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Abstract. In patients with head and neck cancer (HNC), lymph 
node (N) metastases are associated with cancer aggressiveness 
and poor prognosis. Identifying meaningful gene modules and 
representative biomarkers relevant to the N stage helps predict 
prognosis and reveal mechanisms underlying tumor progres-
sion. The present study used a step‑wise approach for weighted 
gene co‑expression network analysis  (WGCNA). Dataset 
GSE65858 was subjected to WGCNA. RNA sequencing data 
of HNC downloaded from the Cancer Genome Atlas (TCGA) 
and dataset GSE39366 were utilized to validate the results. 
Following data preprocessing, 4,295 genes were screened, and 
blue and black modules associated with the N stage of HNC 
were identified. A total of 16 genes [keratinocyte differentia-
tion associated protein, suprabasin, cornifelin (CNFN), small 
proline rich protein 1B, desmoglein 1 (DSG1), chromosome 10 

open reading frame 99, keratin 16 pseudogene 3, gap junction 
protein β2, dermokine, LY6/PLAUR domain containing 3, 
transmembrane protein 79, phospholipase A2 group  IVE, 
transglutaminase  5, potassium two pore domain channel 
subfamily K member 6, involucrin, kallikrein related pepti-
dase 8] that had a negative association with the N‑stage in the 
blue module, and two genes (structural maintenance of chro-
mosomes 4 and mutS homolog 6) that had a positive association 
in the black module, were identified to be candidate hub genes. 
Following further validation in TCGA and dataset GSE65858, 
it was identified that CNFN and DSG1 were associated with 
the clinical stage of HNC. Survival analysis of CNFN and 
DSG1 was subsequently performed. Patients with increased 
expression of CNFN displayed better survival probability in 
dataset GSE65858 and TCGA. Therefore, CNFN was selected 
as the hub gene for further verification in the Gene Expression 
Profiling Interactive Analysis database. Finally, functional 
enrichment and gene set enrichment analyses were performed 
using datasets GSE65858 and GSE39366. Three gene sets, 
namely ‘P53 pathway’, ‘estrogen response early’ and ‘estrogen 
response late’, were enriched in the two datasets. In conclusion, 
CNFN, identified via the WGCNA algorithm, may contribute 
to the prediction of lymph node metastases and prognosis, 
probably by regulating the pathways associated with P53, and 
the early and late estrogen response.

Introduction

Head and neck cancer (HNC) has a mortality rate of 40‑50% 
and is detected in 600,000  cases annually worldwide, 
accounting for ~3.8% of global cancer cases and ~3.6% of 
all cancer‑associated mortality  (1,2). The American Joint 
Committee on Cancer staging system for HNC demands an 
integrated assessment of the patient, primarily including the 
primary tumor (T), lymph node metastasis (N) and distant 
metastasis (3). Traditionally, prognosis has been associated 
with tumor stage (4,5). Pereira et al (6) emphasized that lymph 
node metastases (N stage) in patients with cancer are associ-
ated with tumor aggressiveness, recommendation for systemic 
therapy and poor prognosis. Different etiologies and a large 
variety of molecular alterations drive HNC to be a markedly 
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heterogeneous disease. Recognizing the prognostic power of 
lymph node metastases, the identification of potential novel 
biomarkers associated with the lymph node stage of HNC is 
thus meaningful.

The understanding of human diseases ultimately depends 
on the understanding of the genome and its functions  (7). 
The recent application of microarray and sequencing tech-
nologies to transcriptomics has altered the view of cancer 
diagnosis, treatment and prognostic speculation. Over the past 
few years, subgroups of HNC characterized by gene expres-
sion patterns have been identified using expression arrays 
and RNA sequencing (8‑10). Tartour et al (11) revealed that 
serum sIL‑2Rα may be considered as an independent serum 
biomarker in patients with HNC. Lin et al (12) reported that 
C1GALT1 serves a critical role in HNC progression and 
highlighted the therapeutic potential of targeting this gene 
during HNC treatment. Rettig et al (13) identified that HEY1 is 
expressed independently of NOTCH1 and is associated with a 
poor prognosis in HNC. Nevertheless, the majority of existing 
studies are limited to screening for genes with differential 
expression, and ignore the close connections between them.

Weighted gene co‑expression network analysis (WGCNA) 
is systematic bioinformatics approach used to describe the 
associations among genes across microarray samples  (14). 
This method may be used to find modules of tightly correlated 
genes, summarize these modules using an intramodular hub 
gene or the module eigengene and calculate module member-
ship measures. At present, it has been generally acknowledged 
and used to identify hub genes in various cancer types, 
including breast cancer (15), pancreatic carcinoma (16) and 
osteosarcoma (17). By constructing co‑expression networks, 
10 hub genes in oral squamous cell carcinoma were identified 
and validated (18). Li (19) reported that TPX2, microtubule 
nucleation factor (TPX2), minichromosome maintenance 
complex component 2, ubiquitin like with PHD and ring finger 
domains 1, cyclin dependent kinase 2 and protein regulator of 
cytokinesis 1 were associated with the tumorigenesis of laryn-
geal squamous cell carcinoma. However, previous studies have 
primarily identified hub genes associated with the pathogen-
esis of cancer, and studies associated with prognosis have not 
been reported. In the present study, a co‑expression network of 
interconnection between the genes of HNC was constructed 
using WGCNA analysis, and network‑centric genes associated 
with tumor prognosis were identified.

Materials and methods

Study design. To clarify the data collection, preprocessing, 
analysis and validation, a schematic of the research process is 
presented in Fig. 1.

Data collection. Raw mRNA expression profiles of HNC 
were downloaded from the Gene Expression Omnibus (GEO) 
database (http://www.ncbi.nlm.nih.gov/geo/), a public data 
repository of functional genomics data. Using the search terms 
‘head and cancer [MeSH Terms] AND Expression profiling 
by array [DataSet Type] AND Homo sapiens [Organism]’ in 
the GEO datasets, datasets GSE65858 and GSE39366 were 
further screened. Dataset GSE65858 performed on Illumina 
HumanHT‑12  V4.0 Expression Beadchips (Illumina Inc., 

San Diego, CA, USA), including 270 head and neck squamous 
cell carcinoma (HNSC) tumor samples with clinical and prog-
nostic variables (20), was used for constructing a weighted 
gene co‑expression network and subsequently for identifying 
hub genes. As a validation set, dataset GSE39366 performed 
on Agilent‑UNC‑custom‑4X44K (Agilent Technologies, Inc., 
Santa Clara, CA, USA), consisting of 138 HNSC samples, was 
used to verify the results (9). Moreover, RNA sequencing data 
for HNC were downloaded from the Cancer Genome Atlas 
(TCGA) database (https://portal.gdc.cancer.gov/repository), 
consisting of 500 tumor samples with complete expression 
profiles and clinical information and 44 normal tissues, to 
further validate the results.

Data preprocessing and screening. With regard to dataset 
GSE65858, robust multiarray averaging background correc-
tion was performed with the raw expression data, and the 
processed signals were subjected to log2 transformation and 
quantile normalization. The ‘affy’ R package (21) was used 
to summarize the median polished probe sets. According to 
the distances between different samples in average linkage, 
microarray quality was assessed via sample clustering, and no 
samples from GSE65858 were removed from the subsequent 
analysis. The standard deviation values for gene expression 
were obtained from the expression matrices. Subsequently, 
the genes were ranked and the top 25% were screened for the 
following analysis.

Weighted gene co‑expression network construction. Given that 
gene co‑expression analysis is extremely sensitive to the exis-
tence of abnormal samples, strict quality control procedures 
were implemented to ensure the highest quality level, followed 
by step‑by‑step network construction and module detection. To 
construct a scale‑free gene co‑expression network, the WGCNA 
package in R (14,22,23) was used. First, Pearson's correlation 
matrices were performed on all gene pairs. Next, using the 
power function amn=|cmn|β (where amn is the adjacency 
between genes m and n, and cmn is the Pearson's correlation 
between genes m and n), a weighted adjacency matrix was 
constructed. As a soft‑thresholding parameter, parameter β 
may penalize weak correlations between genes while empha-
sizing strong correlations. To ensure a scale‑free network 
in the present study, the power of β=4 (scale free R2=0.91) 
was selected (24). Then, the adjacency was transformed into 
a topological overlap matrix (TOM); TOM is defined as the 
contiguous sum with all the other genes used for network 
generation and for measurement of the network connectivity 
of genes (25). Then, we calculated the corresponding dissimi-
larity  (1‑TOM). To classify genes with similar expression 
profiles into different modules, average linkage hierarchical 
clustering was performed, according to TOM‑based dissimi-
larity measures; the minimum size (genome) of the gene 
dendrogram was 50 (26). To investigate the module further, 
the dissimilarity of module eigengene (MEs) was calculated, a 
cut line for the module dendrogram was selected, and certain 
modules were merged (16).

Clinically significant modules and hub gene identification. 
When the initial set of modules had been created, the correla-
tions among MEs were used to merge close modules. MEs, 
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the first major component of gene expression within a module, 
summarize the feature expression patterns of modules, and 
modules with extremely similar expression profiles display 
highly correlated eigengenes  (27). Gene significance (GS) 
refers to the log10 conversion of the P‑value in a linear regres-
sion (GS=lgP) between clinical traits and gene expression, and 
module significance (MS) refers to the average GS of all genes 
in the module.

Typically, modules with an absolute MS ranking first or 
second in all modules are considered candidates relevant to 
clinical traits (16).

It has been demonstrated that hub genes, defined as 
genes that are strongly connected with others in a module, 
have a significant function (16). In this study, upon selecting 
modules of interest, the hub genes by the conditions of module 
connectivity (cor.geneModuleMembership >0.8) and clinical 
trait relationship (cor.geneTraitSignificance >0.2), which were 
measured by the absolute Pearson's correlation value (15). To 
identify key hub genes among the candidates, a linear regres-
sion analysis was performed to assess the link between the 
clinical features of interest and the expression of hub genes, 
and R2 was defined as the association between them.

Figure 1. Flow diagram of the study design, illustrating data preparation, preprocessing, analysis and validation. ANOVA, analysis of variance; 
WGCNA, weighted gene co‑expression network analysis; TCGA, The Cancer Genome Atlas; N, lymph node.
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Real hub gene validation. The training set (GSE65858), 
test set TCGA HNSC and public database Gene Expression 
Profiling Interactive Analysis (GEPIA) were used to identify 
the real hub genes. First, a Pearson correlation analysis of the 
N‑stage gene expression was performed using the GSE65858 
and TCGA HNSC datasets. Pearson correlation analysis 
of clinical staging gene expression and one‑way analysis of 
variance (ANOVA) were conducted using the GSE65858 and 
TCGA HNSC datasets. Subsequently, survival analysis for 
these genes was performed using the GSE65858 and TCGA 
HNSC datasets. Genes in all tests with significant P‑values 
were identified as true hub genes. To verify the results further, 
the GEPIA database (http://www.gepia.cancer‑pku.cn) was 
used to validate the expression levels of the real hub genes.

Gene set enrichment analysis (GSEA). The samples in the 
GSE65858 and GSE39366 datasets were respectively divided 
into two groups based on the median expression levels of the 
real hub genes. To further analyze the potential function of 
the hub genes further, GSEA analysis (http://software.broadin-
stitute.org/gsea/index.jsp) was performed to detect whether 
genes in the two groups were enriched with meaningful 
biological processes  (28). The annotated gene set collec-
tion sh.all.v6.1.symbols.gmt [Hallmarks] in the molecular 
signatures database (MSigDB; http://software.broadinstitute.
org/gsea/msigdb/index.jsp) was selected as the reference. 
Furthermore, P<0.05 was set as the cut‑off criterion. In addi-
tion, a Venn plot was generated based on the results for the 
GSE65858 and GSE39366 datasets.

Results

Training set quality assessment and gene screening. As 
indicated in the workflow in Fig. 1, the gene expression 

matrices from the 270 samples in training set GSE65858 
were first downloaded following data preprocessing. The 
standard deviation values of gene expression were obtained 
from the expression matrices. The genes were ranked and 
the top 25% (4,295 genes) were screened for subsequent 
analysis.

WGCNA identifies key modules. Following the initial quality 
assessment performed using the WGCNA R package via the 
average linkage method, no samples were removed from the 
GSE65858 dataset for the subsequent analysis (Fig. 2). As 
presented in Fig. 2, a total of 11 clinical traits had been identi-
fied, including gender, age, smoking, smoking pack years, 
alcohol, UICC stage, T stage, N stage, distant metastasis, treat-
ment and HPV DNA status. To ensure a scale‑free network, 
the scale‑free fit index and mean connectivity were calculated 
and the power of β=4 (scale free R2=0.91) was selected to 
perform further analysis (Fig. 3). Moreover, genes with similar 
expression patterns could be placed into different modules via 
average linkage clustering. Finally, 12 modules were identi-
fied (Fig. 4). Two methods, namely module‑trait relationship 
and MS analysis, were used to examine the associations 
between the clinical traits and each module (Fig. 5A and B). 
First, modules with a better MS were considered to have a 
closer association with meaningful clinical traits of interest. 
It was identified that two modules, namely the blue and black 
modules, had higher MS values compared with the other 
modules. They were identified as the modules most relevant to 
the N stage of HNC.

Candidate hub gene identif ication. Based on module 
connectivity, clinical trait relationship, and absolute value 
of Pearson's correlation (cor.geneModuleMembership >0.8, 
cor.geneTraitSignificance >0.2), we selected 18 genes with 

Figure 2. Sample cluster dendrogram and trait indicators. T, primary tumor; N, lymph node; UICC, Union for International Cancer Control; HPV, human 
papillomavirus.
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Figure 3. Determination of soft‑thresholding power in the weighted gene co‑expression network analysis. (A) Analysis of the scale‑free fit index for various 
soft‑thresholding powers (β). (B) Analysis of the mean connectivity for various soft‑thresholding powers. (C) Histogram of connectivity distribution when β=4. 
(D) Checking the scale‑free topology when β=4.

Figure 4. Dynamic tree cut. Dendrogram of all differentially expressed genes, which are clustered based on a dissimilarity measure (1‑topological overlap 
matrix).
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tight connectivity as candidate hub genes in the two modules 
(Fig. 5C and D). A total of 16 genes, keratinocyte differentia-
tion associated protein, suprabasin, cornifelin (CNFN), small 
proline rich protein 1B (SPRR1B), desmoglein 1  (DSG1), 
chromosome 10 open reading frame 99 (C10orf99), keratin 16 
pseudogene 3, gap junction protein β2 (GJB2), dermokine, 
LY6/PLAUR domain containing 3 (LYPD3), transmembrane 
protein 79, phospholipase A2 group IVE (PLA2G4E), trans-
glutaminase 5 (TGM5), potassium two pore domain channel 
subfamily K member 6, involucrin (IVL) and kallikrein related 
peptidase 8 (KLK8), which were negatively correlated with 
the N‑stage, were identified as candidates in the blue module. 
Meanwhile, structural maintenance of chromosomes 4 and 
mutS homolog 6 (MSH6) were identified as candidates in the 
black module with a positive association.

Real hub gene identification and validation. To further vali-
date the hub genes in TCGA, the candidate hub gene expression 
N stage mRNA sequencing data of 500 patients with HNC were 
subjected to Pearson's correlation analysis (Table I). Genes 
with significant differences in the two networks (C10orf99, 
CNFN, DSG1, GJB2, IVL, KLK8, LYPD3, MSH6, PLA2G4E, 

SPRR1B and TGM5) were selected as the hub genes for further 
analysis and validation (Fig. 6). N stage is associated with clin-
ical stage; to validate this correlation further, the GSE65858 
dataset containing 270 HNC tumors and mRNA sequencing 
data with clinical and prognostic variables of patients with 
HNC in TCGA were separately subjected to Pearson's corre-
lation analysis and one‑way ANOVA (Table I). Among all 
genes selected as candidate hub genes, only CNFN and DSG1 
were found in the two networks (Fig. 7). Considering that the 
progression of a tumor affects patient prognosis, a survival 
analysis of CNFN and DSG1 was performed. Furthermore, 
it was observed that patients with increased CNFN expres-
sion had an improved survival probability in the GSE65858 
and TCGA datasets (Fig. 8A and B), compared with DSG1, 
which only exhibited its prognostic role in the TCGA HNSC 
dataset. Therefore, CNFN was identified as the real hub gene 
for further validation. In addition, it was identified that in the 
GEPIA database, the specific expression of CNFN in normal 
samples of HNSC was significantly higher than other tumors 
and other normal tissues. More convincingly, the expression 
of CNFN exhibited a significant downregulation in HNSC 
tissues compared with normal samples (Fig. 8C and D).

Figure 5. Identification of modules associated with clinical information. (A) Heatmap of the correlation between ME and different clinical information of 
HNSC (gender, age, smoking, smoking pack years, alcohol, UICC Stage, T stage, N stage, distant metastasis, treatment and HPV DNA). (B) Distribution of 
average gene significance and errors in the modules associated with the N stage of HNSC. Scatter plot of module eigengenes in the (C) blue and (D) black 
modules. T, primary tumor; N, lymph node; UICC, Union for International Cancer Control; HPV, human papillomavirus; ME, module eigengene; HNSC, head 
and neck squamous cell carcinoma.
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Figure 7. Clinical stage validation. (A) Bubble plot of stage correlation and one‑way ANOVA in the GSE65858 and TCGA HNSC datasets. Genes with 
significant P‑values of stage correlation and one‑way ANOVA in the (B) GSE65858 and (C) TGCA HNSC datasets. ANOVA, analysis of variance; TCGA, The 
Cancer Genome Atlas; HNSC, head and neck squamous cell carcinoma; FPKM, fragments per kilobase of transcript per million mapped reads.

Figure 6. N stage validation. (A) Bubble plot of N stage correlation in the GSE65858 and TCGA HNSC datasets. (B) Genes with a significant P‑value of N stage 
correlation. TCGA, The Cancer Genome Atlas; FPKM, fragments per kilobase of transcript per million mapped reads; HNSC, head and neck squamous cell 
carcinoma; N, lymph node.
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Gene set enrichment analysis. Kyoto Encyclopedia of Genes 
and Genomes pathway enrichment analysis is only used for 
the analysis of differentially expressed genes (DEGs), whereas 
GSEA analysis uses all probes or genes in the microarray, 
regardless of whether the gene is a DEG or not (15). GSEA 
analysis was performed in the present study using the 
GSE65858 and GSE39366 datasets. A total of 10 gene sets 
were enriched in GSE65858, while three were enriched in 
GSE39366. A total of three gene sets, ‘P53 pathway’, ‘estrogen 
response early’ and ‘estrogen response late’, were enriched in 
both datasets (Fig. 9).

Discussion

Head and neck oncology encompasses a group of malignancies 
that arise in the mucosal surfaces of the upper aerodigestive 
tract, including the oral cavity, pharynx, larynx and paranasal 
sinuses, in addition to cancer of the major and minor salivary 
glands (29). In addition, squamous cell carcinomas are the 
most common head and neck malignancies. Assigning the 
proper clinical stage, estimating prognosis and planning treat-
ment are key for clinicians treating patients with cancer (29). 
Solid tumor progression is characterized by regional lymph 
nodes metastasis and distant organ dissemination. A number 

of studies have demonstrated that the presence of lymph 
node metastasis in cancer patients is correlated with a poor 
prognosis and determines the course of treatment to a certain 
extent (30‑32). Further studies are required with respect to 
lymph node metastasis for HNC prognosis estimation and 
treatment planning.

The identification of disease‑associated modules via 
co‑expression analysis has emerged as a powerful method of 
obtaining novel insights into cancer biology (33). A number 
of studies have identified that gene signatures may predict the 
early detection, clinical stage, survival outcome or treatment 
of cancer (34‑36). Based on WGCNA, Yuan et al (15) reported 
that COL3A1 was associated with the aggressiveness and poor 
prognosis of breast cancer with the possible mechanism of 
regulating the MAPK pathway. Zhou et al (16) reported that 
ten hub genes (cyclin B1, centromere protein F, DLG associated 
protein 5, cyclin A2, kinesin family member 14, NIMA related 
kinase 2, kinesin family member 23, TPX2, ubiquitin conju-
gating enzyme E2C and Rac GTPase activating protein 1), 
which were associated with tumor progression and prognosis, 
were identified in pancreatic carcinoma. Liu et al (17) identified 
essential genes involved in the pathogenesis of osteosarcoma 
by constructing a gene co‑expression network. Using the 
WGCNA approach, the blue and black modules associated 

Figure 8. Outcome and expression level validation. (A) Overall survival analysis using GSE65858. (B) Overall survival analysis using TCGA HNSC. (C) CNFN 
expression level in all tumors and normal tissues using the Gene Expression Profiling Interactive Analysis database. (D) Expression level of CNFN using 
TCGA HNSC. TCGA, The Cancer Genome Atlas; HNSC, head and neck squamous cell carcinoma; CNFN, cornifelin; FPKM, fragments per kilobase of 
transcript per million mapped reads.
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with the N stage of HNC were screened in the present study. 
A total of 18 genes with high connectivity in the two modules 
were distinguished as candidate hub genes. These genes were 
enriched in the ‘P53,’ ‘estrogen response early,’ and ‘estrogen 
response late’ pathways via pathway enrichment analysis of 
GSEA. Following verification, CNFN and DSG1 were obtained 
as real hub genes closely associated with the N stage of HNC 
and vital biological processes. Following further validation via 
survival analysis, CNFN was demonstrated to be more tightly 
correlated with survival compared with DSG1.

CNFN (cornifelin, also termed PLAC8L2) is highly 
expressed in the esophagus and skin, and is located on chro-
mosome 19q13.2. There are few reports on CNFN, and no 
reports verifying its function, to the best of our knowledge. 
Huang et al (37) revealed that CNFN was one of the core genes 
in the placental tissue involved in the development of gesta-
tional diabetes mellitus. Michibata et al (38) demonstrated that 
CNFN had increased expression in psoriatic skin. As one of the 

novel UVB signature genes, CNFN may be utilized to predict 
UVB photobiological effects on the skin and skin carcinogen-
esis (39). Zhang et al (40) reported that CNFN was potentially 
important for breast cancer due to its differential expression in 
tumors compared with normal breast tissues. Excluding these 
reports, no research on CNFN and other diseases was identi-
fied. In the present study, CNFN was regarded as the key hub 
gene associated with the clinical stage of HNC with survival 
differences, and exhibited differential expression between 
normal and tumor samples of HNSC, suggesting that CNFN 
may be used as a biomarker for assigning the correct clinical 
stage and for estimating the prognosis of patients with HNC.

The functional and pathway enrichment analysis indicated 
that three gene sets, ‘P53 pathway’, ‘estrogen response early’ 
and ‘estrogen response late’, were significantly enriched. 
The P53 pathway, one of the canonical pathways controlling 
cell‑cycle progression, cell growth and apoptosis, has been 
reported to serve important roles in natural malignancy 

Figure 9. GSEA analysis. (A) Venn plot of the GSEA results of the GSE65858 and The Cancer Genome Atlas head and neck squamous cell carcinoma datasets. 
(B) Bubble plot of the significant gene sets. (Ca-f) Significant gene set. GSEA, gene set enrichment analysis; CNFN, cornifelin; P53, cellular tumor antigen P53.
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carcinogenesis (41‑43). TP53, also known as Tp53 or p53, is 
frequently altered in human cancer. The reactivation of p53 
activity in tumors results in tumor suppression in vivo (44). 
Oncogenes are overexpressed in numerous cancer types, 
thereby inhibiting the expression of tumor suppressor p53 (45). 
Wade et al  (46) reported that as an oncogene, MDMX is 
overexpressed in a number of tumors, including breast and 
colorectal cancer, melanoma and osteosarcoma, leading to 
the suppression of tumor suppressor p53. The amplification of 
MDMX may inhibit the anticancer effects of the p53 protein 
and lead to tumor resistance (45). Venkatanarayan et al (44) 
reported that pramlintide, a synthetic analog of amylin, was 
extremely effective for p53‑deficient thymic lymphomas, 
indicating a novel therapeutic strategy to target p53‑deficient 
tumors. Therefore, personalized cancer therapy that is based 
on targeting the P53 pathway is an appealing therapeutic 
strategy for treating cancer with P53 pathway dysfunction. 
The P53 pathway is frequently co‑altered with other pathways. 
One alteration of this canonical pathway is sufficient to alter 
others functionally, and pathways frequently have multiple 
alterations in one tumor sample  (43). For example, in the 
small intestine and colon, the suppression of APC produces 
adenomas; with mutations of Kras and p53, this may progress 
to invasive carcinoma  (47). To maintain homeostasis and 
proper cellular function, large tumor suppressor kinases 1 
and 2, the Dbf2‑related kinases, have emerged as central 
regulators of cell fate by modulating the p53 and estrogen 
pathways  (48). Kundu  et  al  (49) indicated that in certain 
ER+ breast cancers the estrogen‑MDM2‑Rb‑E2F1 axis is a 
central hub for estrogen‑mediated p53‑independent signal 
transduction. Zwijsen et al (50) demonstrated that estrogen, 
which acts via binding to a specific estrogen receptor (ER), 
played an important role in regulating the cell proliferation 
of the female breast. In breast cancer, the estrogen response 
and ERBB2/HER‑2 pathways have long been implicated in 
etiology and drug response (51). Hsu et al (52) reported that 
aberrantly amplified estrogen response elements may poten-
tially deregulate target gene expression associated with breast 
cancer development. CNFN, the gene identified in the present 
study to be closely associated with N  stage and survival, 
may be involved in the P53 pathway and estrogen response. 
Therefore, further exploration of the P53 pathway and estrogen 
response, in addition to the associated genes, is warranted.

Although the present study identified hub genes associated 
with lymph node metastasis and survival via bioinformatics 
methods, no experimental study of these real hub genes was 
conducted, which is a limitation of the study. A clinical study 
and a functional analysis in vivo and in vitro are required to 
investigate the functions of these genes further. In conclu-
sion, CNFN was involved in the progression of lymph node 
metastasis in HNC. This correlation provided a hypothesis that 
genes associated with N stage may have an essential role in 
deciding HNC metastatic progression. To elucidate additional 
carcinogenesis and metastasis targets, more basic functional 
studies are required to investigate these selected genes further.
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