The role of GDF15 in bone metastasis of lung adenocarcinoma cells

LIAN DUAN1*, HAI-LIN PANG1*, WEN-JUN CHEN1, WEI-WEI SHEN1, PEI-PEI CAO1, SHU-MEI WANG2, LI-LI LIU1 and HE-LONG ZHANG1

Departments of 1Oncology and 2Pathology, Tangdu Hospital, The Air Force Medical University, Xi’an, Shaanxi 710038, P.R. China

Received July 30, 2018; Accepted February 15, 2019

DOI: 10.3892/or.2019.7024

Abstract. Lung cancer is the most common malignant tumor in China. It often metastasizes to bone, thereby significantly shortening the lives of patients, and reducing their quality of life. However, the efficacy of treatment for bone metastasis of lung cancer at this stage is very limited. The development and clinical application of molecular-targeted drugs for the effective targeted therapy of bone metastasis of lung cancer are urgently required. The growth differentiation factor 15 (GDF15) gene which may be associated with bone metastasis of lung cancer, was screened out by whole-genome sequencing. In the present study, we used a recombinant GDF15 lentivirus technique to upregulate the expression of GDF15 in lung adenocarcinoma A549 cells, and the results revealed that GDF15 could inhibit the proliferation, migration and invasion, while promoting apoptosis of A549 cells. In addition, GDF15 significantly decreased the number and sites of lung metastases and bone metastases in vivo compared to the control group. Finally, it was revealed that Smad2 and phospho-Smad2 protein expression was lower in the GDF15-overexpressing A549 cells. This result indicated that the tumor suppressive effect of GDF15 may be related to the TGF-β/Smad signaling pathway, although more studies are still required for confirmation. In summary, GDF15 inhibited the growth and bone metastasis of lung adenocarcinoma A549 cells, and this effect may be achieved through the TGF-β/Smad signaling pathway.

Introduction

The incidence and mortality rate of lung cancer is ranked first in malignant tumors in China (1). Adenocarcinoma is the most common pathological type of lung cancer, accounting for approximately 1/3 of all lung cancers, and is still on the rise. Due to the poor anticancer awareness of Chinese people, more than 60% of patients have already dominant or recessive metastases when they are diagnosed (2). Bone is a common metastatic site of lung adenocarcinoma, with an incidence of approximately 35% (3). The associated skeletal-related events (SREs) such as pathological fractures, bone pain, spinal cord compression and hypercalcemia severely reduce the quality of life in patients (4). In recent years, the use of bisphosphonate has delayed the destruction of bone to some extent (5), but the overall therapeutic effect is not ideal due to its inability to promote new bone formation, the limited therapeutic effects and the serious side-effects (6). Therefore, searching for target genes related to bone metastasis of lung cancer and exploring their mechanism can lay a theoretical foundation for the treatment of bone metastasis of lung cancer.

Our group has long been committed to the study of the mechanism of lung cancer bone metastasis, and several related molecules have been found (7-14). We performed whole-genome sequencing on two groups of lung adenocarcinoma patients (with bone metastasis or without bone metastasis) in a previous study (unpublished data), and of the 240 differential genes that were found between the two groups, the GDF15 gene was one of the differential genes. However, there have been no studies on whether the GDF15 gene is related to bone metastasis in lung adenocarcinoma. Thus, we carried out this experiment in order to clarify the role and mechanism of GDF15 in bone metastasis of lung adenocarcinoma.

Materials and methods

Cell culture and invasive selection. The human lung adenocarcinoma A549 cells were purchased from the American Type Culture Collection (ATCC; Manassas, VA, USA) and were maintained in liquid nitrogen at our laboratory (Department of Oncology, Tangdu Hospital, Xi’an China). The highly invasive A549 cells used in this experiment were systematically selected by multiple invasion process as previously reported.
for greater migration and metastasis capacity (15). The culture medium was prepared with RPMI-1640 medium (Gibco; Thermo Fisher Scientific, Inc., Waltham, MA, USA) and 10% fetal bovine serum (FBS; Biochrom GmbH, Berlin, Germany). A549 cells were maintained in this media at 37°C with 5% CO₂, 100 U/ml streptomycin and 100 U/ml penicillin.

Cells stable transfection. Recombinant GDF15 lentivirus (homo; NM_004864.2), NC lentivirus (Ubi-MCS-3FLAG-SV40-EGFP-IRES-puromycin) and Luciferin-LV (Ubi-MCS-Luc-IRES-Puromycin) were synthesized by Shanghai GeneChem Co., Ltd. (Shanghai, China), with virus titers of 1x10⁹, 2x10⁹ and 5x10⁸ TU/ml. The GDF15-LV and NC-LV viruses were respectively added into target A549 cells at a multiplicity of infection (MOI) of 20 with ENi,S and 1 µg/ml Polybrene (Shanghai GeneChem Co., Ltd.). The infected A549 cells were selected for 2 weeks using a medium with a concentration of 1.0 µg/ml puromycin to obtain stably transfected LV-GDF15-A549 and LV-NC-A549 cells. Then the puromycin level in the culture medium was maintained at 0.5 µg/ml. Luciferin-LV virus was used to view the distribution of tumor cells in vivo, it was used to infect both LV-GDF15-A549 and LV-NC-A549 cells by the same method. The interference efficacy was assessed by real-time PCR and western blot analysis.

RT-qPCR. Total RNA was isolated from the cells using TRIzol reagent (Thermo Fisher Scientific, Inc.) and purified by chloroform and isopropanol. After washing with absolute ethanol, the RNA was dissolved in deionized water and 2 µl were used for purity and concentration determination. RNA was reverse-transcribed into cDNA using QuantiNova™ Reverse Transcription kit (Qiagen GmbH, Hilden, Germany). qPCR was performed using QuantiNova™ SYBR-Green PCR kit (Qiagen GmbH) and the thermocycling conditions are listed in Table I. GAPDH was used as an endogenous control (dilution 1:1,000; cat. no. sc-135644; Santa Cruz Biotechnology) or rabbit anti-human GDF15 polyclonal antibody (dilution 1:1,000; cat. no. ZB-2301; ZhongShan Jinqiao, Beijing, China) or HRP-conjugated goat anti-rabbit IgG (dilution 1:3,000; cat. no. AB3101073; Sigma-Aldrich, Merck KGaA, Darmstadt, Germany) at 37°C for 1 h. Finally, the target proteins were visualized by chemiluminescence (Pierce Biotechnology, Inc.; Thermo Fisher Scientific, Inc.) and AlphaImager 2200 software v3.2.1.2 (Alpha Innotech Corp.; ProteinSimple, San Jose, CA, USA) was used to analyze the densitometry of bands.

MTT assay. Single cell suspensions were prepared and seeded into 96-well plates at 2x10³ cells/well, and each well contained 200 µl RPMI-1640 medium with 10% FBS. A total of eight 96-well plates were inoculated and placed back into the carbon dioxide cell incubator. One of the eight plates was selected at a fixed daily time and 20 µl/well of MTT stock solution was added (5 mg/ml). The plate was then incubated at 37°C for 4 h, and the medium was removed and replaced with an additional 150 µl of dimethyl sulfoxide (DMSO) was added. After sufficient shaking, the absorbance was detected at 580 nm by a microplate reader (Multiskan MK3; Thermo Fisher Scientific, Inc.). This assay was performed in triplicate.

Colony formation assay. The cells in logarithmic growth phase were seeded into 6-well plates at 200 cells/well, supplemented with complete medium to 2 ml, and then the cells and the medium were mixed by shaking the 6-well plates slowly. The 6-well plates were incubated at 37°C, with 5% CO₂, for two weeks. The cells were subsequently stained with 0.25% crystal violet, and colonies of >50 cells were counted. This assay was duplicated in triplicate.

Cell migration and invasion assay. The serum of the culture medium was removed 12 h before the experiment, and the invading potential of the cells was investigated by 8-µm pore size Transwell inserts (Corning Inc., Corning, NY, USA). The cells were resuspended in serum-free RPMI-1640 medium and the concentration was adjusted to 1x10⁴/ml. Then 200 µl of cell suspension was placed into the upper chamber of the wells, and 500 µl RPMI-1640 medium with 10% FBS was placed in the bottom chamber. After 24 h of incubation at 37°C, the chamber was removed, rinsed with PBS, and the cells on the upper surface of the membrane filters were removed with a cotton swab. The remaining cells on the lower surface were fixed in 95% ethyl alcohol for 5 min, and then were stained with 0.5% crystal violet for 10 min. Ten fields were selected randomly and the invasive cells were counted manually. All assays were performed three times.

<table>
<thead>
<tr>
<th>Step</th>
<th>Temperature (°C)</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>95</td>
<td>2 min</td>
</tr>
<tr>
<td>Step 2</td>
<td>95</td>
<td>10 sec</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>30 sec</td>
</tr>
<tr>
<td></td>
<td>Number of cycles, 40</td>
<td></td>
</tr>
</tbody>
</table>
The cell invasion assays followed the same protocol as aforementioned except for the 70-µl Matrigel (dilution 1:8; Corning Inc., Corning, NY, USA) that was used to pre-coat the upper chamber of the wells.

Flow cytometry. The cell apoptosis rate was assessed by flow cytometry with an Annexin V-FITC/PI kit (Nanjing KeyGen Biotech Co., Ltd., Nanjing, China). Cells were harvested by centrifugation at 800 g for 10 min, and washed twice with 2 ml ice-cold Dulbecco's phosphate-buffered saline (DPBS). Then, the cells were resuspended in 300 µl 1X binding buffer at a concentration of 5x10^5 cells/ml. Subsequently, Annexin V-FITC (10 µl) and PI (10 µl) were added successively and the tube was incubated at 4°C for 30 min in the dark. The cells were washed with ice-cold DPBS again. The apoptotic level was analyzed using a FACS Calibur system (BD Biosciences, Franklin Lakes, NJ, USA) and the sum of the upper right and lower right quadrants was the ratio of apoptosis.

In vivo metastasis experiment. Twenty-four-week-old NOD-SCID female mice weighing 20-25 g, were purchased from Hunan SJA Laboratory Animal Co., Ltd. (Changsha, China). They were housed in a specific pathogen-free (SPF) laboratory animal environment (temperature, 22°C; ventilation rate, 15/h; light/dark cycle, 12/12 h; food was sterilized with Cobalt-60 irradiation and water was autoclaved, and access to the food was ad libitum; tumor size not exceed 2.0 cm) by professional breeders and were divided into the experimental and the control group both with an equal number of mice. A549-GDF15 and A549-NC cells in the logarithmic growth phase were harvested with DPBS to a cell suspension with a concentration of 3x10^7 cells/ml. Furthermore, the cell viability was determined with trypan blue exclusion test and the result was >90%. Then, the cells were slowly injected into each mouse by the tail vein way. Five minutes later, the In Vivo Imaging System (Carestream Health Canada, Concord, ON, Canada) was used to obtain X-ray images and biofluorescence imaging of the mice in order to evaluate the bone metastasis. Finally, the mice were sacrificed humanely by the perfusion of 2 ml of 10% KCl via the tail vein. The lungs were excised and weighed, and the number of metastatic lesions >0.5 mm in diameter on the surface of the lungs was counted.

Statistical analysis. The Student's t-test was used to analyze the statistical difference between the A549-GDF15 group and the A549-NC group in cell proliferation, colony formation, migration, invasion, apoptosis rate assay and metastasis analysis in vivo, and the statistical SPSS 19 software package (IBM Corp., Armonk, NY, USA) was utilized. P<0.05 was considered to indicate a statistically significant difference.

Results

The expression levels of GDF15 are effectively increased in transfected cells. The successful construction of A549 cells with high expression of GDF15 was confirmed by RT-PCR (Fig. 1A) and western blot analysis (Fig. 1B) from mRNA and protein levels, respectively. Furthermore, the EGFP gene was trans-fected with the lentivirus vector as a positive control to reveal the transfection efficacy. The results revealed that >85% of cells were EGFP-positive 24 h after transfection (Fig. 1C).

Overexpression of GDF15 inhibits the proliferation ability of A549 cells. The changes on cell proliferation were evaluated by MTT and colony formation assays. As revealed in the cell growth curve in Fig. 2A, the slope of the ‘S’ curve of the A549-GDF15 group was smaller. A two-sample t-test was performed on the OD values of the two groups on the 3rd, 4th and 5th day, and the results revealed that the A549-GDF15 group was lower than the A549-NC group (P<0.05). Consistently, the colony formation rate of A549-GDF15 cells (0.170±0.018) in the experimental group was significantly lower than that of the control group (0.442±0.059), and the difference was statistically significant (P<0.01) (Fig. 2C). Moreover, the colonies that formed in the experimental group were significantly smaller than the control group (Fig. 2B). In conclusion, these results indicated that GDF15 inhibited the proliferation of A549 cells.

A high level of GDF15 inhibits migration and invasion in A549 cells. The number of A549-NC and A549-GDF15 cells that passed through the membrane filters without Matrigel were 175±16.84 and 54±6.11, respectively (Fig. 3A and B). In addition, the number of the cells that passed through the membrane filters with Matrigel were 77±9.08 and 23±3.95, respectively (Fig. 3C and D). These results revealed that upregulation of GDF15 in A549 cells significantly decreased the invasive and migratory abilities of A549 cells (P<0.01).

Upregulation of GDF15 promotes apoptosis of A549 cells. Cell apoptosis was detected by Annexin V-FITC/PI double staining.
The apoptosis rates of A549-NC and A549-GDF15 were 17.19±2.14 and 25.14±2.66% by three independent experiments, and the difference of the two groups was statistically significant (P<0.05) which meant that GDF15 increased the apoptosis of A549 cells (Fig. 4).

GDF15 suppresses bone metastasis of A549 cells in vivo. In order to analyze the biological role of GDF15 in lung cancer cell bone metastasis in vivo, bone metastasis or no bone metastasis was detected using a mouse model, and the rate of bone metastasis between the A549-NC group and the A549-GDF15 group was compared. If a mouse was identified with bone metastasis, the total number of bone metastasis lesions was counted and analyzed with the Student's t-test. When bone metastasis symptoms appeared or after six weeks of experimentation, the mice were anesthetized and the bone metastases were investigated using X-ray imaging and luciferase imaging, and the data was evaluated by two experienced investigators. As presented in Table III, 7 out of 10 recipient mice developed bone metastasis in the A549-NC group at day 42 compared

<table>
<thead>
<tr>
<th>Cells</th>
<th>Incidence</th>
<th>Numbers of bone metastases</th>
</tr>
</thead>
<tbody>
<tr>
<td>A549-NC</td>
<td>7/10</td>
<td>1.60±1.35</td>
</tr>
<tr>
<td>A549-GDF15</td>
<td>1/10</td>
<td>0.10±0.32*</td>
</tr>
</tbody>
</table>

The incidence of metasesis in mice and the number of metastatic lesions in bone at the 6th week after inoculation. Values are presented as the means ± SD. *P =0.007 compared with the control group.
with 1 out of 10 mice in the A549-GDF15 group. Moreover, the total number of bone metastasis lesions was counted, and the results revealed a statistical difference in the number of bone metastases in the two groups (P<0.01), which suggested that GDF15 could markedly inhibit osteolytic bone metastasis lesions. Representative X-ray images of skeletal metastasis are presented in Fig. 5, and D-Luciferin biofluorescence signals were detected in the corresponding positions (Fig. 6).

Figure 3. Migration and invasion capabilities of A549-GDF15 and A549-NC cells. (A) Representative images of the stained migrated cells. (B) Quantification of the results from the cell migration assay ("**P<0.01"). (C) Representative images of the stained invaded cells. (D) Quantification of the results from the cell invasion assay ("*P<0.01"). Data are expressed as the mean ± standard deviation. GDF15, growth differentiation factor.

Figure 4. Cell apoptosis was detected by FACSCalibur system with an Annexin V-FITC/PI kit. (A and B) The images of the apoptosis rate of A549-NC and A549-GDF15 cells. (C) Statistical analysis of the apoptosis rate ("*P<0.05"). GDF15, growth differentiation factor.
GDF15 still inhibits tumor growth in vivo. The NOD-SCID mice were sacrificed by excessive anesthesia as aforementioned. After dissection, the lungs were weighed and the number of tumors with a diameter >0.5 cm on the lung surface was counted. A part of the results is presented in Table IV and Fig. 7. The statistical analysis revealed that the weight of the lungs of A549-GDF15 mice was lighter (P<0.05) and the number of tumors was less (P<0.05) than the control group. Overexpression of GDF15 could lower the tumor burden in vivo. Thus, these results revealed that reduction of bone metastasis may be directly related to the lower number of tumors in the NOD-SCID mice with A549 cells overexpressing GDF15.

The inhibitory effects of GDF15 on lung adenocarcinoma cell line A549 may involve the TGF-β/Smad signaling pathway. In order to explore the mechanism of GDF15 inhibition of the growth and bone metastasis of A549 cells, we used western blot analysis to detect the different expression of proteins in A549-NC and A549-GDF15 cells. The results revealed that the

<table>
<thead>
<tr>
<th>No.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>NC group</td>
<td></td>
</tr>
<tr>
<td>No. of tumors</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>8</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Weight of the lungs (g)</td>
<td>0.19</td>
<td>0.13</td>
<td>0.14</td>
<td>0.14</td>
<td>0.11</td>
<td>0.11</td>
<td>0.26</td>
<td>0.12</td>
<td>0.17</td>
<td>0.12</td>
</tr>
<tr>
<td>GDF15 group</td>
<td></td>
</tr>
<tr>
<td>Number of tumors</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Weight of the lungs (g)</td>
<td>0.12</td>
<td>0.12</td>
<td>0.10</td>
<td>0.13</td>
<td>0.11</td>
<td>0.10</td>
<td>0.11</td>
<td>0.11</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 5. (A) Representative X-ray image of a mouse in the A549-NC group. (B and C) Osteolytic bone metastasis lesions in the knee joint and spines of the mouse in A. (D) Representative X-ray image of a mouse in the A549-GDF15 group. (E and F) Normal knee joint and spine. GDF15, growth differentiation factor.
levels of Smad2 and p-Smad2 protein in A549-GDF15 cells were lower than those in the control group (Fig. 8), suggesting that GDF15 may inhibit tumor growth and metastasis through the TGF-β/Smad signaling pathway.
Figure 8. Differential expression of Smad2 and p-Smad2 proteins in two groups of cells.

Discussion

Growth differentiation factor 15 (GDF15), also known as macrophage inhibitory cytokine-1 (MIC1), non-steroidal anti-inflammatory drug activated gene-1 (NAG-1), placental bone morphogenetic protein (PLAB), is a member of the transforming growth factor-β (TGF-β) superfamily. It is expressed in normal tissues at low levels, but is associated with hypoxemia, inflammation, acute injury and many other stress states (17), abnormal expression in a variety of tumors (18-20), cardiovascular disease (21), diabetes (22) as well as other diseases.

The role of GDF15 in tumors remains controversial. A series of studies has suggested that GDF15 is a tumor-suppressor gene, which can exert tumor suppression through the activation of tumor-suppressor pathways, such as p53 (23), glycogen synthase kinase-3β (GSK3β) (24) and early growth response protein 1 (EGR-1) (25). Drugs that prevent tumor progression have been revealed to exert antitumor effects by upregulation of GDF15, and the most classical is non-steroidal anti-inflammatory drugs (NSAIDs), which inhibit tumor progression primarily by promoting apoptosis (26). In transgenic mouse experiments, the mice with a high-level of GDF15 had fewer and small intestinal tumors (27,28), and a study based on prostate cancer mice reached similar conclusions (29). Results from studies on lung cancer were also more likely to support the notion that GDF15 inhibits the development of tumors (26). Salinomycin decreased the proliferation, migration and invasion of lung cancer cells by promoting the expression of GDF15 (30). Another study on lung cancer revealed that the tumor growth of mice treated with GDF15 was significantly inhibited, and the apoptosis of tumor cells was increased (31). These data were consistent with the present study.

However, other studies have revealed that abnormally elevated levels of GDF15 often predict more metastases, worse prognosis and drug resistance (32,33). The serum levels of GDF15 were significantly higher in multiple types of malignancies and lung cancer patients with bone metastases (P<0.0001) (34). In addition, GDF15 promoted osteoclast differentiation while inhibiting osteoblast differentiation in vitro in multiple myeloma (35) and prostate cancer bone metastasis (36). Our conclusion appears to contradict these studies. However, as a distant relative of the TGF-β superfamily, GDF15 is similar to other family members, as it plays a complex but not yet fully studied role in various tumors. GDF15 was revealed to be negatively correlated with the expression of hypoxia-inducible factor α (HIF-1α) in mice (37), whereas the activated HIF-1α signaling pathway increased intracellular VEGF levels (38). It is well known that VEGF can drive tumor growth and metastasis by promoting angiogenesis. Moreover, as a secretory protein, the increased level of GDF15 expression in serum may be one of the feedback regulations of the body to resist tumor growth and bone metastasis.

It has been reported that GDF-15 is expressed at a low level in A549 cells (30), and in the present study, a recombinant GDF15 lentivirus was used to upregulate the GDF15 expression in lung adenocarcinoma A549 cells. It was revealed that GDF15 could inhibit the proliferation, migration and invasion, while promoting apoptosis in A549 cells. In addition, GDF15 significantly decreased the number and sites of lung metastases and bone metastases in vivo compared to the control group. However, the mechanism remains unclear. Numerous studies have suggested that GDF15 is related with osteoclastic differentiation, and that there may be a receptor of GDF15 in existence in osteocytes. Moreover, GDF15 was initially suggested to interact with TGFβR1I, however this has not been clearly ascertained (39). In addition, a new orphan receptor GFRAL was revealed to mediate the metabolic effects of GDF15 (40). GDF15 in lung cancer bone metastasis may be associated with the activation of its receptor. In prostate adenocarcinoma cell bone metastases, GDF15 suppressed formation of mature osteoclasts differentiated from RAW264.7 macrophages and bone-marrow precursors by M-CSF/RANKL in a dose-dependent manner, and the mechanism involved inhibition of the expression of c-Fos, carbonic anhydrase II and cathepsin K (a key osteoclast enzyme), as well as activity of NF-κB by delayed degradation of IkB carboxon and induced changes in SMAD and p38 signaling (41). GDF15 is not only expressed in the cytoplasm and ECM, but also in the nucleus. It is dynamically moved to the nucleus, exported into the cytoplasm, and further transported into the ECM, and CRM1 is a key protein involved in the exportation of GDF15 from the nucleus into the cytoplasm. Nuclear pro-GDF15 was revealed to attenuate TGF-β-mediated Smad signaling through interruption of DNA binding activity of the Smad complex upon TGF-β stimulation (42). In the present study, with regard to the mechanism, the key protein Smad2/p-Smad2 in the TGF-β/Smad signaling pathway of A549 cells overexpressing GDF15 was significantly increased, suggesting that GDF15 may play a tumor-suppressive role by inhibiting the Smad-related pathway, however this conclusion requires more experiments to be ascertained.

Overall, our data firstly demonstrated that overexpression of GDF15 in A549 cells inhibited growth ability and bone metastasis through the TGF-β/Smad signaling pathway. However, further study is required to investigate the details of the mechanism of GDF15 inhibition of lung cancer cell bone metastasis. As a secretory protein, the level of GDF-15 in the blood serum of both humans and mice, and also in the cultural medium (with bone metastasis or not) is very important for our research. Moreover, the receptor of GDF15 in lung cancer bone metastasis remains to be identified in a future study.

Acknowledgements

The authors are grateful for the interpretation of the X-ray images and biofluorescence imaging provided by Professor...
Qiu Xiu-Chun and her MSc student Dong An-Gang (Department of Orthopedics, Tangdu Hospital, Xi’an, China).

Funding
The present study was supported by the National Natural Science Foundation of China (nos. 81572251 and 81572814).

Availability of data and materials
All data generated or analyzed during this study are included in this published article.

Authors’ contributions
LD and HLZ designed the study, LD and HLP performed all the in vitro experiments. WJC, WWS, PPC and SMW performed the animal study. WJC, WWS, PPC, SMW and LLL analyzed the data. LLL provided guidance during the study. LD and HLP were also involved in the conception of the study. All authors read and approved the manuscript and agree to be accountable for all aspects of the research in ensuring that the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Ethics approval and consent to participate
All animal studies strictly abided by the Regulations on Animal Experimentation formulated by the Laboratory Animal Center of the Air Force Military Medical University (Xi’an, China) and this study was approved by the Animal Experimental Ethical Inspection Committee of this Center (no. 20171203).

Patient consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

References

