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Abstract. Cervical cancer is the second most commonly 
diagnosed cancer in women. Novel prognostic biomarkers 
are required to predict the progression of cervical cancer. 
Cervical cancer expression data were obtained from The 
Cancer Genome Atlas (TCGA) database. MicroRNAs 
(miRNAs) significantly differentially expressed between 
early‑ and advanced‑stage samples were identified by expres-
sion analysis. An optimal subset of signature miRNAs for 
pathologic stage prediction was delineated using the random 
forest algorithm and was used for the construction of a cervical 
cancer‑specific support vector machine (SVM) classifier. The 
roles of signature miRNAs in cervical cancer were analyzed 
by functional annotation. In total, 44 significantly differen-
tially expressed miRNAs were identified. An optimal subset 
of 7 signature miRNAs was identified, including hsa‑miR‑144, 
hsa‑miR‑147b, hsa‑miR‑218‑2, hsa‑miR‑425, hsa‑miR‑451, 
hsa‑miR‑483 and hsa‑miR‑486. The signature miRNAs were 
used to construct an SVM classifier and exhibited a good 
performance in predicting pathologic stages of samples. SVM 
classification was found to be an independent prognostic factor. 
Functional enrichment analysis indicated that these signature 
miRNAs are involved in tumorigenesis. In conclusion, the 
subset of signature miRNAs could potentially serve as a novel 
diagnostic and prognostic predictor for cervical cancer.

Introduction

As one of the most frequently diagnosed cancers in women 
worldwide, it is estimated that cervical cancer accounts 

for more than 500,000 new cases and 250,000 deaths each 
year  (1). Human papillomavirus (HPV) infection is recog-
nized as the most significant risk factor that presents in most 
cervical cancers (2,3). Integration of HPV into the cellular 
genome causes genome instability, transcriptional variations 
and epigenetic alterations (4,5). However, HPV alone is not 
sufficient to induce malignant transformation (6). Therefore, 
additional cancer‑causing genetic variations may underlie the 
development and progression of cervical cancer.

MicroRNAs (miRNAs) are small, non‑coding RNA mole-
cules of ~22 nucleotides in length, functioning by targeting 
mRNAs to regulate gene expression at the post‑transcriptional 
level (7,8). miRNAs are involved in diverse biological processes, 
including the cell cycle, differentiation and metabolism (9). 
Increasing evidence highlights the involvement of altered 
miRNA expression in cervical cancer (10). Examples include 
hsa‑miR‑21 (11), hsa‑miR‑196a (12) and hsa‑miR‑497 (13). 
hsa‑miR‑21 is an oncogene overexpressed in cervical cancer, 
the inhibition of which upregulates the tumor suppressor, 
programmed cell death  4 (PDCD4) and suppresses cell 
proliferation (11). Upregulation of hsa‑miR‑196a has also been 
detected in cervical cancer tissues, in which it promotes cancer 
cell proliferation (12). Unlike hsa‑miR‑21 and hsa‑miR‑196a, 
hsa‑miR‑497 is a tumor suppressor for cervical cancer and 
suppresses cancer cell migration and invasion by targeting 
insulin‑like growth factor 1 (IGF‑1) receptor (13).

Potential prognostic miRNA signatures of cervical cancer 
have been identified. A miRNA signature for clinical response 
consisting of hsa‑miR‑200a and hsa‑miR‑9 has been previously 
identified by the expression analysis of candidate miRNAs (14). 
According to the expression levels of hsa‑miR‑200a and 
hsa‑miR‑9, cervical cancer samples could be divided into 
low‑ and high‑risk groups. Functional analysis indicated that 
both hsa‑miR‑200a and hsa‑miR‑9 are likely to play important 
roles in cervical cancer metastasis. However, only a limited 
number of miRNAs were analyzed in the present study (14), 
and miRNA expression differences between pathologic stages 
have not yet been examined.

To identify novel outcome predictors of cervical cancer, we 
comprehensively analyzed the expression levels of miRNAs 
using data from The Cancer Genome Atlas (TCGA). miRNAs 
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significantly differentially expressed between early (I and II) 
and advanced (III and IV) pathologic stages were identified, 
followed by the identification of an optimal subset of signature 
miRNAs. The subset of signature miRNAs revealed good 
performance in progression prediction and may serve as a 
promising prognostic predictor of cervical cancer in clinical 
practice.

Materials and methods

Data source. mRNA and miRNA expression profiles (Illumina 
HiSeq 2000 RNA sequencing data) of cervical cancer were 
downloaded from TCGA (https://gdc‑portal.nci.nih.gov/) 
database. In addition, the level‑3 data in TCGA‑CESC was 
acquired on an online platform (http://gdac.broadinstitute.
org/runs/stddata__2016_01_28/data/CESC/20160128/). Samples 
for which both mRNA and miRNA data as well as information 
on pathologic stage and survival were selected for the present 
study. In total, data of 285 samples were collected, which were 
randomly divided into training (143 samples) and validation 
(142 samples) datasets. Clinical characteristics of these samples 
are summarized in Table I.

Screening of signif icantly dif ferentially expressed 
miRNAs. Samples in the training dataset were divided 
into early (I and II) and advanced (III and IV) patho-
logic‑stage groups. miRNA expression profiles were 
compared between the two groups using the t‑test 
(http://127.0.0.1:26738/library/stats/html/t.test.html) and Wilcoxon 
rank‑sum test (http://127.0.0.1:26738/library/stats/html/wilcox.
test.html) under R3.1.0. False discovery rate (FDR) <0.05 
and |logFC (fold  change)|>0.263 were set as thresholds 
for the selection of significantly differentially expressed 
miRNAs for both methods. Significantly differentially 
expressed miRNAs  (Table  SI) in the two stages were 
further compared using the t‑test in excel. Two‑way hier-
archical clustering analysis based on centered Pearson 
correlation  (15) was performed using the pheatmap 
package (https://cran.r‑project.org/package=pheatmap) in 
R. Correlation between clusters and pathologic stages were 
analyzed by the Chi‑square test using the chisq.test func-
tion (http://127.0.0.1:21869/library/stats/html/chisq.test.html) 
in R. Kaplan‑Meier survival analysis was conducted for 
different clusters, using the survival package (version 2.40‑1; 
https://cran.r‑project.org/package=survival) under R.

Selection and validation of an optimal subset of a 7‑miRNA 
signature. Signature miRNAs were selected from differen-
tially expressed miRNAs using the bootstrap algorithm (16) 
of the random forest package (https://cran.r‑project.org/ 
package=randomForest)  (17) in R. The optimal subset of 
a 7‑miRNA signature was the one yielding the minimum 
out‑of‑bag (OOB) error.

Based on the expression values of the optimal subset 
of miRNAs, two‑way hierarchical clustering analysis was 
conducted for both the training and the validation dataset, 
followed by the Kaplan‑Meier survival analysis of different 
clusters.

A cervical cancer‑specific support vector machine (SVM) 
classifier was constructed based on the expression values of 

the optimal subset of miRNAs, using the SVM function (core 
function: Sigmoid kernel; cross: 10‑fold cross validation) in 
the e1701 package in R (18). The SVM classifier was used 
to predict the pathologic stages of samples. Based on the 
predictions, samples in both the training and the validation 
dataset were classified into either an early‑stage‑like or an 
advanced‑stage‑like group. The prognosis of different groups 
was analyzed using the Kaplan‑Meier survival curve analysis.

Independence analysis of an SVM‑predicted group as a 
prognostic factor. Clinical information on age, pathologic M, 
pathologic N, pathologic T, smoking, new tumor, radiation 
therapy, and targeted molecular therapy was extracted from 
both the training and the validation dataset. Correlations 
between the clinical variables and prognoses were analyzed 
by univariate and multivariate Cox regressions, using the 
survival package under R3.1.0. Clinical variables with P<0.05 
were considered to be significant and independent prognostic 
factors.

Samples in both the training and the validation dataset 
were further stratified according to different clinical variables. 
The relation between the SVM‑predicted group and the prog-
nosis of cervical cancer was analyzed using univariate Cox 
regression and Kaplan‑Meier survival curve analysis for each 
stratum, with P<0.05 considered to be statistically significant.

Functional analysis of targets of a 7‑miRNA signature. mRNAs 
significantly differentially expressed between early and 
advanced stages were screened as aforementioned for miRNAs. 
mRNAs targeted by the optimal subset of a 7‑miRNA signature 
were predicted using miRWalk. The selected miRNA‑mRNA 
pairs could be retrieved in four databases including miRWalk 
(http://mirwalk.umm.uni‑heidelberg.de/), miRanda  (19), 
miRDB (http://www.mirdb.org/), miRMap (https://mirmap.
ezlab.org/app/), miRNAMap (http://mirnamap.mbc.nctu.
edu.tw/), RNA22 (https://cm.jefferson.edu/rna22/) and 
TargertScan (http://www.targetscan.org/mamm_31/), which 
were further intersected with the significantly differentially 
expressed mRNAs. Thus, the selected mRNAs were used for 
the construction of a regulatory network of the optimal subset 
of a 7‑miRNA signature. mRNAs in the regulatory network 
were functionally annotated using DAVID (https://david.
ncifcrf.gov/) (20) and significantly enriched Gene Ontology 
(GO) biological processes, and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathways were retrieved, with P<0.05 
set as a threshold for significantly enriched terms.

Results

Differential miRNA expression between the early‑  and 
advanced‑stage groups. Among the 143 samples in the training 
dataset, 90  were early‑stage and 53  were advanced‑stage 
samples. miRNAs with low expression (median expression 
value <1.0) were removed and the remaining 318 miRNAs were 
used for further analysis. In total, 51 miRNAs were identified 
to be significantly differentially expressed between early‑ 
and advanced‑stage groups by t‑test, whereas 49 miRNAs 
were identified by Wilcoxon rank‑sum test (Fig. 1). In total, 
44 miRNAs were identified to be significantly differentially 
expressed by both t‑test and Wilcoxon rank‑sum test.
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Two‑way hierarchical clustering analysis was carried out 
based on the expression levels of the 44 miRNAs and sepa-
rated the training dataset into 2 distinct clusters, designated 
as clusters 1 and 2 (Fig. 2A). Cluster 1 mainly consisted of 
early‑stage samples, including 86 early‑ and 15 advanced‑stage 
samples. Cluster  2 mainly consisted of advanced‑stage 
samples, including 38 advanced‑ and 4 early‑stage samples. 
The overall accuracy of hierarchical clustering in classifying 
samples was 86.71% (124 out of 143 samples). Moreover, the 
2 clusters were correlated significantly with cancer progres-
sion status (χ2=69.5245, P<2.2e‑16). Kaplan‑Meier analysis 
revealed that samples in cluster 1 were related with a signifi-
cantly better prognosis than those in cluster 2 (Fig. 2B; log‑rank 
P=1.179e‑05), which was consistent with the dominant sample 
stages in the respective clusters.

Cervical cancer‑related optimal subset of a 7‑miRNA 
signature. The random forest algorithm was used to iden-
tify an optimal subset of a 7‑miRNA signature from the 44 
significantly differentially expressed miRNAs, using the 

training dataset. The results revealed that the OOB error 
reached a minimum  (0.181) when 7  miRNAs were used 
for fitting (Fig. 3A). These 7 miRNAs, including miRNAs 
hsa‑miR‑144, hsa‑miR‑147, hsa‑miR‑218, hsa‑miR‑425, 
hsa‑miR‑451, hsa‑miR‑483 and hsa‑miR‑486, were selected as 
optimal miRNAs and are summarized in Table II. According to 
the expression levels of these 7 miRNAs in the training dataset, 
hsa‑miR‑147 and hsa‑miR‑218 exhibited a significantly higher 
expression in the early than in the advanced stage, whereas the 
remaining 5 miRNAs revealed a significantly lower expression 
level in the early stage (Fig. 3B).

Hierarchical clustering analysis based on the expression 
levels of the 7‑miRNA signature revealed that samples in the 
training dataset could be separated into 2 clusters, (Fig. 3C). 
Similar to the hierarchical clustering results based on 
the expression levels of all 44 significantly differentially 
expressed miRNAs, cluster 1 mainly consisted of early‑stage 
samples (74 early‑ vs. 10 advanced‑stage samples) whereas 
cluster  2 mainly consisted of advanced‑stage samples 
(16  early‑  vs.  43 advanced‑stage samples). The overall 

Table I. Summary of clinical characteristics of the training, validation and entire datasets.

Clinical characteristics	 Training dataset (N=143)	 Validation dataset (N=142)	 Entire dataset (N=285)

Age (years, mean ± SD)	 46.65±13.56	 48.92±13.53	 47.78±13.57
Pathologic_M (M0/M1/‑)	 55/4/84	 50/7/85	 105/11/169
Pathologic_N (N0/N1/‑)	 62/24/57	 67/28/47	 129/52/104
Pathologic_T (T1/T2/T3/T4/‑)	 69/28/9/3/34	 65/40/9/7/21	 134/68/18/10/55
Pathologic_stage (I/II/III/IV)	 83/7/43/10	 72/18/40/12	 155/25/83/22
Smoking (Yes/No/‑)	 69/56/18	 56/71/15	 125/127/33
New tumors (Yes/No/‑)	 24/101/18	 19/102/21	 43/203/39
Radiation therapy (Yes/No/‑)	 88/30/25	 83/33/26	 171/63/51
Targeted molecular therapy (Yes/No/‑)	 69/33/41	 59/30/53	 128/63/94
Status (Deceased/Alive)	 35/108	 35/107	 70/215
Overall survival months (mean ± SD)	 32.07±39.29	 32.25±38.57	 32.16±38.86

SD, standard deviation.

Table II. Progression‑related signature miRNAs of cervical cancer.

	 Wilcoxon test	 t‑test
	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ 
miRNAs	 logFC	 FDR	 P‑value	 logFC	 FDR	 P‑value

hsa‑miR‑144	 0.701563604	 4.16E‑06	 1.78E‑07	 0.699709	 4.46E‑06	 1.95E‑07
hsa‑miR‑147b	‑ 0.654720572	 0.005331	 0.000228	‑ 0.65658	 0.009557	 0.000419
hsa‑miR‑218‑2	‑ 0.40945555	 0.000328	 1.40E‑05	‑ 0.41131	 0.000538	 2.36E‑05
hsa‑miR‑425	 0.268232408	 6.62E‑06	 2.83E‑07	 0.266381	 1.48E‑05	 6.49E‑07
hsa‑miR‑451	 0.590364706	 6.95E‑07	 2.97E‑08	 0.588512	 7.74E‑07	 3.39E‑08
hsa‑miR‑483	 0.740086852	 0.001946	 8.33E‑05	 0.738239	 0.00312	 0.000137
hsa‑miR‑486	 0.592724644	 3.35E‑06	 1.43E‑07	 0.590872	 8.53E‑06	 3.74E‑07

FC, fold change; FDR, false discovery rate.
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classification accuracy was 81.82% (117 out of 143 samples). 
Additionally, cluster 1 was related with significantly better 
prognosis than cluster 2 (Fig. 3D; log‑rank P=0.01175).

A cervical cancer‑specific SVM classifier for pathologic 
stage prediction. A cervical cancer‑specific SVM classifier 
was constructed based on the expression levels of a 7‑miRNA 
signature in the optimal subset. Samples in the training dataset 
were classified as early‑stage‑like or advanced‑stage‑like 
using the SVM classifier. The results revealed that the SVM 
classifier could classify samples in the training dataset with an 
overall accuracy of 85.31% (122 out of 143 samples; sensitivity, 
79.81%, specificity, 94.44%, positive prediction value (PPV), 
88.095%, negative prediction value (NPV), 84.16%, and area 
under the receiver operating characteristic (ROC) curve (AUC), 
0.897)  (Fig. 3E). Kaplan‑Meier survival analysis revealed 
that the predicted early‑stage‑like group had a significantly 
better prognosis than the advanced‑stage‑like group (Fig. 3F; 
log‑rank P=0.004715).

Validation of the performance of a 7‑miRNA signature in 
pathologic stage prediction. The validation dataset was used to 
validate the performance of a 7‑miRNA signature in predicting 
pathologic stage. The validation samples were first classified 
into cluster 1 and cluster 2 by hierarchical clustering (Fig. 4A). 
Similar to the results for the training dataset, cluster 1 mainly 
consisted of early‑stage samples (78 early‑ vs. 15 advanced‑st
age samples) and cluster 2 mainly consisted of advanced‑stage 
samples (12 early‑ vs. 37 advanced‑stage samples). The overall 
accuracy was 80.99% (115 out of 142 samples). Prognosis in 
the 2 clusters was analyzed using Kaplan‑Meier survival curve 
analysis. Consistent with the findings based on the training 
dataset (Fig. 4D), classification in cluster 1 indicated signifi-
cantly better prognosis (Fig. 4B).

Then, we classified the validation samples into early‑ 
stage‑like and advanced‑stage‑like groups using the SVM 
classifier. Consistent with the training dataset findings, 
the validation samples were classified with an accuracy 
of 80.98%  (115 out of 142  samples; sensitivity, 73.46%, 

Figure 1. Screening of miRNAs differentially expressed between early‑ and advanced‑stage samples. (A) Volcano plot derived from a t‑test. (B) Volcano plot 
derived from a Wilcoxon rank‑sum test. The horizontal red dashed line indicates a FDR=0.05 and the vertical red dash line indicates a |logFC|=0.263. The 
‑log2(FDR) vs. log2(FC) of each sample was plotted. Red and green dots indicate significantly upregulated and downregulated miRNAs in advanced‑stage 
samples, respectively. FDR, false discovery rate; FC, fold change.

Figure 2. Hierarchical clustering and survival analyses of samples in the training dataset. (A) Two‑way hierarchical clustering of samples in the training 
dataset based on the expression levels of the 44 significantly differentially expressed miRNAs yielded 2 clusters, labeled as cluster 1 and cluster 2. Early‑ and 
advanced‑stage samples are indicated in red and black in the horizontal bar. (B) Kaplan‑Meier survival curves of the 2 clusters in A. Survival curves for 
cluster 1 and 2 are indicated in green and red, respectively.
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specificity, 91.11%, PPV, 80.49%, NPV, 81.19% and AUC, 
0.857)  (Fig.  4C). Kaplan‑Meier survival curve analysis 
revealed that the early‑stage‑like samples corresponded with 
significantly better prognosis than the advanced‑stage‑like 
group (Fig. 4D; log‑rank P=0.006246).

Independence of the SVM‑predicted group in progression 
prediction. Correlations between clinical variables and 

prognosis were analyzed using Cox regression. Both 
univariate and multivariate Cox regression revealed that the 
SVM‑predicted group, pathologic T, and new tumors were 
independent prognostic factors, since they were significantly 
correlated with prognosis (P<0.05) in both the training and 
the validation dataset  (Table  III). Kaplan‑Meier survival 
curve analysis for both the training and the validation dataset 
revealed that samples under pathologic T1 and T2 categories 

Figure 3. Optimal subset of signature miRNAs and their performance in sample classification. (A) OOB error curve for signature miRNA selection using the 
training dataset. The OOB error is plotted against the number of signature miRNAs used. The red vertical dashed line indicates the minimum OOB error 
(0.181), where the number of selected signature miRNAs is 7. (B) Expression levels of the signature miRNAs of the optimal subset in early‑ (red) and advanced 
(black)‑stage groups using a t‑test. *P<0.05, **P<0.01, ***P<0.005. (C) Two‑way hierarchical clustering of samples in the training dataset based on the expression 
levels of the 7 signature miRNAs yielded 2 clusters, which are labeled as cluster 1 and cluster 2. Early‑ and advanced‑stage samples are indicated in red and 
black in the horizontal bar, respectively. (D) Kaplan‑Meier survival curves of the 2 clusters in C. Survival curves for clusters 1 and 2 are indicated in green and 
red, respectively. (E) ROC curves of the training dataset generated using the SVM classifier. The AUC was calculated to be 0.897. (F) Kaplan‑Meier survival 
curves for early‑stage‑like (green curve) and advanced‑stage‑like (red curve) groups as predicted by the SVM classifier. OOB, out‑of‑bag; ROC, receiver 
operating characteristic; SVM, specific support vector machine; AUC, area under the curve.
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were related to a significantly better prognosis than those 
under pathologic T3 and T4 categories, and samples without 
new tumors were correlated with a better prognosis than those 
with new tumors (Fig. 5).

Stratified analysis was performed to evaluate the inde-
pendence of the SVM‑predicted group as a prognostic factor. 

Samples in both the training and the validation dataset were 
stratified according to age, pathologic M, pathologic N, patho-
logic T, smoking, new tumors, radiation therapy and targeted 
molecular therapy. Univariate Cox regression revealed that 
the SVM‑predicted group was significantly correlated with 
the prognosis for elder patients (>45 years of age) in both the 

Table III. Cox regression analysis of the correlations between the clinical variables and prognosis for both the training and the 
validation datasets.

	 Univariate analysis	 Multivariate analysis
	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ 
Variables	 HR	 95% CI	 P‑value	 HR	 95% CI	 P‑value

Training dataset (N=143)
SVM predicted group	 2.601	 1.308‑5.172	 0.00472	 2.07	 0.341‑2.587	 0.0272
  (Early/Advanced stage)
Age (years)	 1.239	 0.633‑2.426	 0.531	‑	‑	‑	  
  (≤45/>45)
Pathologic M	‑	‑	‑	‑	‑	‑	     
  (M0/M1)
Pathologic N	 4.861	 1.583‑14.93	 0.00227	 3.037	 0.902‑10.22	 0.0729
  (N0/N1)
Pathologic T	 2.076	 1.27‑3.395	 0.00234	 2.916	 1.209‑7.032	 0.0172
  (T1/T2/T3/T4)
Smoking	 1.461	 0.726‑2.944	 0.286	‑	‑	‑	  
  (Yes/No)
New tumors	 6.036	 3.083‑11.82	 2.60E‑09	 6.101	 1.964‑14.24	 0.00053
  (Yes/No)
Radiation therapy	 0.9697	 0.4204‑2.237	 0.943	‑	‑	‑  
  (Yes/No)
Targeted molecular therapy	 0.891	 0.4168‑1.904	 0.765	‑	‑	‑  
  (Yes/No)

Validation dataset (N=142)
SVM predicted group	 2.473	 1.265‑4.836	 0.00625	 1.233	 0.422‑3.601	 0.00702
  (Early/Advanced stage)
Age (years)	 1.248	 0.628‑2.48	 0.526	‑	‑	‑  
  (≤45/>45)
Pathologic M	‑	‑	‑	‑	‑	‑     
  (M0/M1)
Pathologic N	 1.81	 0.732‑4.474	 0.193	‑	‑	‑  
  (N0/N1)
Pathologic T	 1.71	 1.174‑2.491	 0.00384	 1.739	 1.119‑2.701	 0.01388
  (T1/T2/T3/T4)
Smoking	 1.39	 0.683‑2.827	 0.362	‑	‑	‑  
  (Yes/No)
New tumors	 3.94	 1.908‑8.136	 6.32E‑05	 5.229	 2.117‑12.919	 0.000337
  (Yes/No)
Radiation therapy	 1.155	 0.517‑2.578	 0.725	‑	‑	‑  
  (Yes/No)
Targeted molecular therapy	 1.074	 0.472‑2.446	 0.865	‑	‑	‑  
  (Yes/No)

HR, hazard ratio; CI, confidence interval.
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Figure 4. Validation of the optimal subset of signature miRNAs using the validation dataset. (A) Two‑way hierarchical clustering of samples in the validation 
dataset based on the expression levels of the 7 signature miRNAs yielded 2 clusters, which are labeled as cluster 1 and cluster 2. Early‑ and advanced‑stage 
samples are indicated in red and black in the horizontal bar, respectively. (B) Kaplan‑Meier survival curves for clusters 1 (green curve) and 2 (red curve) 
in A. (C) ROC curves of the validation dataset generated using the SVM classifier. The AUC was calculated to be 0.857. (D) Kaplan‑Meier survival curves 
of early‑stage‑like (green curve) and advanced‑stage‑like (red curve) groups classified by the SVM classifier. ROC, receiver operating characteristic; SVM, 
specific support vector machine; AUC, area under the curve.

Figure 5. Survival analysis of different pathologic T categories and new tumor status. (A and B) Kaplan‑Meier survival curves of different pathologic T categories 
in the (A) training and the (B) validation datasets. Survival curves for pathologic stages T1, T2, T3 and T4 are shown in green, red, blue and black, respectively. 
(C and D) Kaplan‑Meier survival curves of patients with (red lines) and without (green lines) new tumors in the (C) training and the (D) validation datasets.
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training and the validation dataset (Table IV). Similar results 
were obtained for patients without new tumors and radiation 
therapy (Table IV). Additionally, the SVM‑predicted group 
was significantly correlated with pathologic N1 patients in the 
training dataset and pathologic N0 patients in the validation 
dataset (Table IV). Kaplan‑Meier survival curves for samples 
stratified by age, pathologic N, new tumors and radiation 
therapy are presented in Fig. 6.

Functional annotation of a 7‑miRNA signature. mRNA 
expression profiles of early‑ and advanced‑stage samples 
were compared, and 535  significantly differentially 
expressed mRNAs were identified. Target mRNAs of a 
7‑miRNA signature were predicted using miRwalk. As a 
result, we found that 56, 47, 34, 14, 30 and 31 significantly 
differential ly expressed mRNAs were targeted by 
hsa‑miR‑218, hsa‑miR‑144, hsa‑miR‑425, hsa‑miR‑483, 
hsa‑miR‑486 and hsa‑miR‑451, respectively, while none 

were targeted by hsa‑miR‑147. We constructed a cervical 
cancer‑related miRNA‑mRNA regulat ion network, 
consisting of a 7‑miRNA signature and significantly 
differentially expressed mRNAs targeted by this 7‑miRNA 
signature (Fig. 7A). The network consisted of 207 nodes, 
containing a 6‑miRNA signature and 201  significantly 
differentially expressed target mRNAs.

To interpret the potential roles of the miRNA signature in 
cervical cancer, functional enrichment analysis was conducted 
using DAVID (20). The results revealed that mRNAs in the 
network were significantly enriched for cancer‑related GO 
biological processes and KEGG pathways (Fig. 7B and C). The 
GO terms included cell‑cell signaling, epithelium develop-
ment, ion transport and adhesion (Fig. 7B). The KEGG terms 
included pathways in cancer, calcium signaling pathway, basal 
cell carcinoma, Hedgehog signaling pathway, Wnt signaling 
pathway, heparan sulfate biosynthesis and TGF‑β signaling 
pathway (Fig. 7C).

Figure 6. Stratif﻿﻿﻿﻿ied Kaplan‑Meier survival curve analysis. Samples were stratif﻿ied by (A and B) age, (C and D) pathologic N, (E and F) new tumor, and 
(G and H) radiation therapy for both the training and the validation datasets. Survival curves for early‑stage‑like and advanced‑stage‑like groups in each 
stratum are shown in green and red, respectively.
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Discussion

Although overwhelming evidence has demonstrated that 
numerous microRNAs  (miRNAs) are probably correlated 
with cervical cancer (10‑14), few studies focused on whether 
these miRNAs were responsible for the progression of cervical 
cancer. In the present study, we comprehensively analyzed 
cervical cancer‑related miRNA expression profiles from TCGA 
database and identified 44 miRNAs significantly differen-
tially expressed between early‑ and advanced‑stage samples. 
Subsequently, an optimal subset of a 7‑miRNA signature was 
extracted, including hsa‑miR‑144, hsa‑miR‑147, hsa‑miR‑218, 
hsa‑miR‑425, hsa‑miR‑451, hsa‑miR‑483 and hsa‑miR‑486. 
Moreover, both hierarchical clustering and support vector 
machine  (SVM) prediction results demonstrated that a 
7‑miRNA signature played essential roles in the prediction of 
cervical cancer progression. Subsequently, the high perfor-
mance of this subset of 7 miRNAs was validated in hierarchical 
clustering and SVM prediction using a validation dataset. 
Additionally, Kaplan‑Meier survival analysis revealed that the 
SVM‑predicted early‑stage‑like group exhibited significant 
better prognosis than the advanced‑stage‑like group for both 
the training and the validation dataset. We also examined the 
independence of SVM prediction as a prognostic factor. Both 

univariate and multivariate Cox regression analyses confirmed 
the independence of the SVM‑predicted group in outcome 
prediction for the training and validation datasets. The prog-
nostic power of SVM prediction was additionally evaluated 
using stratified analysis. Elder patients (>45 years of age) in 
both datasets could be classified into early‑stage‑like and 
advanced‑stage‑like groups with significant differences in prog-
nosis. Similar results were acquired for patients with no new 
tumors and patients that had received no radiation therapy in 
both datasets. Collectively, the results demonstrated that SVM 
prediction was a prognostic factor independent of other clinical 
factors, including age, new tumors and radiation therapy.

miRNAs act by regulating the expression of target 
mRNAs  (8,9). To interpret the functions of the 7‑miRNA 
signature in cervical cancer, potential target mRNAs were 
identified and subjected to GO and KEGG functional enrich-
ment analyses. Cancer‑related GO biological processes and 
KEGG pathways were overrepresented among these mRNAs, 
which supported the importance of the 7‑miRNA signature 
in cervical cancer. Two KEGG terms, Hedgehog signaling 
pathway and Wnt signaling pathway, deserve special atten-
tion. Both pathways are essential for cancer cell proliferation, 
migration, and invasion in various types of cancers, and thus, 
represent promising targets for cancer therapy (21,22).

Table IV. Stratified prognosis analysis of patients in both the training and the validation datasets.

	 Training dataset	 Validation dataset
	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ 
Variables	 HR	 95% CI	 P‑value	 Variables	 HR	 95% CI	 P‑value

Age (years)				    Age (years)
  ≤45 (N=73)	 0.846	 0.187‑3.825	 0.828	  ≤45 (N=64)	 1.647	 0.504‑5.388	 0.404
  >45 (N=70)	 4.379	 1.751‑10.95	 0.000623	  >45 (N=78)	 2.865	 1.229‑6.684	 0.0109
Pathologic N				    Pathologic N
  N0 (N=62)	 1.34	 0.813‑2.506	 0.566	  N0 (N=67)	 8.396	 1.983‑35.55	 0.00386
  N1 (N=24)	 1.321	 0.571‑2.285	 0.004678	  N1 (N=28)	 0.565	 0.0677‑4.715	 0.593
Pathologic T				    Pathologic T
  T1+T2 (N=97)	 3.153	 0.976‑10.18	 0.04289	  T1+T2 (N=105)	 2.135	 0.673‑6.769	 0.187
  T3+T4 (N=12)	 1.062	 0.178‑6.326	 0.948	  T3+T4 (N=16)	 1.359	 0.320‑5.77	 0.676
Smoking				    Smoking
  Yes (N=56)	 1.697	 0.635‑4.537	 0.286	  Yes (N=56)	 1.873	 0.719‑4.871	 0.191
  No (N=69)	 6.558	 2.119‑20.3	 0.000186	  No (N=71)	 2.138	 0.741‑6.174	 0.1503
New tumors				    New tumor
  Yes (N=24)	 4.868	 1.759‑13.47	 0.000852	  Yes (N=19)	 0.3594	 0.0961‑1.345	 0.1134
  No (N=101)	 2.769	 1.012‑7.576	 0.0389	  No (N=102)	 5.213	 2.006‑13.55	 0.000159
Radiation therapy				    Radiation therapy
  Yes (N=88)	 2.407	 1.104‑5.246	 0.0227	  Yes (N=83)	 2.12	 0.948‑4.74	 0.0613
  No (N=30)	 1.843	 1.173‑6.056	 0.0113	  No (N=33)	 1.884	 1.422‑4.372	 0.005335
Targeted molecular				    Targeted molecular
therapy				    therapy
  Yes (N=69)	 2.405	 0.995‑5.812	 0.0512	  Yes (N=59)	 1.643	 1.389‑2.292	 0.006816
  No (N=33)	 3.257	 0.622‑7.05	 0.139	  No (N=30)	 2.33	 0.829‑6.541	 0.0988

HR, hazard ratio; CI, confidence interval.
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Accumulating evidence has suggested that the 7‑miRNA 
signature may be associated with the initiation of cervical 
cancer and other cancers. hsa‑miR‑218, as a tumor suppressor, 
is encoded by slit guidance ligand 2 (SLIT2) (23). It has been 
reported that the expression of hsa‑miR‑218 was markedly 
decreased in the sera from cervical patients compared to the 
age‑matched normal healthy women, and its decreased expres-
sion was associated with later stages, cervical adenocarcinoma 

and lymphatic node metastasis (24). In vitro, miR‑218 overex-
pression inhibited cervical cancer progression by regulating 
clonogenicity, migration, invasion and metastasis by targeting 
surviving (25). Consistent with the tumor‑suppressive role of 
hsa‑miR‑218, we revealed that hsa‑miR‑218 expression was 
reduced in advanced‑stage patients. With regards to the aber-
rant expression of miR‑218, previous studies indicated that 
the presence of human papillomavirus (HPV)‑16 and HPV‑1 

Figure 7. Functional enrichment analysis of mRNAs targeted by the optimal subset of signature miRNAs. (A) Regulatory network consisting of signature 
miRNAs and their targeting mRNAs. Upregulated and downregulated signature miRNAs in advanced‑stage samples are displayed as orange triangles and 
diamonds, respectively. Upregulated and downregulated mRNAs are shown as pink triangles and green diamonds, respectively. Potential regulatory relation-
ships between signature miRNAs and targeting mRNAs are indicated as gray lines. (B) GO and (C) KEGG term enrichment analysis of mRNAs in A. Gene 
numbers (vertical axis) are plotted against GO and KEGG terms (horizontal axis). ‑log(P‑values) are indicated as red dots and lines. GO, Gene Ontology; 
KEGG, Kyoto Encyclopedia of Genes and Genomes.
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increased E6 protein expression, which play an important 
role in the rapid ubiquitin‑dependent degradation of p53, 
resulting in reduced expression of miR‑218 by suppressing 
the transcription of SLIT2 (26,27). In addition, hsa‑miR‑486, 
hsa‑miR‑425 and hsa‑miR‑144 have also been reported to be 
involved in cervical cancer (28‑30). It has been reported that 
hsa‑miR‑486‑3p acted as a tumor suppressor by inhibiting 
cell growth and metastasis by targeting ECM1 (28). Sun et al 
revealed that hsa‑miR‑425 was significantly upregulated 
in cervical cancer compared with benign cervical disease 
patients and healthy controls, and may serve as a prognostic 
indicator related to high TNM stage and positive lymph node 
metastasis (29). hsa‑miR‑144 was significantly downregulated 
in metastatic cervical cancer (30), although its role remains 
elusive. The remaining 3 miRNAs have not been reported to 
be associated with cervical cancer. However, multiple studies 
have suggested that they play crucial roles in other types of 
cancer. Dysregulation of hsa‑miR‑483 has been found in 
various types of cancer, including adrenocortical (31), pros-
tate cancer (32) and lung adenocarcinoma (33). hsa‑miR‑451 
has been reported to be a tumor suppressor in different 
cancers (34,35) and a protective effect of hsa‑miR‑147 has 
been found in ovarian cancer (36). Collectively, we inferred 
that the 7‑miRNA signature may play important roles in the 
development and progression of cervical cancer and may serve 
as a potential biomarker of this disease.

However, there were still multiple limitations in the 
present study. Firstly, a sophisticated bioinformatics analysis 
depending on a larger sample size would be required to 
examine the potential regulatory role of the 7‑miRNA 
signature in cervical cancer. In addition, the corresponding 
experiments need to be conducted to confirm our predictable 
results such as several candidate RNA transcripts and critical 
signaling pathways. Additionally, extensive clinical infor-
mation is also required to integrate into a comprehensive 
analysis to decipher the regulatory mechanisms of cervical 
cancer.

In conclusion, we identified a 7‑miRNA signature of 
cervical cancer by a comprehensive miRNA expression 
analysis. The 7‑miRNA signature was significantly associ-
ated with the progression of cervical cancer and was used 
for the construction of a cervical cancer‑specific SVM clas-
sifier. The SVM is a promising predictor of progression and 
outcome. Meanwhile, the 7‑miRNA signature may be a novel 
therapeutic target in future clinical practice. However, further 
experimental and functional studies are required to reveal the 
specific roles of these signature miRNAs in cervical cancer.
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