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Abstract. Head and neck squamous cell carcinoma (HNSCC) 
is the sixth most commonly diagnosed cancer worldwide. It 
has poor clinical outcome due to intrinsic or acquired drug 
resistance. Deregulation of both apoptosis and autophagy 
contributes to chemotherapy resistance and disease progres-
sion. A new member of the inhibitors of apoptosis protein 
(IAP) family, namely survivin, is selectively overexpressed 
in tumors, including HNSCC, but not in normal tissues. 
Thus, it is considered a tumor biomarker. Here, we reviewed 
survivin expression and function in tumor progression 
focusing on its nodal role in the regulation of cell apoptosis 
and autophagy. Based on literature data, survivin targeting 
may be envisaged as a novel therapeutic strategy.
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1. Introduction

Head and neck squamous cell carcinoma (HNSCC) represents 
one of the most commonly diagnosed cancer worldwide (1). It 
develops in the squamous mucosa of the upper aerodigestive 
tract i.e. lip, tongue, nasopharynx, oropharynx and larynx. 
Accordingly, HNSCC is a heterogeneous group that includes 
oral squamous cell carcinoma (OSCC) and oropharyngeal 
squamous cell carcinoma (OPSCC) as the most common 
histotypes (2). Tumorigenesis and progression of HNSCC 
starts from a precancerous lesion to a malignant primary 
tumor to a metastatic tumor. This sequence implies that tumor 
cells acquire a more aggressive phenotype over time. Recent 
genomic and functional studies highlight the role of several 
tumor-suppressor pathways, including p53, Rb/INK4/ARF, 
PI3K/AKT/mTor and Notch, in the molecular pathogenesis of 
HNSCC (3). Tobacco use, alcohol consumption and infection 
of human papilloma virus (HPV) are the most important risk 
factors (4,5). Based on HPV infection, HNSCC is subgrouped 
into HPV-positive and HPV-negative forms that differ in 
regards to prognosis. HPV-negative HNSCC cases have poor 
prognosis and their outcome has not improved in the last few 
years (5). Conventional HNSCC therapy depends on tumor site 
and stage, and includes surgery, chemotherapy, radiotherapy 
and radio-chemotherapy. However, due to intrinsic or acquired 
drug resistance, both overall survival and prognosis still 
remain poor (6). Chemotherapy resistance is related to genomic 
complexity, intratumoral genetic heterogeneity and epigenetic 
modifications, i.e. DNA methylation, histone covalent modifi-
cations, chromatin remodelling and miRNAs, which contribute 
to the activation/inactivation of oncogenes/tumor-suppressor 
genes involved in key cellular functional pathways, namely 
cell proliferation, apoptosis, and autophagy (2,3).

Apoptosis is an evolutionarily conserved process respon-
sible for the removal of damaged/non-functioning cells. 
Tumor progression and drug resistance implicate suppression 
of apoptosis by several mechanisms including an altered 
balance between pro-survival, i.e survivin, and pro-death 
proteins (7-10).

Autophagy is a mechanism involved in the adapta-
tion of tumor cells to drug treatment (11-13). It maintains 
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intracellular homeostasis by lysosomal degradation and 
recycling of unnecessary or damaged cell components (14). 
Preclinical studies demonstrated that treatment with several 
chemotherapeutic drugs, i.e. vorinostat, cyclophosphamide, 
imatinib and bortezomib, activates autophagy in tumor cells 
as a prosurvival mechanism (6,11,12). Thus, specific drugs 
targeting apoptosis or autophagy pathways are currently under 
investigations (10-12).

Here, we describe survivin expression and function in 
regards to tumor progression focusing on its key role in cell 
cycle, apoptosis and autophagy.

2. Survivin

In 1997, Ambrosini et al (9) identified survivin, also known 
as baculoviral inhibitor of apoptosis repeat (BIR)-containing 5 
(BIRC5), as a new member of the inhibitors of apoptosis protein 
(IAP) family (15). It is widely overexpressed in most malig-
nancies including HNSCC (16). It is a multifunctional protein 
involved in the regulation of several cell processes, such as 
apoptosis and mitosis, through the coordination of the spindle 
checkpoint system and of the chromosome passenger protein 
complex (CPC), microtubule dynamics and cell response to 
stress (15). All of these functions are related to its structure (17).

Survivin is the smallest member of the IAP family that 
is composed of 142 amino acids with a single N-terminal 
Zn2+-binding BIR domain and a C-terminal with α-helix 
motif (15). Both domains are essential for its functions; the 
former binds the target proteins involved in the regulation 
of apoptosis and mitosis, the latter contains a microtubule 
binding site that allows interactions between survivin and the 
cytoskeleton (15,16). Analysis of crystal structure of human 
survivin demonstrates its bow tie-shaped dimer containing 
two unusual C-terminal α-helical extensions interacting with 
several proteins (18).

The survivin gene locus (BIRC5) is located on chromo-
some 17q25 and encodes for multiple alternative splice 
variants: Survivin full length, survivin 2α (this has a new open 
reading frame and a new stop codon encoding for a truncated 
74 amino acids protein), survivin 2B (this contains only a part 
of intron 2), survivin 3B (this has additional 3B exon with a 
stop codon), and survivin ΔEx3 (this lacks 118 nucleotides of 
exon 3) (15,19,20). Alternative survivin splice variants show 
different heterodimerization ability and different subcellular 
localization and functions that account for survivin multiple 
functional roles in normal and tumor cells (21). In particular, 
survivin 2α restrains the anti-apoptotic activity of survivin, 
survivin 2B displays no anti-apoptotic activity and antagonizes 
the anti-apoptotic isoforms, and the function of survivin 3B 
remains unknown (22).

Fortugno et al (23) identified distinct survivin subcellular 
pools, including a predominant cytosolic fraction and a smaller 
nuclear pool that localizes to kinetochores of metaphase chro-
mosomes. The cytosolic pool is associated with interphase 
microtubules, centrosomes, spindle poles and mitotic spindle 
microtubules at metaphase and anaphase. In synchronized 
HeLa cell cultures, cytosolic survivin is phosphorylated by 
p34cdc2 on Thr34, and increases during mitosis. By contrast, 
nuclear survivin starts to accumulate in S-phase, it is neither 
complexed with p34cdc2 nor phosphorylated on Thr34. 

Analysis on the SWISS-PROT and YPD databases predicted 
a preferential cytoplasmic localization of survivin and 
survivin 2B, and a preferential nuclear localization of 
survivin ΔEx3 (21). In tumor cells, survivin is also located in 
mitochondria associated to heat shock protein 90 (Hsp90); as a 
response to apoptotic stimuli it is released into the cytosol and 
suppresses apoptosis (24).

Survivin expression is tightly regulated through multiple cell 
signaling pathways at transcriptional and post-transcriptional 
levels leading to its overexpression during tumorigenesis and 
drug resistance (25). The survivin promoter region lacks the 
typical TATA or CCAAT box, and harbors binding sites for 
a range of regulatory proteins, including specificity protein 1 
(Sp1) and p53. The observations that: i) Survivin overexpres-
sion parallels increased levels of Sp1, ii) Sp1 mutations reduces 
the expression of BIRC5 gene, and iii) Sp1 inhibition by mith-
ramycin or RNA interference decreases the survivin promoter 
activity, point to a central role of Sp1 in the regulation of 
survivin gene transcription (25). The p53 protein is a transcrip-
tion factor that induces apoptosis by regulating the expression 
of several apoptotic genes. In particular, the wild-type p53 
binds specific elements of the survivin promoter and represses 
survivin expression (15,25,26).

Insulin-like growth factor 1 (IGF-1) promotes cell 
proliferation and survivin expression via activation of the 
PI3K/AKT/mTOR pathway (27). Several lines of evidence 
show that the STAT3 pathway regulates survivin gene expres-
sion. Constitutive activation of STAT3 in primary effusion 
lymphoma, gastric cancer and breast cancer cells correlates 
to survivin overexpression, disease progression and tumor cell 
survival (28,29). Inhibition of STAT3 with antisense oligo-
nucleotides reduces survivin expression and sensitizes breast 
cancer cells to chemotherapy proving that survivin is a direct 
STAT3-target gene (30). Moreover, survivin is a downstream 
target of the YAP/COX-2/PGE2 pathway. A genome microarray 
analysis showed that the overexpression of the transcriptional 
coactivator YAP triggers COX-2 and increases survivin expres-
sion sustaining cell survival and proliferation (31).

Post‑translational modifications, including phosphoryla-
tion and acetylation, regulate the survivin cell functions. 
Phosphorylation of the amino acid Thr34 in the BIR domain 
prevents the binding of survivin to caspase-9, inhibits intrinsic 
apoptosis (see the section below), and increases its cytopro-
tective effect in tumor cells (Fig. 1) (32). Mitochondrial and 
cytosolic survivin play a different apoptotic role that depends 
on the phosphorylation of Ser20. In response to pro-apoptotic 
stimuli, the mitochondrial dephosphorylated Ser20 survivin is 
released into the cytosol and prevents caspase activation by 
complexing with X-linked IAP (XIAP). In contrast, survivin is 
phosphorylated on Ser20 by polo-like kinase1 (PLK1), a 
multitasking protein involved in cell mitotic entry, centrosome 
separation, spindle assembly and chromosome alignment. 
Phosphorylated Ser20 survivin binds to and activates Aurora B 
kinase forming the CPC, which plays an important role in 
cytokinesis (Fig. 1) (25).

3. Survivin and apoptosis

Survivin was originally identified as an IAP family member (9) 
acting as a death suppressor (33-35). Subsequently, Li et al (36) 
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demonstrated that survivin acts as an interface between the cell 
cycle and apoptosis. Indeed, interference with survivin expres-
sion or function induces pleiotropic cell cycle and apoptosis 
defects, i.e. supernumerary centrosomes, aberrant mitotic 
spindles, and polyploidy. The use of a dominant-negative 
survivin mutant or antisense survivin complementary DNA 
disrupts the assembly of survivin, caspase-3 and cyclin-depen-
dent-kinase inhibitor p21Waf1/Cip1 within centrosomes, suggesting 
that survivin controls apoptosis and is required for normal 
progression of mitosis (36). Survivin has also been suggested 
as a nodal protein involved in multiple signaling mechanisms 
in tumor initiation and progression (26). In mammalian cells, 
survivin participates in mitosis, apoptosis, and cellular stress 
response (24).

Survivin is an anti-apoptotic factor. It interacts with many 
factors that regulate intrinsic and extrinsic apoptotic path-
ways. It binds to XIAP and prevents XIAP ubiquitination 
and proteasomal destruction. The survivin/XIAP complex 
avoids caspase-9 cleavage and activation, inhibits apoptosis, 
activates several signaling pathways, and promotes tumor 
progression (37). The direct interaction of survivin with 
caspases is controversial. Indeed, some authors have 

described the interaction of survivin with caspases (38), 
while others have ruled out the effects of this interaction on 
their activity (37). This discrepancy may be explained by 
the ability of survivin to also inhibit caspase-independent 
apoptosis by interacting with the apoptosis-inducing factor 
(AIF) (39). Indeed, inhibition of survivin in breast cancer cells 
results in the nuclear translocation of mitochondrial AIF that 
causes DNA fragmentation and induces apoptosis with no 
effect on caspase-3 cleavage (39). Finally, survivin regulates 
mitochondrial apoptosis by preventing the Smac/DIABLO 
release from mitochondria (40). Following the apoptotic 
stimulus, Smac/DIABLO is released into the cytosol where 
it neutralizes IAPs, including XIAPs, and potentiates apop-
tosis (41). Song et al (42) demonstrated that a point mutation 
in the baculoviral IAP repeat motif and a C-terminal deletion 
mutant (Surv‑BIR) of survivin fail to bind to Smac/DIABLO 
and abrogate its anti-apoptotic effect.

The role of survivin has been also studied in the cellular 
stress response through its association with various molecular 
chaperones, including Hsp60 (43) and Hsp90 (44) that increase 
survivin stability and promote cell survival under cellular 
stress conditions.

Figure 1. Schematic illustration of survivin involvement in apoptotic and mitotic processes. Cell apoptosis can occur through the extrinsic and the intrinsic 
pathways. In the former, the binding of Fas ligand or tumor necrosis factor (TNF) to a death receptor (Fas or TNF-R) activates caspase-8. In stress conditions 
(UV radiation and/or chemotherapy), cells initiates the mitochondrial pathway (intrisinc apoptosis) leading to the release of apoptotic factors, i.e. cytochrome c 
(cyt c), apoptosis-inducing factor (AIF) and Smac/DIABLO, that in turn cleave pro-caspase-9 into caspase-9. Cytosolic survivin prevents caspase-9 activation, 
by binding to Smac/DIABLO, and/or to X-linked IAP (XIAP) and/or by its phosphorylation on Thr34, preventing the activation of caspase-3. Survivin affects 
the caspase-independent apoptosis by inhibiting AIF. Survivin is involved in cell cycle progression and mitosis allowing chromosome alignment, segregation 
and cytokinesis. After phosphorylation by polo-like kinase1 (PLK1) on Ser20, it binds to and activates Aurora B kinase moving to the nucleus, where it forms 
the chromosome passenger complex (CPC) with Borealin and inner centromere protein Antigen (INCEP). 
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4. Survivin and autophagy

Autophagy is a highly conserved self-degradative process 
that is essential for maintaining cell homeostasis in both 
physiological and pathological conditions such as removal of 
misfolded proteins or damaged organelles and elimination of 
intracellular pathogens in response to nutrient deprivation or 
stress conditions (11,14,45). Autophagy plays a dual role in 
tumors: i) It can support cell survival and drug resistance; ii) it 
can prevent tumor cell transformation inducing a non-apoptotic 
cell death also known as type II programmed cell death. The 
cross-regulation of these opposite effects relies on a network of 
signal transducers of autophagic and apoptotic processes (46). 
Indeed, a mutual crosstalk between Bcl-2/Beclin 1 (47), 
Atg5/BCL-xl (48), Atg12/Bcl2 (49), caspase-3/Beclin 1 (50), 
caspase-8/p62 (51), and caspase-9/Atg7 (52) that are the 
most important proteins involved in both processes has been 
demonstrated.

Survivin is involved in the cellular stress response by 
interfering with autophagy. It interacts with different proteins 
of the autophagic machinery (53). Niu et al (54) demonstrated 
that Beclin 1 is able to bind to survivin (Fig. 2). Its knockdown 
results in survivin downregulation through ubiquitination 
and proteasome degradation, and enhances TRAIL-induced 
apoptosis in human glioma cells. Roca et al (55) demonstrated 
that the chemokine (C‑C motif) ligand 2 (CCL2), an inflam-
matory cytokine with multiple effects on prostate cancer (56), 
induces survivin overexpression via the PI3K/Akt/mTOR 
pathway. Treatment of the CCL2-exposed prostate cancer 
cell line PC3 with PI3K or AKT or mTOR inhibitors reduced 
the CCL2-mediated upregulation of survivin and induced 
cell death (55). Indeed, mTOR, the most important negative 
regulator of autophagy, increases the mRNA stability and 
translation of survivin (Fig. 2) (55). Furthermore, survivin inter-
acts with the microtubule-associated protein 1 light chain 3 
(LC3), interfering with the formation of autophagosomes 
and preventing LC3-I cleavage into LC3-II. The targeting of 
survivin by YM155, the first‑in‑class survivin inhibitor (57), 
was found to increase the conversion of LC3-II and to promote 
autophagy-related cell death in breast cancer cells (58).

5. Survivin in head and neck squamous cell carcinoma

Due to its selective expression in tumors, including HNSCCs, 
but not in normal tissues, survivin has been proposed as a 
tumor biomarker (15,16). Immunohistochemical analysis of 
survivin expression in OSCC, pre-neoplastic lesions, and oral 
leukoplakia shows a significant overexpression in approximately 
80% of OSCCs and 50% of premalignant lesions, suggesting 
that survivin may be involved in the early stages of tumor 
progression (59,60). Survivin is also considered a predictor 
factor of disease progression; 94% of oral precancerous lesions 
showing survivin positivity evolve into full-blown OSCCs (61). 
Survivin expression correlates with more aggressive and 
poorly differentiated tumor phenotype, lymph node metastasis, 
poor prognosis and reduced patient survival rate (59,61-68), 
indicating that survivin could be a prognostic factor for tumor 
progression and patient outcome. Recently, Xie et al (69) 
performed a meta-analysis including 15 studies in order to 
compare the different clinicopathological features or survival 

rates with survivin expression in 1,040 OSCC patients (69). 
In this report, authors defined a significant association among 
survivin overexpression, poor prognosis, lymph node metas-
tasis and clinical stage without a significant correlation with 
the clinicopathological values, i.e. tumor differentiation grade, 
depth of invasion, age and sex. The absence of the clinico-
pathological significance of survivin may be explained by the 
presence of splice variants and/or by the different subcellular 
localization and function of survivin (69).

Engels et al (70) examined the localization and prognostic 
value of nuclear and cytoplasmic survivin in the pre-therapeutic 
biopsies from 71 OSCC patients. Cytoplasmic survivin was 
found to be associated with poor overall survival and disease 
outcome. The authors suggested that the balance between cyto-
plasmic and nuclear survivin in tumor cells is a critical factor 
for the survivin cytoprotective activity. Recently, Liu et al (71) 
examined survivin expression in 90 paired primary OSCC and 
adjacent normal tissue by immunohistochemistry. Although 
total survivin levels were higher in OSCC than in normal oral 
tissue, nuclear survivin was associated with the TNM clas-
sification of malignant tumors and tumor grade. Furthermore, 
in vitro experiments using OSCC cell lines demonstrated that 
cytoplasmic survivin mediates protection against chemo- and 
radio-therapy-induced apoptosis. Troiano et al (72) revealed 
that cytoplasmic expression of survivin is associated with poor 
overall survival in OSCC patients, while its nuclear expres-
sion correlates with a higher proliferation rate. Kaplan-Meier 
(univariate) and Cox regression (multivariate) analysis showed 
that only the cytoplasmic expression of survivin was an 
independent prognostic factor of overall survival. The authors 
performed an integrated analysis of BIRC5/survivin expres-
sion using both immunohistochemistry and bioinformatics on 
publicly available databases in order to identify the molecular 
mechanisms causing survivin overexpression. Bioinformatic 
analysis revealed a low frequency of survivin gene mutations, 
and found a correlation of survivin overexpression to the alter-
ation of genes that regulates BIRC5 expression such as AKT, 
BUB, CDKN2A1, FOXM1, KIF23, MYC, PRKACA and STAG2. 
The most recurring mutation was the homozygous deletion 
of CDKN2A gene encoding for p16(INK4A) and p14(ARF) 
proteins (72) that govern cell cycle progression. CDKN2A 
mutations and cytoplasmic survivin immunostaining have 
been associated with higher risk of melanoma (73).

Epigenetic modifications in the regulation of survivin expres-
sion play a role in HNSCC (74). Since the BIRC5 promoter is 
a GC-rich region, its hypomethylation is an important step in 
OSCC tumorigenesis (75,76). Tanaka et al (77) analyzed the 
methylation status of the BIRC5 promoter in OSCCs and oral 
pre-malignant lesions, and showed that the hypomethylation of 
this promoter occurs in all tumor tissues.

p53 participates in the survivin upregulation in OSCCs (76). 
Khan et al (78) reported a positive correlation between p53 and 
survivin expression in both HNSCC and premalignant lesions. 
This evidence suggests that p53 is involved at the early stage 
in oral cancer development and contributes to survivin overex-
pression and apoptosis deregulation.

As previously mentioned, the survivin gene locus encodes 
for multiple alternative splice variants with several heterodi-
merization possibilities and different functions (19-22). 
Analysis in 20 HNSCC cell lines at different levels of 
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differentiation showed that these cell lines expressed higher 
levels of survivin compared to a human neonatal keratinocyte 
cell line (NHEK) (79-82). Further analysis of the expres-
sion of the splice variants (survivin full length, survivin 2B, 
survivin 3B and survivin ΔEx3) by semi-quantitative RT-PCR 
highlighted that normal NHEK cells expressed low levels of 
survivin full length and survivin ΔEx3 (unpublished data). 
By contrast, higher levels of all survivin isoforms including 
survivin 2B and 3B were observed in tumor cell lines, suggesting 
a deregulated ratio between pro-apoptotic and anti-apoptotic 
survivin splice variants that may affect the pro-survival 
survivin activity (unpublished data). No correlation between 
the expression of survivin splice variants and cell differentia-
tion was observed. Indeed, high levels of survivin full length 
and ΔEx3 were detected in more differentiated (KM2, OSC30, 
OSC20 and HSG), in moderately differentiated (Ca9-22, HNT 
and KM1) and poorly differentiated (KB, HEP2, HSC3) cell 
lines (unpublished data). De Maria et al (22) analyzed the 
expression of survivin splice variants, survivin, survivin 2B, 
3B and ΔEx3, at the mRNA and protein levels in normal 
mucosa, oral precancerous lesions and OSCCs. Higher 
levels of survivin transcripts were observed in OSCCs than 
these levels in normal tissues. In particular, survivin and 
survivin ΔEx3 were the most upregulated transcripts followed 
by survivin 2B and 3B indicating a trend of association 
between survivin isoforms and clinicopathological features; 

survivin 2B was found to be increased in advanced tumors 
compared to early stage ones; conversely the survivin ΔEx3 
decreased during tumor progression and in metastasis (22).

Overall data suggest that the survivin expression may be 
considered a specific prognostic and therapeutic marker in 
HNSCCs (83).

6. Survivin as a therapeutic target

The observations that survivin is selectively upregulated in 
almost all types of human malignancies and barely detect-
able in most terminally differentiated tissues (84,85) and 
that its overexpression is associated with chemotherapy 
resistance and tumor recurrence (15,86) suggest that the 
targeting of survivin may be envisaged as a novel therapeutic 
strategy (58,87-89).

In the last few years, several authors have investigated the 
effect of survivin inhibition using different strategies, namely 
small-molecule inhibitors, antisense nucleotides, antitumor 
immunotherapy and RNA interference (Table I) (90).

The small-molecule inhibitors directly or indirectly bind 
survivin and suppress its functions. The most important one 
is sepantronium bromide YM155. It selectively suppresses 
survivin expression (91,92) and increases the p53 modulator 
of apoptosis PUMA levels and caspase-3 activation (92). It 
induces autophagic and apoptotic cell death of HNSCC cell 

Figure 2. Schematic illustration of the involvement of survivin in the autophagic process. In stress conditions (i.e. nutrient deprivation, hypoxia, oxidative 
stress, DNA damage), mTOR inhibition triggers autophagy through activation of autophosphorylated ULK1/Atg13/Atg101/FIP200 complex. This complex 
recruits Beclin‑1/PI3KC3/Vps34/AMBRA‑1/UVRAG resulting in the first steps of phagophore formation (autophagosome initiation phase). The elongation 
process requires the cleavage of the microtubule-associated protein light chain 3 (LC3-I) into the autophagic vesicle-associated LC3-II which regulates the 
fusion of the autophagosome to the lysosome. Beclin 1 binds to survivin suppressing its proteasomal degradation. Survivin acts on the final steps of autophago-
some formation by preventing LC3-II cleavage and anchorage.
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lines by inhibiting the pro-survival Akt/mTOR pathway (93). 
The therapeutic effect of YM155 was confirmed in vivo using 
xenograft and transgenic mice models; it delayed HNSCC onset 
and suppressed tumor growth via apoptosis and autophagy. 
In phase I/II clinical trials, the effect of YM155 has been 
investigated in patients with advanced hematological and solid 
tumors, including HNSCC. YM155 is safe with slight side 
effects such as microalbuminuria, fever, fatigue, haemoglobin 
reduction and lymphopenia. However, no positive effects were 
observed in patients with oesophageal cancer (92,94-97).

Recent studies have documented the role of nonste-
roidal anti-inflammatory drugs (NSAIDs) as anticancer 
drugs through the inhibition of COX2 and the expression 
of NSAID target genes (98,99). In particular, NSAIDs may 
affect survivin expression directly by blocking the activity of 
COX2 (31), and, indirectly, through the inhibition of AKT (100) 
and/or STAT3 pathways (101) and/or through the degrada-
tion of survivin via the ubiquitin proteasome system (102). 
The NSAID indomethacin was found to reduce survivin and 
Aurora B kinase and have a proapoptotic effect on human 
gastric carcinoma cell lines and in mouse gastric mucosa (103). 
Furthermore, the dual inhibition of YAP and COX2 was found 
to decrease survivin expression affecting cell apoptosis and 
invasion in vitro and tumor growth in vivo (31). The NSAID 
sulindac was demonstrated to downregulate survivin expres-
sion in a STAT3-dependent mechanism acting on HNSCC cell 
lines proliferation and apoptosis in vitro and in vivo (101).

Antisense oligonucleotides (ASO) are single-stranded 
RNA or DNA sequences of 8-50 nucleotides complementary 
to a specific RNA strand that suppress the expression of a 
specific gene. ASO have been developed as a new approach 
to inhibit survivin expression by binding its human 
mRNA. Oligonucleotides 4003, LY2181308, SPC3042 and 
EZN-3042 are survivin ASO that target different regions of 
mRNA (104-108). ASO are able to reduce cell proliferation 
by increasing caspase-dependent apoptosis in several tumor 
cells (53,105). Phase I clinical trials of LY2181308 in patients 
with advanced cancers, including one patient with OSCC, 
show great tolerability while no cytotoxic effect and only a 
promising antitumor activity closely related to survivin inhi-
bition. These clinical trials reveal encouraging data on the 
pro-apoptotic effect of ASO in combination with other chemo-
therapeutic agents (109,110).

Antitumor immunotherapy involves the use of vaccines, 
or immune cells such as natural killer cells, dendritic 
cells, and cytotoxic T lymphocytes (CTLs) activated 
in vitro and back transfused to cancer patients (111,112). 
Several studies (113‑115) have identified CTLs specific for 
survivin epitopes with high cytotoxicity to various tumors, 
including OSCC. Miyazaki et al (113) initiated a phase I 
clinical study using survivin 2B peptide as vaccine in patients 
with locally advanced or recurrent OSCC.

Finally, preclinical studies have focused on the inhibi-
tion of survivin expression through small interfering RNA 
(siRNA) (116-118). siRNA targeting survivin in OSCC cell 
lines was found to reduce cell proliferation, increase apoptosis, 
and improve the response to chemotherapeutic agents such as 
cisplatin, 5-fuorouracil and paclitaxel (119-121).

In conclusion, although several studies emphasize 
targeting survivin as a novel therapeutic strategy in HNSCCs, 

survivin-based therapy is still a long way from application in 
clinical trials.
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