathways were identified according 
to gene set enrichment analysis (GSEA). In summary, the 
present study applied integrated bioinformatics approaches 
to generate a holistic view of PC, thereby providing a basis 
for further clinical application of the 5‑miRNA signature 
and the identified hub molecules, as well as the miRNA‑gene 
axes, which could serve as diagnostic markers and potential 
treatment targets.

Introduction

Pancreatic cancer (PC) is the fourth leading cause of cancer 
mortality, with a 5‑year survival rate of <5% (1); and even 
for patients who have undergone radical surgery, the 5‑year 
survival rate is a dismal 15‑23% (2), with a rate of recurrence 
within 1 year up to 54% (3). Therefore, an exploration of the 
underlying mechanisms and identification of novel prognostic 
markers in order to develop new therapeutic strategies for PC 
are urgently required.

MicroRNAs (miRNAs), a class of short non-coding RNA 
molecules that range in size from 19 to 25 nucleotides, have 
been proposed as promising biomarkers of early cancer detec-
tion and as accurate prognosis indicators, as well as targets for 
more efficient treatment (4,5). miRNAs have important roles in 
regulating the translation of numerous genes and the degrada-
tion of mRNAs through base pairing to partly complementary 
sites, predominantly in the 3'-untranslated region (UTR) (6,7). 
Numerous studies have demonstrated that miRNAs serve 
important roles in the regulation of tumor biology (8-10). 
Model biomarkers should be easily detectable and correlate 
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closely with the clinical outcome, and miRNAs are candidates 
that may match these criteria.

High-throughput technologies have been employed to 
identify differences in miRNA and mRNA expression levels 
between normal and cancerous tissues, and they are increas-
ingly valued as promising tools in medical oncology with a 
range of clinical applications, i.e., from molecular diagnosis 
to the molecular classification of cancers, from patient strati-
fication to prognosis prediction, and from novel drug target 
discovery to tumor response prediction (11-13). Numerous 
expression profiling studies on PC carcinogenesis have been 
performed during the last decade using microarray technology, 
which has revealed hundreds of differentially expressed genes 
(DEGs) and/or differentially expressed miRNAs (DEMs) to 
be involved in different pathways and/or biological processes 
(BPs). Given that independent comparative analyses of the 
DEGs and DEMs have revealed only a relatively limited reli-
ability for discriminating cancerous from normal tissue (14), 
it is therefore necessary to conduct meta-analyses to obtain 
more convincing results. To meet this aim, in the present 
study DEMs were screened and applied in order to identify 
a 5‑microRNA signature that could be used as a biomarker 
for PC in The Cancer Genome Atlas (TCGA)-pancreatic 
adenocarcinoma (PAAD) miRNA sequence datasets 
using least absolute shrinkage and selection operator 
(LASSO) (15) regression analysis. Furthermore, weighted 
gene co-expression network analysis (WGCNA) (16), rather 
than significance analysis of microarrays (SAM), was used to 
identify tumor-associated genes. Finally, associations between 
DEMs and tumor-associated genes were constructed using the 
Search Tool for the Retrieval of Interacting Genes/Proteins 
(STRING) (17) database, and visualized using the Cytoscape 
open source bioinformatics software platform (18).

Materials and methods

Search strategy and data collection, preprocessing, normaliza‑
tion and integrated analysis. A thorough search of the available 
literature was performed in the Gene Expression Omnibus 
(GEO) (https://www.ncbi.nlm.nih.gov/gds) and ArrayExpress 
electronic databases (https://www.ebi.ac.uk/arrayexpress/) 
between January 2007 and October 2017 using the following 
terms: ‘[(microRNA OR miRs OR miR OR miRNA) AND 
(pancreatic OR pancreas)] AND (tumor OR carcinoma OR 
neoplasm OR cancer)’. Bai and Shuai independently carried 
out this procedure, and any discrepancies were resolved by 
mutual discussion.

The inclusion criteria were as follows: i) Original experi-
mental studies that screened for different miRNAs between 
tumor tissue and normal tissue/adjacent non-tumor tissue in 
humans; and ii) each dataset contained at least 5 PC samples 
and 5 normal samples. 

The following were the exclusion criteria: i) Duplicated 
or overlapping studies/datasets; ii) single sample studies 
and certain platforms with various datasets; iii) labora-
tory studies/datasets on cell lines, or at the animal level; 
iv) non‑microarray studies/datasets; and v) sequence datasets.

All datasets were extracted using the ArrayExpress and 
GEOquery packages (19), normalized individually on the 
base-2 logarithm using the Robust Multi-Array Average and 

Linear Models for Microarray (LIMMA) algorithm (20) pack-
ages, and annotated by converting different probe IDs into 
gene IDs. All miRNA names were standardized according to 
miRBase version 17 via miRBase Tracker (21). Any probes 
that did not map to a gene ID were removed as viral miRNAs 
or non-miRNA probes. Subsequently, the MetaDE package 
(https://cran.r-project.org/src/contrib/Archive/MetaDE/) was 
applied to integrate the above 11 datasets (data not shown), 
and filter thresholds were set at 10%, with nPermutation (the 
number of random permutations to conduct) set at 300. A 
P‑value and false discovery rate (FDR) of the DEMs <0.01 
were considered to indicate statistically significant values.

Validation of DEMs by reverse transcription‑quantitative 
polymerase chain reaction (RT‑qPCR). To validate the results 
of the integrated bioinformatics analysis, 25 pairs of fresh PC 
and adjacent non-cancerous pancreatic tissues were collected 
and examined by experienced pathologists at the Union 
Hospital, Wuhan between April 1 and July 1, 2018. Written 
informed consent was obtained from all patients or their guard-
ians. The tissue samples were frozen immediately and stored in 
liquid nitrogen following their surgical resection. Total RNA 
was extracted using the Qiagen RNeasy® kit (Qiagen GmbH, 
Hilden, Germany) and subsequently reverse-transcribed into 
cDNA using an oligo-dT primer and SuperScript Ⅱ reverse 
transcriptase (Invitrogen®; Thermo Fisher Scientific, Inc., 
Waltham, MA, USA). Levels of the miRNAs were quantified 
by RT-qPCR using SYBR® Premix Ex Taq™ reagent (Takara 
Bio, Inc., Otsu, Japan) and the ABI7500 real‑time PCR 
system (Applied Biosystems®; Thermo Fisher Scientific, Inc.): 
Denaturation at 94˚C for 5 min, followed by 36 cycles of dena-
turation at 94˚C for 35 sec, annealing at 56˚C for 30 sec, and 
then extension at 72˚C for 35 sec. Relative expression levels 
were normalized against U6 RNA, and calculated using the 
2-∆∆Cq method (22). 

Integrated‑signature miRNA analysis of TCGA. In order 
that the screened DEMs may be used to predict the carci-
nogenesis of PC, the predicted performance of the DEMs 
in classifying non-tumor and tumor tissues was estimated 
based on the TCGA-PAAD miRNA sequence datasets using 
receiver operating characteristic (ROC) curves. For selection 
of the significant combined DEMs, the TCGA‑PAAD miRNA 
sequence expression profile data were assessed by applying 
a LASSO penalized regression analysis method with 10-fold 
cross-validation to predict tumor and non-tumor tissue. The 
best regression model was generated when the minimum Cp 
value was chosen. A risk score was generated using the sum of 
the microRNA expression values weighted by the coefficients 
from the LASSO regression. Subsequently, the associations 
between the risk score and the clinical features were esti-
mated. LASSO regression analysis was performed using a 
‘lars’ package based on R software (15). TCGA‑PAAD matrix 
data were extracted using the TCGAbiolinks (23) package. 

Weighted gene co‑expression network construction and 
identification of the PC carcinogenesis module. It is necessary 
to identify the significant coding genes associated with carci-
nogenesis of PC prior to the construction of miRNA-mRNA 
networks. The GSE41368 dataset was therefore selected to 
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construct the scale-free gene co-expression networks with the 
WGCNA software package. The expression matrix, containing 
20,284 genes and 18 samples, was extracted and normalized 
using the GEOquery and LIMMA packages, as described 
above. Subsequently, WGCNA was conducted according to 
the process proposed by Langfelder et al (16). 

The dynamic decision-making tree, node-splitting method 
and cluster analysis of squared Euclidean distance were used 
to screen for module eigengenes involved in these clinical 
traits, particularly those associated with the progression and 
carcinogenesis of PC. Spearman's correlation analysis was 
performed to confirm the object module, and the module that 
had the highest Spearman's correlation coefficient was defined 
as the carcinogenesis module.

Gene set enrichment analysis (GSEA). To investigate the func-
tions of these gene signatures, Gene Ontology (GO) enrichment 
analysis based on the GO database was performed, and further 
assessment of the signaling pathways involved was carried out 
according to an analysis based on the Kyoto Encyclopedia 
of Genes and Genomes (KEGG) database. Genes from the 
carcinogenesis module were applied to the Database for 
Annotation, Visualization, and Integrated Discovery (DAVID) 
in order to investigate the biochemical processes and pathways 
that may be involved in the occurrence and development of 
the carcinogenesis of PC. Significant categories were identi-
fied according to the P‑value: The threshold of P<0.05 and 
a minimum number of genes for the corresponding term >2 
were considered significant for a category.

miRNA‑mRNA network analysis and protein‑protein interac‑
tion (PPI) network and sub‑network analysis. Since DEMs 
and significant mRNAs involved in the carcinogenesis of 
PC were identified in the present study, and considering that 
miRNAs seldom accomplish their functions independently, it 
was important to identify the interactions of these miRNAs 

and proteins by researching larger functional groups of 
miRNAs and proteins (24). The interactions between DEMs 
and their predicted screened targets were visualized using the 
Cytoscape open source bioinformatics software platform (18). 
miRWalk2.0 (25) was utilized to predict the target genes of 
DEMs, and only the predicted targets obtained simultaneously 
from miRWalk2.0, TargetScan6.2 (26), miRanda (27) and 
RNA22 (28) were selected for subsequent PPI analysis. The 
STRING database was used to annotate functional interactions 
between genes of the carcinogenesis module, and visualiza-
tion of the PPI network was also conducted using Cytoscape, 
version 3.4.0, based on annotation information. A node degree 
>4 was selected as the threshold.

Results

Integrated analysis of the 11 miRNA expression datasets 
identified 14 DEMs, 11 of which give rise to statistical 
significance in the validation test. In total, 64,376 records 
were identified from the GEO and ArrayExpress databases, 
respectively. According to the selection criteria, the majority 
of the preliminarily included entries were eliminated on 
account of duplicated data, inappropriate article type or 
inadequate information. Finally, a total of 11 observational 
studies consisting of 719 cases were retained for subsequent 
pooling calculation (E‑TABM‑664, E‑MTAB‑753, GSE24279, 
GSE31568, GSE32678, GSE34052, GSE41369, GSE43796, 
GSE53325, GSE59856, and GSE60978) (data not shown). The 
study sample sizes ranged from 11 to 250. All the eligible 
microarray datasets were shown to satisfy the MIAME 
(or minimum information about a microarray experiment) 
principle (29). The selection workflow of all eligible studies in 
the present meta-analysis is shown in Fig. 1.

In the present meta-analysis, Fisher's method summarizing 
the -log(P-value) across studies was applied to merge the 
datasets, and 300 permutations were conducted to eliminate 

Figure 1. Flow chart of the process for selecting eligible studies in the meta-analysis.
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any significant influence of the large number of samples; 
furthermore, small expression intensities and small variation 
(i.e., non‑informative) genes were filtered according to the 
mean and standard deviation (10%). After having combined 
the effect size, a total of 14 DEMs were identified (Table I and 
Fig. 2A and B).

The 14 most deregulated DEMs from the integrated 
microarray meta-analysis were analyzed by RT-qPCR. Of 
the 14 DEMs, 11 were revealed to be differentially expressed 
in PC compared with the para-tumor controls (hsa-miR-107, 
hsa‑miR‑375, hsa‑miR‑484, hsa‑miR‑324‑5p, hsa‑miR‑217, 
hsa-miR-429, hsa-miR-498, hsa-miR-409-3p, hsa-miR-326, 
hsa-miR-346, and hsa-miR-422a) (data not shown). 

Construction of the miRNA signature to predict PC. The 
TCGA-PAAD miRNA sequence data were downloaded, and 
the reads per kilobase per million mapped reads (RPKM) 
expression matrix was extracted. The expression data of 8 out 
of 11 of the above DEMs were selected for the following regres-
sion analysis, after the removal of miRNAs whose expression 
level equaled 0 RPKM in any sample. Upon applying the 
LASSO regression formula (Fig. 2C), the performance of the 
5 identified miRNAs in the PC classification was estimated 
using ROC curve analysis. The combined miRNA panel using 
the LASSO regression model provided a high classification 
accuracy of PC [area under the curve (AUC)=0.918] (Fig. 2D); 
risk score=8.34e-6 x hsa.mir.429+6.69e-9 x hsa.mir.375‑9.97e-7 

x hsa.mir.217+7.43e‑5 x hsa.mir.107-4.68e-4 x hsa.mir.484. hsa.
mir.n=log2 (expression of hsa.mir.n).

Clinical features of patients associated with the risk score. 
The risk score was calculated based on the above formula 
for each of the observations, and the ones whose risk scores 
were greater than the median were assigned to the high-risk 
group, whereas the others were assigned to the low-risk group. 

The association between the clinical characteristics of the 
patients and the risk score is shown in Table II. In the present 
study, a higher risk score was associated with male gender 
(P=0.00067) and dead vital status (P=0.022), which was 
in agreement with the 5‑miRNA signature diagnosis of PC; 
however, age, history of alcohol consumption, anatomic site, 
diabetes history, pancreatitis history and race did not reveal 
any significance with the risk score.

Co‑expression network construction and identification of 
carcinogenesis modules. A total of 20,284 genes from the 
GSE41368 dataset were included to construct co-expression 
networks via WGCNA, after elimination of genes using the 
method described above in the Materials and methods section. 
Following selection of the desired samples, the connections 
between the genes in the gene network were shown to be 
in line with a scale-free network distribution, where the 
soft-threshold power β was set at 18 (Fig. 3A). The dynamic 
tree cut method identified modules with similar expression 
profiles. After the highly similar modules had been merged, a 

Table I. Integrated analysis of 11 miRNA expression datasets 
that identified 14 significantly deregulated miRNAs.

miRNA Fisher P-value FDR

hsa-miR-107 204.9924 1.00E-20 4.40E-20
hsa‑miR‑375 243.8859 1.00E‑20 4.40E‑20
hsa‑miR‑484 85.89779 1.00E‑20 4.40E‑20
hsa‑miR‑324‑5p 153.3753 1.00E‑20 4.40E‑20
hsa‑miR‑217 154.1077 1.00E‑20 4.40E‑20
hsa‑miR‑429 60.76476 0.000303 0.000952
hsa‑miR‑184 59.9386 0.000303 0.000952
hsa‑miR‑422a 55.78436 0.000568 0.001376
hsa‑miR‑498 54.68656 0.000606 0.001481
hsa‑miR‑409‑3p 54.95649 0.000606 0.001481
hsa‑miR‑326 53.68486 0.000758 0.001667
hsa‑miR‑206 50.65474 0.002424 0.004848
hsa‑miR‑198 45.70564 0.008939 0.016389
hsa‑miR‑346 40.49565 0.02803 0.047436

miRNA, microRNA; FDR, false discovery rate.

Table II. Relationship of the miRNA risk score to clinical 
parameters in the pancreatic cancer patients.

 miRNA
 score
 ---------------------
Characteristics Total High Low P-value

Age (years) 178   0.098
  ≥65 (median)  42 54
  <65  47 35 
History of alcohol consumption 166   0.23
  Yes  54 48 
  No  27 37 
Anatomic site 178   0.717
  Head of pancreas  71 68 
  Non-head  18 21 
Race 178   0.82
  White  77 79 
  Non-white  12 10 
Sex 177   0.00067
  Male  60 37 
  Female  28 52 
History of diabetes  146   1
  Yes  18 19 
  No  55 54 
History of pancreatitis  142   1
  Yes  7 7 
  No  65 63 
Vital status 177   0.022
  Alive  51 67 
  Dead  37 22

miRNA, microRNA.
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Figure 2. Meta‑analysis of the DEMs associated with PC, and the 5‑miRNA signature predicts the carcinogenesis of PC. (A) A line chart to plot the number 
of 14 DEMs against FDR obtained from the meta-analysis by using Fisher's method of combining P-values. (B) A heatmap revealing differential expression 
profiles of 14 miRNAs detected at a given FDR threshold from the meta‑analysis. (C) LASSO coefficient shrinkage analysis was performed to further estimate 
and select DEMs. Each monotone decreasing curve represents a coefficient of each miRNA. The vertical lines showed whether the coefficients of miRNAs 
were reduced to zero. (D) The receiver operating characteristic curve for prediction of PC carcinogenesis based on the 5‑miRNA risk score level, using 
corresponding normal tissue as a control (AUC=0.918). DEMs, differentially expressed microRNAs; PC, pancreatic cancer; miRNA, microRNA; FDR, false 
discovery rate; LASSO, least absolute shrinkage and selection operator; AUC, area under the curve.

Figure 3. Construction of the weighted gene co-expression network analysis. (A) Scale-free topology criterion of the GSE41368 co-expression network, 
and an SFT plot for choosing the power β for the unsigned weighted correlation network. (B) The hierarchical clustering dendrograms (trees) used for the 
module identification in the i‑th block. (C) Module‑trait associations for PC carcinogenesis. The numbers represent Pearson's correlation between clinical 
traits and the modules. The P-values have been inserted into parentheses, and the color bar shows the correlative strength range from 1 (red) to -1 (green). 
PC, pancreatic cancer.
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total of 18 co‑expressed modules were identified, ranging from 
148 to 7,255 genes, whereas the ‘gray’ module was reserved for 
genes that were not co-expressed (Fig. 3B).

In this type of analysis, it is important to identify modules 
that have the most significant associations with carcinogenesis 
of PC. In the present study, the turquoise (189 genes) module 
yielded the most significant negative Pearson's correlation 
coefficient (PCC) with the PC carcinogenesis (r=‑0.97; 
P=1e-07) (Fig. 3C).

GO and KEGG analysis. A total of 189 genes from the 
turquoise module were screened for GSEA. According to 
the GO analysis, 14 significant enrichments of these top gene 
signatures were identified, which belonged to the GO BP cate-
gory. The most significant terms of BP were ‘water transport’, 
‘oxidation-reduction process’, and ‘one-carbon metabolic 
process’. All the GO terms of BP based on the P-value are 
shown in Fig. 4A.

Pathway analysis based on the KEGG database revealed 
that these genes were significantly enriched in 6 terms (Fig. 4B). 
The most significant terms of KEGG were ‘peroxisome’, 
‘biosynthesis of amino acids’, and ‘neuroactive ligand-receptor 
interaction’.

miRNA‑mRNA and PPI network analysis. A total of 
4,766 genes were predicted by using the above 4 algorithms 
based on the 14 screened DEMs. A total of 28 genes were held 
in common between those predicted targets and 189 screened 
genes (Fig. 4C). Subsequently, 14 DEMs and 28 predicted 

screened targets containing 44 interactions were used to 
construct miRNA-mRNA networks (Fig. 4D), indicating that 
those miRNA-mRNA interactions may exert key roles in the 
carcinogenesis of PC. 

The STRING tool was used to obtain the PPI associa-
tions of the 189 screened genes, and only interactions with a 
combined score >0.4 were selected to construct networks 
(Fig. 4E). According to the annotation information from 
the STRING database, 4 hub genes were identified: ACTL9 
(actin-like 9), ECI2 (enoyl-CoA Δ-isomerase 2), GALR3 
(galanin receptor 3), and LPAR3 (lysophosphatidic acid 
receptor 3).

Discussion

PC is a deadly type of cancer, and its occurrence and mortality 
have been rising worldwide in recent years. The etiology of 
PC is unclear due to conflicting evidence, although smoking, 
obesity and over-consumption of fatty foods are considered to be 
changeable risk factors (30,31); other unchangeable risk factors 
include chronic pancreatitis and PC family history (32,33). 
Understanding the molecular mechanism of PC is of critical 
importance for diagnosis and treatment. Numerous studies 
have defined, in part, the microRNA signatures that distin-
guish patients with PC from normal patients (34), and many 
microRNAs fulfill their role in PC carcinogenesis by binding 
to the 3'‑UTR of mRNA sequences (35). In the present study, 
11 miRNA microarray datasets were integrated to screen for 
significant DEMs, and the GSE41368 expression matrix was 

Figure 4. Enrichment analysis of genes from the turquoise module and network visualization. (A) The 14 GO enrichments for 189 module genes are shown. 
The original significance values were transformed to ‘‑log(P‑value)’ in order to plot the curve. (B) The 6 KEGG enrichments for 189 module genes are shown. 
(C) A Venn diagram illustrating the overlap between the predicted genes of 14 miRNA and module genes. (D) miRNA-mRNA network visualization, where 
the green and blue nodes represent the miRNAs and their targets, respectively. (E) PPI network visualization. The bigger nodes represent the hub genes. 
GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; miRNA, microRNA.
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subjected to WGCNA in parallel to identify hub modules 
associated with carcinogenesis. Subsequently, miRNA-mRNA 
and PPI interactions were constructed to clarify the possible 
mechanism of PC carcinogenesis, thereby indicating a possible 
direction for future clinical research.

High-throughput microarray technology has become a 
popular tool for performing large-scale comparative analyses 
of gene expression profiles. With the accumulation of bioin-
formatic data, combining information from numerous similar, 
already existing studies can improve the reliability and gener-
alizability of results. However, direct combination among 
heterogeneous datasets is not possible due to the complicated 
experimental variables embedded in array experiments. 
Therefore, it is necessary to choose a suitable meta-analysis 
technique in order to reach convincing conclusions. In the 
present study, Fisher's inverse Chi-square method based on 
the MetaDE package was applied to combine the P-values 
from independent datasets, which is regarded as the most 
comprehensive approach for meta-analysis of two-class gene 
expression microarrays (29). As a result, 14 significant DEMs 
were identified on the condition that P<0.01 and FDR<0.01. 
Subsequently, clinical samples were collected to perform 
validation tests, whereupon the majority (11 out of 14) of the 
DEMs yielded statistically significant results, a finding that 
was in conformity with our expectation that more reliable 
results tend to be obtained from integrated meta-analyses.

Increasing evidence has shown that certain miRNAs 
have critical roles in PC development, and may there-
fore have potential clinical value in diagnosis, treatment 
and prognosis evaluation for PC carcinogenesis (36,37). 
Therefore, TCGA-PAAD miRNA datasets were applied 
to construct a LASSO regressive model for PC prediction. 
The LASSO algorithm has numerous advantages compared 
with ordinary linear regression (38). A linear combination 
of 5 miRNAs was validated as an independent predictor for 
PC carcinogenesis. This signature demonstrated significant 
diagnostic performance not only in vital status, but also in 
gender discrimination. The 5‑miRNA signature permitted 
an early diagnosis to be made and precautionary measures 
in time to be taken, which could prevent further deteriora-
tion of the PC. Furthermore, each of the 5 DEMs have been 
previously reported to serve roles in carcinogenesis (39-42). 
The results of the present study have helped to corroborate 
the potential role for miRNAs in the molecular pathogenesis 
and clinical progression of PC, thereby highlighting the 
potential of miRNA profiling to improve clinical diagnosis 
in patients with PC.

Since neither miRNAs nor genes are able to mediate the 
development of PC independently, it is necessary to identify 
comprehensive miRNA-mRNA interactions that potentially 
mediate the pathogenesis of PC. The majority of the studies 
published previously have solely focused on miRNAs and/or 
genes to clarify the mechanism of carcinogenesis; only a few of 
them have identified either DEMs or DEGs independently via 
a high-throughput method (43,44). Few studies have combined 
the miRNA expression profiles with those pertaining to 
mRNAs to explore the potential mechanism. Therefore, the 
present study was performed to comprehensively identify 
the most likely miRNA-mRNA interactions, and to elucidate 
their complex regulatory networks. One notable feature that 

distinguished the present study from similarly performed 
studies is that WGCNA was chosen rather than SAM (45) to 
identify the genes that were most closely associated with PC 
carcinogenesis, for WGCNA includes not only DEGs, but also 
those genes that are not significantly differentially expressed, 
but still have a key role in carcinogenesis.

In the present study, a total of 44 miRNA-mRNA pairs 
containing 14 dysregulated miRNAs and their 28 target 
mRNAs were identified. Among the 14 DEMs and 4 hub 
genes, it was demonstrated that miR-429 is associated with 
a poor outcome and inhibits pancreatic ductal adenocar-
cinoma growth by targeting the serine/threonine-protein 
kinase, TANK-binding kinase 1 (TBK1) (39). Yang et al 
observed that deregulation of miR‑375 inhibited cancer 
proliferation migration and chemosensitivity in PC through 
an association with homeobox B3 (HOXB3) (40). Similarly, 
chronic pancreatitis and PC were found to demonstrate an active 
epithelial‑mesenchymal transition profile that is regulated by 
the miR-217-sirtuin 1 pathway (41), and epigenetic silencing 
of miR-107 was found to regulate cyclin-dependent kinase 6 
expression in PC (42). In addition, active Yes-associated 
protein (YAP) promoted PC cell motility, invasion and 
tumorigenesis in a mitotic phosphorylation-dependent manner 
through LPAR3 (46). Unexpectedly, no gene interactions have 
been confirmed up to this point. Whether those interactions 
serve a common role remains unclear, and further experi-
mental validation is required to determine their role in PC 
carcinogenesis. With the exception of LPAR3, the three other 
hub genes (ACTL9, ECI2, and GALR3) have been compara-
tively less well studied in medical science in general, let alone 
in the oncology field. Exploring gene signatures to predict PC 
therefore will require further effort.

To the best of our knowledge, differently from other 
studies, this is the first one performed to date that has 
utilized the MetaDE package and WGCNA simultaneously 
to construct miRNA-mRNA interactions to clarify the 
mechanism of carcinogenesis of PC. The MetaDE package 
enables the combination of multiple datasets, rather than a 
single dataset. Similarly, WGCNA takes into consideration 
all the genes that may exert roles in pathogenesis. More 
credible results are available with the use of these two tools. 
However, apart from the promising results thus obtained, 
limitations with this method do exist, and future applica-
tions should be considered. First, only one TCGA-PAAD 
miRNA sequence dataset and one gene dataset (GSE41368) 
were enrolled in the present study, which meant that our 
sample size and sample type were not sufficient to draw 
entirely reliable conclusions, even though WGCNA was 
performed. Secondly, other types of molecule, including long 
non-coding RNAs (lncRNAs) and small interfering RNAs 
(siRNAs), were not included, which would have enabled a 
more comprehensive coverage to elucidate the mechanism 
of PC development. Nevertheless, there were still a number 
of useful advantages associated with the present comprehen-
sive bioinformatic analysis. The major importance of this 
study is that it not only provided novel directions for clinical 
research, but it also provided a way to study the problem 
itself in clinical practice.

In conclusion, pooled analysis of PC miRNA raw micro-
arrays was performed, and a 5‑miRNA signature according 
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to the TCGA-PAAD dataset was identified to predict the 
occurrence of PC against non-tumor tissue. Furthermore, 
44 miRNA-mRNA interactions based on 14 DEMs and 
28 tumor-associated genes were constructed to illustrate the 
potential mechanism of PC carcinogenesis. In addition, 14 GO 
functions and 6 KEGG pathways were significantly enriched, 
based on 189 tumor-associated genes. Further large-scale, 
well-designed and multi-center research studies should be 
conducted to confirm these findings prior to the application 
of any predictions, as well as elucidation of the carcinogenesis 
mechanism of PC.
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