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Abstract. Curcumin is a natural polyphenolic compound with 
pronounced anticancer properties, despite its low bioavail-
ability caused by extensive glucuronidation and sulfation. 
Information on the cellular uptake mechanisms and their 
contribution to the anticancer effects of curcumin and its 
biotransformation products is limited. The present study, 
therefore, investigated the role of organic anion-transporting 
polypeptides (OATPs) in the cellular uptake of curcumin and 
its major metabolites in OATP-expressing Chinese hamster 
ovary (CHO) and human ZR-75-1 breast cancer cells. The 
uptake rates for curcumin in OATP1B1-, OATP1B3- and 
OATP2B1-transfected CHO cells were 2- to 3-fold higher 
than wild-type cells. Curcumin sulfate was transported by all 
three OATPs, although to a much lesser extent, while uptake 
of tetrahydrocurcumin was the highest but only via OATP1B1 
and OATP1B3. Notably, curcumin glucuronide did not exhibit 
any affinity for these OATPs. The increased mRNA levels of 
OATP1B1 in wild-type human breast cancer ZR-75-1 cells 
compared with OATP1B1 knockdown cells was associated 
with a higher initial uptake of curcumin and tetrahydrocur-
cumin leading to decreased IC50 values. In conclusion, our 
data revealed that OATPs act as cellular uptake transporters 
for curcumin and its major metabolites, and this may also be 
applicable to patients undergoing cancer therapy.

Introduction

Breast cancer is the most common type of invasive cancer 
in women and the second main cause of cancer mortality in 
females, following lung cancer. Chemoprevention in combi-
nation with anticancer treatment is therefore important to 
reduce incidence and mortality rates. Epidemiological and 
experimental studies have demonstrated that natural nutri-
tional compounds are potent chemopreventive agents against 
mammary carcinogenesis (1,2). One of these food constitu-
ents is Curcuma, a yellowish-orange polyphenol from the 
rhizome of Curcuma longa. Since ancient times, it has been 
used as herbal therapy in China and India against numerous 
diseases (3). Curcumin is also an anticancer agent, as recently 
revealed in a mouse xenograft breast cancer model, where it 
significantly prevented tumor growth and angiogenesis (4). 
In hormone-dependent and independent human breast cancer 
cells, curcumin interferes with apoptosis by regulating STAT3, 
NF-κB, AP-1, HER2, CXCR4, EGFR, ERK, αJAK, TNF, IL 
and MP activity (5-7). Curcumin attenuates the expression 
of matrix metalloproteinases (MMPs) via reduced activity 
of NF-κB and transcriptional downregulation of AP-1 (8), 
thereby decreasing the number of lung metastases in mice upon 
intracardiac injection of estrogen receptor-negative human 
breast cancer MDA-MB-231 cells (8). Curcumin exhibited a 
synergistic effect with paclitaxel against human MCF-7 and 
MDA-MB-231 cells (9). Furthermore, curcumin demonstrated 
better clinical responses also in a phase-I clinical trial with 
docetaxel in patients with prolonged and metastatic breast 
cancer (10). Notably, despite its activity against breast cancer 
cells, curcumin exerts little toxicity against normal cells, even 
upon long-term exposure.

Previous studies in mice and rats demonstrated extensive 
metabolism of curcumin in the small intestine and liver 
mainly to curcumin sulfate, curcumin glucuronide and 
tetrahydrocurcumin (11). Biotransformation of curcumin is 
also extensive in humans, as shown in a pilot study of a stan-
dardized Curcuma-derived extract in patients with colorectal 
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cancer (12). In addition to the formation of curcumin gluc-
uronide and curcumin sulfate, curcumin undergoes phase-I 
bioreduction mainly to tetrahydrocurcumin and to a minor 
part to hexahydrocurcumin, octahydrocurcumin and hexa-
hydrocurcuminol (13,14), which are subsequently further 
conjugated to glucuronides and sulfates (13). Biotransformation 
is cell‑specific, as a recent study from our laboratory revealed 
that in hormone-dependent ZR-75-1 and hormone-independent 
MDA-MB-231 breast cancer cells the main metabolite was 
curcumin sulfate, while curcumin glucuronide formation 
was below the detection limit (15). Intracellular curcumin 
sulfate was subsequently discharged released into the cellular 
medium, leading to <12-fold higher concentrations compared 
with the cytoplasm indicating an active efflux mechanism. A 
possible candidate for this efflux is the breast cancer resistance 
protein (BCRP and ABCG2), which is expressed in numerous 
tissues, including breast ductal cells, and serves an important 
role in the efflux of sulfated conjugates of steroids and drugs 
(16). An interplay of curcumin with BCRP has already been 
described and may also apply to its sulfated metabolite (17).

Currently, limited information is available about the 
activities of curcumin biotransformation products. Previous in 
vitro data suggest that the main metabolites of curcumin, i.e. 
curcumin sulfate and curcumin glucuronide are less potent than 
curcumin against various tumor cell lines. In vivo, however, 
curcumin conjugates may markedly contribute to the pharma-
cological activity of curcumin, since ubiquitously expressed 
sulfatases or β-glucuronidases may rapidly cleave the conju-
gates back into curcumin. However, tetrahydrocurcumin, a 
major metabolite of curcumin, has demonstrated similar anti-
cancer activities to curcumin. In H22 ascites hepatocarcinoma 
tumor-bearing mice and in an animal carcinogenesis model 
tetrahydrocurcumin was even more effective than curcumin 
(18,19). Moreover, intragastric treatments of tetrahydrocur-
cumin (40 mg/kg) to mice were more effective than curcumin 
(100 mg/kg) in inhibiting the expression of cyclooxygenase-2 
and suppressing NF-κB (20). unlike curcumin, tetrahydrocur-
cumin is stable in 0.1 M phosphate buffer at pH 7.2 and in 
plasma (21), and may therefore significantly contribute to the 
anticancer activity of curcumin.

Active uptake mechanisms into the cytoplasm of tumor 
cells may be more significant than metabolism for the effi-
ciency of curcumin. One of the main membrane transport 
proteins are organic-anion-transporting polypeptides (OATPs), 
which mediate the uptake of numerous clinically used drugs 
and natural compounds such as polyphenols and their sulfates 
(22-26). The strongest effect on bioavailability is due to 
OATP2B1, which is highly expressed in the intestine, and to 
OATP1B1 and OATP1B3, which are expressed in the liver. 
various OATPs are also highly expressed in human hormone 
receptor-positive (MCF-7) and negative (MDA-MB-231) breast 
cancer cell lines (27). Zhou et al recently demonstrated that 
curcumin is a substrate of OATP1B1, OATP1B3 and OATP2B1, 
and that curcumin glucuronide is a substrate of OATP1B1 and 
OATP1B3 but not of OATP2B1, using OATP-transfected 293 
cells (28). Additional experiments by the same authors (28) and 
by Sun et al (29) revealed that curcumin and curcumin gluc-
uronide are also inhibitors of the OATP1B1 and 1B3 substrates 
rosuvastatin and docetaxel. However, no data are available to 
date on whether curcumin sulfate and tetrahydrocurcumin 

are also transported by OATPs. The present study therefore 
investigated the time and concentration-dependent transport 
of curcumin, curcumin sulfate, curcumin glucuronide and 
tetrahydrocurcumin in Chinese hamster ovary (CHO) cells 
stably-transfected with OATP1B1, OATP1B3 and OATP2B1. 
Furthermore, the kinetics of the uptake of curcumin and its 
main metabolites was calculated in order to determine the 
affinity of each substrate for the three transporters. Finally, the 
importance of OATPs in the anticancer activity of curcumin 
and tetrahydrocurcumin was elucidated in wild-type and 
OATP1B1-knockdown human breast cancer cell line ZR-75-1, 
and any differences in cellular uptake associated with cytotox-
icity were evaluated.

Materials and methods

Materials. Curcumin (98% pure) and tetrahydrocurcumin 
(95% pure) were purchased from Sigma-Aldrich (Merck 
KGaA, Darmstadt, Germany). Curcumin sulfate and curcumin 
glucuronide were obtained from TLC Pharmaceutical 
Standards Ltd. (Aurora, ON, Canada). Methanol and water 
were of high-performance liquid chromatography (HPLC) 
grade (Merck KGaA). All other chemicals and solvents were 
commercially available and of analytical grade, and were used 
without further purification.

Cell culture. Chinese hamster ovary (CHO) cells that were 
stably transfected with OATP1B1, OATP1B3 and OATP2B1, as 
well as wild-type CHO cells, were provided by the Department 
of Clinical Pharmacology and Toxicology, university Hospital 
Zurich (Zurich, Switzerland). These cells have been exten-
sively characterized previously (30,31). The CHO cells were 
grown in Dulbecco's modified Eagle's medium (DMEM) 
supplemented with 10% fetal calf serum (FCS), 50 µg/ml 
L-proline, 100 u/ml penicillin and 100 µg/ml streptomycin 
(Life Technologies; Thermo Fisher Scientific, Inc., Waltham 
MA, uSA). The selection medium for stably transfected 
CHO cells additionally contained 500 µg/ml geneticin sulfate 
(G418) (32). All of the media and supplements were obtained 
from Life Technologies (Thermo Fisher Scientific, Inc.). The 
mammalian ZR-75-1 breast cancer cell line was purchased 
from the American Type Culture Collection (ATCC; 
Manassas, vA, uSA) and was maintained in RPMI-1640 
medium (Life Technologies; Thermo Fisher Scientific, Inc.) 
supplemented with 10% FCS, 100 u/ml penicillin, 100 µg/ml 
streptomycin and 1% GlutaMAX (Life Technologies; Thermo 
Fisher Scientific, Inc.). The cells were grown in T‑flasks with 
a 25-cm2 growth area (BD Biosciences, Franklin Lakes, NJ, 
USA) and maintained at 37˚C under 5% CO2 and 95% relative 
humidity. The cells were passaged once per week and were 
used at passages ≤55 (24).

OATP1B1 knockdown in ZR‑75‑1 cells. For lentiviral transduc-
tion, ZR-75-1 cells were plated in 24-well tissue culture plates 
at a density of 40,000 cells/well in 0.5 ml of growth medium. 
After 24 h, 250 µl of medium supplemented with 8 µg/ml poly-
brene (Sigma-Aldrich; Merck KGaA) was added. Transductions 
were performed by the addition of 10 µl of shRNA (Mission® 
Transduction Particles NM_006446; Sigma-Aldrich; Merck 
KGaA), and the TRCN0000043203 coding sequence was as 
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follows: 5'-CCG GGC CTT CAT CTA AGG CTA ACA TCT CGA 
GAT GTT AGC CTT AGA TGA AGG CTT TTT G-3'. At 24 h 
post-transduction, the cell culture medium was changed, and 
1 ml of growth medium supplemented with 1 or 5 µg/ml puro-
mycin (Sigma-Aldrich; Merck KGaA) was added to select cells 
after an additional 24 h. The obtained silencing efficiency was 
evaluated after 3 weeks via reverse transcription-quantitative 
polymerase chain reaction (RT-qPCR).

RT‑qPCR. Total RNA was extracted from cells using TRIzol 
reagent (Invitrogen; Thermo Fisher Scientific, Inc.) according 
to the manufacturer's instructions as previously described (28). 
TaqMan® Gene Expression assays (Applied iosystems; Thermo 
Fisher Scientific, Inc.) were applied for human OATP1B1 
detection. The 18S gene was used as a reference gene as previ-
ously described (27). Multiplex RT-qPCR was performed in an 
amplification mixture (25 µl) containing 10 µl of 2X TaqMan® 
universal PCR Master Mix, 1 µl appropriate Gene Expression 
assay, 1 µl TaqMan® endogenous control (human β-actin or 
18S), 10 ng template complementary DNA (cDNA) diluted in 
3 µl nuclease-free water. The thermal cycling conditions were 
as previously described (33). Fluorescence generation due to 
the cleavage of the TaqMan® probe via the 5'→3' exonuclease 
activity of the DNA polymerase was detected with an ABI 
PRISM 7700 Sequence Detection System (Applied Bioystems; 
Thermo Fisher Scientific, Inc.). All samples were amplified in 
triplicate. To cover the range of expected quantitative cycle 
(Cq)-values for the target mRNA (34), a standard curve of 6 
serial dilutions from 50 ng to 500 pg pooled cDNA was analyzed 
using Sequence Detection software 1.9.1. (Applied iosystems; 
Thermo Fisher Scientific, Inc.). Relative gene expression data 
are given as the n-fold change in transcription of target genes 
normalized to the endogenous control. Real-time RT-PCR 
was performed with the following prefabricated TaqMan® 
Gene Expression assays (Applied iosystems; Thermo Fisher 
Scientific, Inc.) which contained the intron‑spanning primer 
Hs00272374_m1 for OATP1B1.

Cellular uptake. Transport assays were performed on 12-well 
plates as previously described (33). Briefly, OATP‑transfected 
CHO cells were seeded at a density of 350,000 cells/well on 
12-well plates (BD Biosciences). uptake assays were generally 
performed on day 3 after seeding when the cells had grown to 
confluence. After 24 h of initiation before starting the transport 
experiments, cells were treated with 5 mM sodium butyrate 
(Sigma‑Aldrich; Merck KGaA) to induce non‑specific gene 
expression (35). Curcumin and its metabolites were dissolved 
in dimethyl sulfoxide (DMSO) and diluted in uptake buffer 
(pH 7.4; final DMSO concentration of 0.5%) to 25‑600 µM. 
Control experiments contained DMSO in the medium instead 
of curcumin and its biotransformation products, respectively. 
Prior to the transport experiment, cells were rinsed twice with 
2 ml of pre‑warmed (37˚C) uptake buffer (116.4 mM NaCl, 5.3 
mM KCl, 1 mM NaH2PO4, 0.8 mM MgSO4, 5.5 mM D-glucose 
and 20 mM HEPES; pH adjusted to 7.4). Uptake at 37˚C was 
initiated by adding 0.25 ml of uptake buffer containing the 
substrate. After 1 min, the uptake was stopped, and the cells 
were washed 5 times with 2 ml of buffer (pH 7.4) and subse-
quently trypsinized by the addition of 100 µl of trypsin. Cell 
membranes were then disrupted via repeated (5 times) shock 

freezing in liquid nitrogen and thawing. Following centrifuga-
tion at 13,500 x g for 5 min, 100 µl supernatant was diluted 
with methanol/water (2:1; v/v) and aliquots (80 µl) were 
analyzed via HPLC. All experiments were repeated at least 
3 times.

Transport of curcumin and tetrahydrocurcumin in wild‑type 
ZR‑75‑1 and OATP1B1‑knockdown ZR‑75‑1 cells. Cells were 
plated on 6-well plates and allowed to attach overnight. Cells 
were then incubated for 1 min at 37˚C with curcumin and 
tetrahydrocurcumin (25‑200 µM; final DMSO concentration 
<0.5%). Control experiments contained DMSO in the medium 
in place of curcumin and tetrahydrocurcumin. Then uptake 
was stopped, and the cells were washed 5 times with 2 ml 
phosphate-buffered saline (PBS) and subsequently trypsinized 
by the addition of 100 µl trypsin. Cell membranes were lysed 
by repeated (5 times) shock freezing in liquid nitrogen and 
thawing. Following centrifugation at 13,500 x g for 5 min, 80 
µl supernatant (cytoplasm) was analyzed by HPLC for detec-
tion of curcumin and tetrahydrocurcumin. All experiments 
were repeated at least 3 times.

Cytotoxicity assay. ZR-75-1 wild-type and OATP-knockdown 
cells (50,000 cells/ml) were seeded into 96-well plates and 
incubated for 24 h at 37˚C under 5% CO2. Then, cells were 
incubated with various concentrations of curcumin (2.5-100 
µM) for 72 h, the incubation stopped and CellTiter-Blue reagent 
(Promega Corp., Madison, wI, uSA) (20 µl) was added to the 
wells. The plates were then incubated for 2 h at 37˚C and the 
absorbance was recorded for resazurin (605 nm) and resorufin 
(573 nm) on a Tecan M200 multimode plate reader (Tecan 
Group, Ltd., Männedorf, Switzerland). The viability of the 
treated cells was expressed as a percentage of the viability of 
the corresponding control cells. All experiments were repeated 
at least 3 times.

Determination of protein concentrations. Total protein was 
determined using the BCA assay kit (Pierce; Thermo Fisher 
Scientific, Inc.) with bovine serum albumin (BSA) as a 
standard and quantification at a wavelength of 562 nm on a 
spectrophotometer (uv-1800; Shimadzu Corp., Kyoto, Japan). 
Raw data were analyzed using uv-Probe version 2.31 software 
(Shimadzu Corp.). The protein concentrations were consistent 
among the plates (0.150±0.005 mg/well).

HPLC analysis. The concentrations of curcumin and its 
biotransformation products were quantified by HPLC using 
the same Dionex ultiMate 3000 system (Dionex Corp., 
Sunnyvale, CA, uSA), column, mobile phase and gradient as 
previously described (15). Calibration of the chromatogram 
was accomplished using the external standard method. Linear 
calibration curves were performed by spiking drug-free cell 
culture medium with standard solutions of curcumin, curcumin 
sulfate, curcumin glucuronide, and tetrahydrocurcumin to 
produce a concentration range from 0.01 to 10 µg/ml (average 
correlation coefficients: >0.999). Coefficients of accuracy and 
precision for these compounds were <11%.

NF‑κB‑luciferase reporter assay. A total of 100,000 ZR-75-1 
wild-type and OATP1B1-knockdown ZR-75-1 cells were 
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seeded in 24‑well plates and grown to 70% confluency for 
transfection. Simultaneous transfection with pTAL-NF-κB 
(NF-κB response element‑Firefly luciferase reporter; Clontech 
Laboratories, Inc., Mountainview, CA, uSA) and pRL-TK 
(Control-Renilla luciferase; Promega Corp.) was performed 
with Lipofectamine 2000 (Life Technologies; Thermo 
Fisher Scientific, Inc.; cat. no. 11668) according to the manu-
facturer's protocol. NF-κB was blocked for 30 min with 10 
µM BAY11-7082 (Calbiochem; Merck KGaA) or 100 µM 
curcumin, respectively. Then, 10 ng/ml interleukin 1β (IL-1β; 
Sigma-Aldrich; Merck KGaA) was added and incubated for 
90 min at 37˚C, immediately followed by luciferase assay 
(Promega Corp.; cat. no. E1910). Briefly, cells were lysed with 
lysis buffer, the first substrate to detect the firefly luciferase 
was added, and the samples were immediately measured for 6 
sec. upon addition of the second substrate signals for Renilla 
luciferase were assessed.

Data and statistical analysis. Kinetic parameters were 
calculated using the GraphPad Prism version 6.0 software 
program (GraphPad Software, Inc., La Jolla, CA, uSA) for a 
Michaelis-Menten kinetic model: v = vmax x S/(Km + S), where 
v is the rate of the reaction; vmax is the maximum velocity; Km 
is the Michaelis constant and S is the substrate concentration. 
The intrinsic clearance, which is defined as the ratio Vmax/Km, 
quantifies the transport capacity. IC50 values of curcumin 
and tetrahydrocurcumin cytotoxicity against wild-type and 
OATP‑knockdown ZR‑75‑1 cells were calculated by fitting a 
non-linear model to cell viability vs. (log)concentrations data 
using the GraphPad Prism version 6.0 software (GraphPad 
Software, Inc.). This software was also used for all statistical 
analyses. All values were expressed as the mean ± standard 
deviation (SD) of 3 independent biological replicates and 
one-way analysis of variance (ANOvA) followed by Tukey's 
post hoc test was used to compare differences between the 
wild-type and OATP1B1-knockdown ZR-75-1 cells. The 
statistical significance threshold was defined as P<0.05 for all 
calculations.

Results

Accumulation of curcumin and its metabolites in trans‑
fected CHO cells. To investigate whether curcumin and 
its major conjugates are substrates of OATPs, uptake 
analyses were performed in OATP1B1-, OATP1B3- and 
OATP2B1-transfected CHO cells. CHO cells only transfected 
with the vector were used as controls. The uptake of curcumin 
(25-200 µM) by all three OATPs was linear for up to 1 min 
(data not shown). As revealed in Table I and Fig. 1, the initial 
OATP1B1-, OATP1B3- and OATP2B1-mediated accumula-
tion rates (namely, OATP-transfected CHO cells minus CHO 
cells only transfected with the vector) for curcumin followed 
Michaelis-Menten kinetics, with higher vmax values for 
OATP1B1 than for OATP1B3 and OATP2B1 (vmax, 310 vs. 205 
and 167 pmol/mg protein/min, respectively). The Km-values 
were similar for all three OATPs (range, 46.9-51.9 µM). 
The uptake of curcumin sulfate (25-300 µM) in OATP1B1-, 
OATP1B3- and OATP2B1-transfected CHO cells, was less 
pronounced, revealing vmax values of only 45.0, 33.9 and 24.3 
pmol/mg protein/min, respectively (Table I and Fig. 2). Its 

affinity, for OATP1B1 and OATP1B3, but not for OATP2B1, 
was 1.9 and 1.4-fold higher with Km values of 89.1 µM and 
67.7 µM compared with curcumin. Tetrahydrocurcumin was 
taken up by OATP1B1 and OATP1B3 with the highest vmax 
values (872 and 493 pmol/mg protein/min, respectively); Km 
values were 38.6 and 83.7 µM, respectively (Table I and Fig. 3). 
Notably, curcumin glucuronide was not a substrate for any of 
the three OATPs as its levels inside the cytoplasm were below 
the detection limit.

OATP1B1‑knockdown in ZR‑75‑1 cells. PCR data from various 
lentiviral-transfected clones revealed an up to 10-fold reduc-
tion in OATP1B1 expression in ZR-75-1-cells (relative mRNA 
expression was reduced from 14.78±0.26 to 1.19±0.02). Cells 
with the lowest OATP1B1 expression levels were used for 
further uptake experiments (27).

Curcumin and tetrahydrocurcumin accumulation in wild‑type 
and OATP1B1‑knockdown ZR‑75‑1 cells. Based on the mark-
edly higher OATP1B1 mRNA level noticed in wild-type 
ZR-75-1 cells compared with the OATP1B1-knockdown clone 
and the fact that ZR-75-1 cells do not express OATP1B3 or 
OATP2B1, uptake of curcumin and tetrahydrocurcumin by 
wild-type cells was expected to be increased. The results 

Table I. Michaelis-Menten parameters for the uptake of 
curcumin, curcumin sulfate, tetrahydrocurcumin and curcumin 
glucuronide in OATP-transfected CHO cells. 

  vmax vmax/Km

Substrate Km [µM] [pmol/mg/min] [µl/min. µg]

OATP1B1
  Cur 51.9±13.6 167±14.8 3.21±0.64
  Cur-S 89.1±16.4 45.0±3.34 0.51±0.06
  TH-cur 38.6±7.9 872±35.6 22.6±3.86
  Cur-G n.d. n.d. n.d.
OATP1B3
  Cur 46.9±7.5 205±10.7 4.37±0.48
  Cur-S 67.7±15.3 33.9±2.76 0.50±0.076
  TH-cur 83.7±13.4 493±22.5 5.89±0.69
  Cur-G n.d. n.d. n.d.
OATP2B1
  Cur 48.6±12.7 310±26.6 6.37±1.27
  Cur-S 50.0±12.6 24.3±1.87 0.48±0.102
  TH-cur n.d. n.d. n.d.
  Cur-G n.d. n.d. n.d.

values are presented as the means ± SE of 3 individual determinations. 
The net OATP-mediated uptake values were calculated by subtracting 
the values obtained with the wild-type CHO cells from those obtained 
with the stably-transfected cells. Kinetic parameters were calculated 
by fitting the data to the Michaelis‑Menten (Km) equation with 
non-linear regression. OATP, organic anion-transporting polypeptide; 
CHO, Chinese hamster ovary; Cur, curcumin; Cur-S, curcumin 
sulfate; TH-cur, tetrahydrocurcumin; Cur-G, curcumin glucuronide; 
n.d., not determined.
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revealed that uptake of curcumin by ZR-75-1 cells was 
increased as indicated by 2-fold higher vmax values compared 

with OATP1B1-knockdown cells (vmax, 3535 vs. 1741 pmol/mg 
protein/min); the Km-values only changed slightly (Km, 85.1 vs. 
56.7 µM) (Fig. 4A and Table II). Differences in the uptake of 
tetrahydrocurcumin were also pronounced leading to 2-fold 
higher vmax values in wild-type cells compared with the 
OATP1B1-knockdown clone (vmax, 7904 vs. 4201 pmol/mg 
protein/min); the Km‑values were significantly reduced in the 
wild-type cells (Km, 44.7 vs. 69.6 µM) (Fig. 4B and Table II) 
supporting the impact of OATP1B1 for curcumin and tetrahy-
drocurcumin transport. Notably, any interference in curcumin 
and tetrahydrocurcumin uptake with efflux mechanisms (e.g. 
BCRP) could be excluded as the incubation time was only 1 
min.

Cytotoxicity of curcumin in ZR‑75‑1 OATP1B1‑knockdown 
cells. As revealed in Fig. 5A, curcumin exhibited a lower 
IC50 value in wild-type ZR-75-1 cells (12.4 µM) compared 
with the OATP1B1 knockdown clone (15.2 µM), although the 
differences were not significant. The IC50 value for tetrahy-
drocurcumin, however, was significantly lower in OATP1B1 
expressing cells (26.0 vs. 51.3 µM) compared with the 
OATP1B1-knockdown cells (Fig. 5B) clearly demonstrating 
that OATP1B1 expression is associated with cytotoxicity.

Figure 3. Concentration dependence tetrahydrocurcumin uptake in OATP1B1-, 
OATP1B3- and OATP2B1-transfected CHO cells. A total of 350,000 cells 
were seeded in 12‑well plates and allowed to grow to confluence. Then the 
cells were incubated with tetrahydrocurcumin (50-600 µM) for 1 min at pH 
7.4 (37˚C) and the cytoplasm was analyzed for tetrahydrocurcumin by HPLC. 
The data represent the mean ± SD of 3 individual determinations. OATP, 
organic anion-transporting polypeptide; CHO, Chinese hamster ovary; 
HPLC, high-performance liquid chromatography.

Figure 2. Concentration dependence of curcumin sulfate uptake in OATP1B1-, 
OATP1B3- and OATP2B1-transfected CHO cells. A total of 350,000 cells 
were seeded in 12‑well plates and allowed to grow to confluence. Then the 
cells were incubated with curcumin sulfate (25-300 µM) for 1 min at pH 
7.4 (37˚C) and the cytoplasm was analyzed for curcumin sulfate by HPLC. 
The data represent the mean ± SD of 3 individual determinations. OATP, 
organic anion-transporting polypeptide; CHO, Chinese hamster ovary; 
HPLC, high-performance liquid chromatography.

Figure 1. Concentration dependence of curcumin uptake in OATP1B1-, 
OATP1B3- and OATP2B1-transfected CHO cells. A total of 350,000 cells 
were seeded in 12‑well plates and allowed to grow to confluence. Then the 
cells were incubated with curcumin (25‑200 µM) for 1 min at pH 7.4, 37˚C and 
the cytoplasm was analyzed for curcumin by HPLC. The data represent the 
mean ± SD of 3 individual determinations. OATP, organic anion-transporting 
polypeptide; CHO, Chinese hamster ovary; HPLC, high-performance liquid 
chromatography.

Figure 4. Concentration-dependent uptake rates of (A) curcumin and (B) 
terahydrocurcumin in ZR-75-1 empty vector-transfected cells compared to 
ZR-75-1 OATP1B1-knockdown cells. A total of 1x106 cells were seeded in 
6‑well plates and allowed to grow to confluence. Then, the cells were incu-
bated with curcumin (25‑200 µM) for 1 min at 37˚C and the cytoplasm was 
analyzed for curcumin by HPLC. The data represent the mean ± SD of 3 indi-
vidual determinations. Intracellular concentrations marked with an asterisk 
denote statistically significant differences (*P<0.05) between wild-type and 
OATP1B1-knockdown ZR-75-1 cells. OATP, organic anion-transporting 
polypeptide; HPLC, high-performance liquid chromatography.
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Inhibition of NF‑κB‑luciferase by curcumin in wild‑type and 
OATP1B1‑knockdown ZR‑75‑1 cells. To further evaluate the 
OATP1B1-dependent differences in the activity of curcumin, 
wild-type and OATP1B1-knockdown ZR-75-1 cells were 
simultaneously transfected with an NF-κB promoter sequence 
connected to a luciferase reporter. Prior to NF-κB reporter 
induction by 10 ng/ml IL-1β for 90 min, cells were treated 
with curcumin or BAY11-7082 for 30 min, and the lucif-
erase signals were assessed. As revealed in Fig. 6, curcumin 
significantly inhibited IL-1β-induced NF-κB reporter 
expression by 40.1±7.78% in wild-type and by 30.9±10.1% in 
OATP1B1-knockdown cells. Notably, curcumin was almost 
as potent as the known NF-κB inhibitor BAY11-7082, used 
as a positive control (71.3±12.9 and 62.8±5.3% inhibition in 

wild-type and in the OATP-knockdown clone, respectively). 
As anticipated inhibition of NF-κB-luciferase by curcumin in 
OATP1B1-knockdown cells was less pronounced compared 
with wild‑type cells. However, differences were not significant.

Discussion

The present study aimed to determine the kinetics of the 
cellular uptake of curcumin and its major metabolites curcumin 
sulfate, curcumin glucuronide and tetrahydrocurcumin and 
Chinese hamster ovary (CHO) cells stably transfected with the 
three-major organic anion-transporting polypeptides (OATPs) 
were used. As indicated in Fig. 1 and Table I, curcumin 
displayed saturable uptake kinetics for OATP1B1, OATP1B3 
and OATP2B1 with similar Km values (ranging from 46.9 to 
51.9 µM) which indicates high affinity for the transporter. 
The affinity of curcumin sulfate was in a similar range for 
OATP2B1 but was higher for OATP1B3 and OATP1B1 

Table II. Michaelis-Menten parameters of curcumin and tetrahydrocurcumin determined in ZR-75-1 and OATP1B1-knockdown 
ZR-75-1 cells. 

 ZR-75-1 OATP1B1-knockdown ZR-75-1
 ------------------------------------------------------------------------------------- -------------------------------------------------------------------------------------
Substrate Km [µM] vmax [pmol/mg/min] Km [µM] vmax [pmol/mg/min]

Curcumin 85.1±9.1a 3535±342a 56.7±5.8a 1741±122a

TH-cur 44.7±7.9 7904±420a 69.6±14.8 4201±337a

Values are presented as the means ± SD of 3 individual determinations. Kinetic parameters were calculated by fitting the data to the 
Michaelis-Menten (Km) equation with non-linear regression. aKm and vmax values in bold and marked with an asterisk are significantly different 
(P<0.05) between wild-type and OATP1B1-knockdown ZR-75-1 cells. TH-cur, tetrahydrocurcumin.

Figure 6. Inhibition of NF-κB activity by curcumin. A total of 100,000 
ZR-75-1 wild-type and ZR-75-1 OATP1B1-knockdown cells were seeded 
in 24‑well plates and allowed to grow to 70% confluence. Cells were then 
pre-treated with 10 µM BAY or 100 µM CuR for 30 min or with solvent 
(DMSO). Thereafter, where indicated, cells were stimulated with IL-1β (10 
ng/ml for 90 min), when cells were lysed and firefly luciferase activity was 
determined, which was normalized to Renilla luciferase activity (measured 
subsequently; RLu, relative light unit). Experiments were performed in trip-
licate, error bars indicate ± SD and asterisks denote significance between the 
IL-1β-induced positive controls and the IL-1β-induced BAY and CuR treat-
ment groups. OATP, organic anion-transporting polypeptide; Co, control; 
CuR, curcumin; BAY, Bay11-7082.Figure 5. Cytotoxicity of (A) curcumin and (B) tetrahydrocurcumin to 

ZR-75-1 and OATP1B1-knockdown ZR-75-1 cells. After incubation of 
50,000 cells for 72 h with 2.5‑100 µM curcumin at 37˚C, the number of viable 
cells were determined. Dose response curves were obtained by non-linear 
curve fitting using GraphPad Prism 6.0 software (GraphPad Software, 
Inc.). The data represent the mean ± SD of three individual determinations. 
OATP, organic anion-transporting polypeptide.
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(Km values, 50.0, 67.7 and 89.1 µM, respectively). Notably, 
tetrahydrocurcumin was only transported by OATP1B1 and 
OATP1B3 with reduced affinity in the case of OATP1B1 (Km, 
83.7 µM) and increased affinity (Km, 38.6 µM) in the case 
of OATP1B3. Curcumin glucuronide was not transported by 
any of these OATPs. Notably, OATP-dependent uptake was 
compound‑specific. While the transport capacity (Vmax/Km) 
for curcumin sulfate was low for all three OATPs (0.51, 
0.50 and 0.48 µl/min/mg protein, respectively), the uptake of 
curcumin by OATP1B1, OATP1B3 and OATP2B1-transfected 
cells was 6.3-, 8.7- and 13.7-fold higher, respectively. The 
uptake of tetrahydrocurcumin by OATP1B1 was even more 
pronounced (i.e. 44.3-fold higher compared with curcumin). 
These data revealed that OATP1B1 could be the most impor-
tant transporter for tetrahydrocurcumin uptake, whereas the 
three OATPs were equally important for the cellular uptake 
of curcumin and curcumin sulfate. The involvement of 
OATP1B1, OAT1B3 and OATP2B1 in the uptake of curcumin 
was in line with the data from Zhou et al (28) which also 
demonstrated that this compound was a substrate of all three 
transporters. However, contrary to that study, the present study 
could not confirm any OATP‑dependent uptake of curcumin 
glucuronide. Based on our data, it is not possible to predict 
the contribution of OATP2B1 in the gut, for that of OATP1B1, 
OATP1B3 and OATP2B1 in the liver, to the overall uptake of 
curcumin and its major metabolites in humans due to large 
inter individual variability (up to 10-fold differences) in OATP 
protein levels (36-38).

Our data also suggested that unconjugated curcumin and 
tetrahydrocurcumin concentrations in human blood were 
lower than the Km values calculated for their uptake by ZR-75-1 
cells. A recent phase-I study revealed that administration of 
liposomal curcumin at 300 mg/m2 over 8 h to patients with 
metastatic cancer resulted in maximal plasma concentrations 
of up to 3.48 µg/ml (9.45 µM) (39). Peak plasma concentra-
tions of up to 22 µM were observed for tetrahydrocurcumin in 
rats following an oral dose of 500 mg/kg tetrahydrocurcumin 
(40). Notably, the total tissue concentrations of conjugates 
(curcumin sulfate and curcumin glucuronide) were much 
higher than their blood levels in mice 1 h after i.p. administra-
tion of curcumin (0.1 g/kg) leading to concentrations of 26.1 
µg/g (52.6 µM), 26.9 µg/g (54.3 µM) and 117 µg/g (236 µM) in 
the spleen, liver and intestine, respectively (41).

To determine the importance of OATPs in the uptake of 
curcumin and tetrahydrocurecumin, hormone-dependent 
ZR-75-1 breast cancer cells which express high levels of 
OATP1B1, but do not express OATP1B3 or OATP2B1 (27), 
were incubated with both compounds. The uptake of curcumin 
by the ZR‑75‑1 OATP1B1‑knockdown cells was significantly 
decreased compared with wild-type cells leading to lower 
vmax values (Fig. 4 and Table II). Notably, differences in 
curcumin uptake were only observed at >100 µM curcumin 
concentrations and not expected based on the uptake experi-
ments in OATP-transfected CHO cells. This may be explained 
by the rapid non-enzymatic hydrolysis of curcumin at pH 7.4, 
particularly at low curcumin concentrations, mainly forming 
ferulic acid, feruloyl methan and vanillin. These degrada-
tion products were stable under physiological conditions and 
exhibited antitumor properties against various cancer cell lines 
(42-44). whether these compounds are substrates for OATPs 

or other not identified uptake transporters is not yet known. 
Compared with curcumin, the uptake of tetrahydrocurcumin 
was significantly different at all the measured concentrations 
in wild-type and OATP1B1-knockdown cells, probably due to 
the higher stability of tetrahydrocurcumin at physiological pH 
(21). Differences in the cellular uptake of tetrahydrocurcumin 
also resulted in higher Km values in OATP1B1-knockdown 
cells indicating a lower affinity for this transporter, albeit the 
results were not statistically significant.

Concomitant with the reduced uptake displayed by 
ZR-75-1 OATP1B1 knockdown cells, the present study also 
observed a higher IC50 value for curcumin in the cytotox-
icity assay compared with OATP1B1-expressing wild-type 
cells (15.2 vs. 12.4 µM; Fig. 5), although this difference was 
not statistically significant and may be explained by the 
degradation of curcumin in the medium and probably also 
in the cytoplasm. For the more stable tetrahydrocurcumin, 
however, the difference observed in the IC50 value between 
wild-type and OATP1-knockdown ZR-75-1 cells was statisti-
cally significant. Specifically, the IC50 value was reduced in 
the OATP1B1-expressing cells (26.0 vs. 51.3 µM) indicating 
an association between OATP1B1 expression and cytotox-
icity. The decreased uptake of curcumin by the ZR-75-1 
OATP1B1-knockdown cells also resulted in a reduced inhibi-
tion of IL-1β-activated NF-κB reporter expression (Fig. 6), 
which was not significant possibly again due to non‑enzymatic 
hydrolysis of curcumin to ferulic acid, feruloyl methan and 
vanillin in the medium. Formation of these pharmacologi-
cally active degradation products may therefore contribute, in 
combination with tetrahydrocurcumin and curcumin sulfate, 
to the anticancer properties of curcumin in vitro and in vivo. 
Since NF-κB is highly expressed in breast cancer, thereby 
facilitating growth and progression (45), administration of 
curcumin, either as a single compound or in combination 
with anticancer drugs, may lead to cancer chemoprevention as 
revealed in human studies (45,46).

Different cellular expression levels of OATPs may greatly 
affect the uptake of curcumin sulfate and tetrahydrocurcumin, 
and to lesser extent also curcumin, by tumor cells, thereby 
altering the efficacy of these compounds. Patients with little 
or no detectable expression of OATP1B1, OATP1B3 and 
OATP2B1 may, as a result exhibit decreased response rates 
to curcumin and its primary metabolites. The same occurs 
when curcumin and tetrahydrocurcumin are concomitantly 
administered with OATP inhibitors such as clarithromycin, 
erythromycin and roxithromycin which inhibit the intake 
of pravastatin in OATP1B1- and OATP1B3-transfected 293 
cells (37). Cyclosporin A is a potent inhibitor of both OATPs 
leading to decreased uptake rates of bosentan (31) and fexof-
enadine (47) in 293 and CHO cells. Several natural occurring 
flavonoids inhibit OATP-dependent uptake as revealed for 
dehydroepiandrosterone sulfate in a cellular model (48). 
whether other transporters such OATP2A1 and OATP4C1, 
which are expressed in ZR-75-1 wild-type cells (24), are also 
involved in the uptake of curcumin and its main metabolites is 
not yet known. Other potential candidates may be the organic 
anion transporters (OATs) which are involved in the transport 
of polyphenol glucuronides and sulfates (49,50). In fact, Zhou 
et al reported, at least for curcumin and curcumin glucuro-
nide uptake, the involvement of OAT1 and OAT3 (28). Our 
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data did not demonstrate any passive diffusion mechanism 
responsible for the uptake of curcumin, curcumin sulfate, or 
tetrahydrocurcumin since the uptake kinetics in wild-type- 
and OATP1B1-knockdown ZR-75-1 cells was saturable, 
indicating protein-mediated transport. However, the involve-
ment of cellular efflux mechanism in ZR‑75‑1 breast cancer 
cells cannot be excluded, since uptake and efflux transport 
works in concert.

In conclusion, our results demonstrated that curcumin, 
curcumin sulfate and tetrahydrocurcumin, but not curcumin 
glucuronide, are substrates of various OATPs as demonstrated 
in OATP-transfected CHO cells. The increased mRNA levels 
of OATP1B1 in wild-type human breast cancer ZR-75-1 cells 
compared with OATP1B1-knockdown cells were associated 
with a higher initial uptake of curcumin and tetrahydrocur-
cumin leading to decreased IC50 values. This may occur in 
patients following the intravenous application of curcumin and 
tetrahydrocurcumin as anticancer agents. Future clinical studies 
should determine not only the concentration of curcumin, 
its main degradation products and metabolites in blood and 
tumors but also the expression levels of OATPs.
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