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Abstract. As a major cause of cancer-associated mortalities, 
lung cancer is frequently diagnosed in males and females with 
an incidence ratio of 2.1:1. Tripartite motif 52 (TRIM52), an 
E3 ubiquitin ligase, has been reported to be involved in various 
biological functions, including cell proliferation and invasive-
ness. In the present study, an elevated TRIM52 level was 
observed in tumor tissues of patients with lung cancer and in 
lung cancer cell lines. The downregulation of TRIM52 in lung 
cancer cells significantly suppressed the proliferation of lung 
cancer cells, arrested the cell cycle at the G1 phase and was 
accompanied by a decrease in the levels of β-catenin, prolif-
erating cell nuclear antigen, c-Myc and Cyclin D1 proteins. 
Additionally, TRIM52-induced cell proliferation and invasive-
ness, as well as the levels of cell cycle-associated proteins, 
were completely counteracted by the Wnt/β-catenin inhibitor 
XAV939. Based on these data, it was speculated that TRIM52 
is critical for lung cancer progression and that downregula-
tion of TRIM52 could inhibit cell proliferation by blocking 
cell cycle progression. It was also speculated that TRIM52 
upregulation promotes proliferation and invasiveness through 
activation of the Wnt/β-catenin pathway. Thus, TRIM52 has 
the potential to be a therapeutic target for lung cancer.

Introduction

As the leading cause of cancer-associated mortalities globally, 
lung cancer is frequently diagnosed in males and females with 
an incidence ratio of ~2.1:1 in 2008 (1,2). In 2008, ~1.4 million 
people globally succumbed to lung cancer, which represented 
18% of all cancer-associated mortalities (3). Generally, lung 

cancer is classified into two main types: Small cell lung 
cancer (SCLC); or non-SCLC (NSCLC) (4,5). Accumulating 
evidence has revealed that tobacco smoking is a major cause 
of lung cancer, as it is associated with ~90% of all lung 
cancer diagnoses (6-9). Furthermore, smokers have a 10-fold 
increased probability of developing lung cancer, compared 
with nonsmokers (10).

The Wnt/β-catenin pathway has been indicated to serve 
important roles in a number of cancer types. For example, it 
has been reported that the metastatic behavior of lung cancer 
cell lines is increased by increased Wnt/β-catenin signaling 
in vitro (11). A previous study demonstrated that Wnt family 
genes are frequently upregulated in multiple human cancer 
types, including NSCLC (12,13). Through β-catenin, onco-
genic Wnt signaling is transduced. Wnt signaling promotes the 
accumulation of β-catenin, and elevated β-catenin translocates 
to the nucleus where it forms complexes with transcription 
factors (14). This in turn stimulates the expression of Wnt 
target molecules, including the oncogenes Cyclin D1 and 
c-Myc (15,16).

Tripartite motif-containing (TRIM) family proteins, with 
>80 members, contain three conserved domains, RING, 
B-box and a coiled-coil region, and are regarded as E3 
ubiquitin ligases that are associated with human diseases, 
including intracellular immunity and cancer (17-20). It has 
been reported that TRIM proteins regulate multiple biological 
processes, including cell proliferation and invasion (21-23). 
Studies demonstrated an association between TRIM24 and 
TRIM29, and the progression of solid tumors (24,25). Elevated 
TRIM65 has also been observed in lung cancer, where it 
facilitates the growth of tumors (26,27); whereas, TRIM31 
was reported to be downregulated in NSCLC, which indicates 
that it may function as a tumor suppressor (28). TRIM52 is 
a novel TRIM protein that contains only a unique expanded 
RING domain and a B-box2 domain (29). Previous studies 
demonstrated that TRIM52 could promote cell proliferation, 
migration and invasion in hepatocellular carcinoma through 
ubiquitination (30,31). Another study indicated that TRIM52 
acts as an oncogene in ovarian cancer, where it is associated 
with the nuclear factor-κB pathway (32). However, the effect of 
TRIM52 in lung cancer remains largely unknown.

In the present study, a high expression of TRIM52 was 
observed in tumor tissues of patients with lung cancer and 
in lung cancer cell lines. The downregulation of TRIM52 
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in lung cancer cell lines significantly inhibited cell prolif-
eration by blocking cell cycle progression, which occurred 
concurrently with decreases in β-catenin, proliferating cell 
nuclear antigen (PCNA), c-Myc and Cyclin D1 expression. 
Furthermore, TRIM52-induced cell proliferation and invasion 
were completely counteracted by the Wnt/β-catenin inhibitor 
XAV939. These results indicated that TRIM52 downregulation 
inhibits lung cancer progression, possibly through inactivation 
of the Wnt/β-catenin signaling pathway.

Materials and methods

Tumor and adjacent normal tissues of patients with lung 
cancer. Following informed consent being obtained, 43 pairs 
of tumor and paracancer tissues from 43 patients with lung 
cancer treated at Longhua Hospital (Shanghai, China) were 
collected and immediately frozen in liquid nitrogen at ‑196˚C. 
After the tissues were sectioned at 5 µm, the expression of 
TRIM52 was detected by immunohistochemistry, according 
to the subsequent protocol. All experiments in the present 
study were approved by the Ethics Committee of Shanghai 
University of Traditional Chinese Medicine (Shanghai, China).

Cell culture. A total of 5 cell lines derived from human lung 
cancer (H1975, H466, A549, H358 and H1299), and a cell 
line derived from the pulmonary epithelium (16HBE) were 
purchased from the Cell Bank of the Chinese Academy of 
Science (Shanghai, China). These cells were cultured in 
a 5% CO2 humidified‑incubator at 37˚C (Thermo Forma 
3111; Thermo Fisher Scientific, Inc., Waltham, MA, USA) 
with RPMI-1640 medium (cat. no. SH30809.01B; HyClone; 
GE Healthcare Life Sciences; Logan, UT, USA) supplemented 
with 10% fetal bovine serum (cat. no. 16000-044; Gibco; 
Thermo Fisher Scientific, Inc.) and 1% antibiotic (x100; a 
mixture of penicillin and streptomycin; cat. no. P1400-100; 
Beijing Solarbio Science & Technology Co., Ltd., Shanghai, 
China). During incubation, the medium was replaced with 
fresh RPMI-1640 medium every two days according to 
cellular demand until the experiments. After selecting, three 
cell lines, H358, H1299 and H1975, were used for subsequent 
experiments.

Lentiviral construction. Short hairpin RNA (shRNA) 
sequences targeted to the TRIM52 gene (NM_032765.3) 
were synthesized and double strand-annealed to form the 
shRNA construct. The shRNA construct was inserted into 
Agel I/Ecol I restriction sites of a pLKO.1-puro vector 
(Addgene, Inc., Cambridge, MA, USA). Subsequently, the 
894 bp full-length coding DNA sequence region of TRIM52 
containing the EcoR I/BamH I restriction sites was synthe-
sized by Genewiz, Inc. (Shanghai, China) and was then 
inserted into EcoRI/BamHI restriction sites of a pLVX-Puro 
vector (Clontech Laboratories, Inc., Mountainview, CA, USA). 
pLKO.1‑shTRIM52 and pLVX‑Puro‑TRIM52 were confirmed 
by DNA sequencing (Shanghai Meiji Biomedical Technology 
Co., Ltd., Shanghai, China). Subsequently, 0.5 µg core 
plasmid of pLKO.1-shTRIM52 or pLVX-Puro-TRIM52 and 
1.5 µg mixed viral packaging plasmids psPAX2 and pMD2G 
(Addgene, Inc.) were added to 250 µl serum-free RPMI-1640 
medium, and 9 µl Lipofectamine® 2000 (Invitrogen; Thermo 

Fisher Scientific, Inc.) was added into a serum‑free RPMI‑1640 
medium with a total volume of 250 µl, and then the two were 
mixed and transfected into 293T cells. The virus particles 
were obtained after 48 h of transfection.

Experimental grouping. In vitro, to regulate the expression 
of TRIM52 in lung cancer cell lines, lentivirus-mediated 
RNA interference or overexpression was used. H358 or 
H1299 cells were infected with RPMI-1640 medium 
(control), pLKO.1-puro vector (negative control lentivirus; 
shNC), or shTRIM52 lentivirus (shTRIM52-1, shTRIM52-2, 
shTRIM52-3 and shTRIM52-4), while H1975 cells were 
infected with RPMI-1640 medium (control), pLVX-Puro 
vector (Clontech Laboratories, Inc.) or TRIM52 recombi-
nant lentivirus (oeTRIM52). After 48 h, the efficiency of 
knockdown or overexpression was detected by reverse tran-
scription-quantitative polymerase chain reaction (RT-qPCR) 
and western blotting, according to the subsequent protocols. 
shTRIM52-1, shTRIM52-4 and oeTRIM52 lentiviruses were 
used for subsequent experiments.

Furthermore, H358 or H1299 cells were infected with 
RPMI-1640 medium, shNC, shTRIM52-1 or shTRIM52-4, 
and H1975 cells were treated with vector, oeTRIM52, 
Vector + 20 µM XAV939 (Wnt/β-catenin inhibitor; S1180; 
Selleck Chemicals, Shanghai, China) or oeTRIM52 + 20 µM 
XAV939. Assays to determine proliferation and cell cycle, and 
western blot analysis were then performed.

Immunohistochemistry. Following paraffin embedding, the 
tissue slides were fixed for 48 h in 10% formalin at 4˚C and then 
cut into 5 µm thick sections, which were baked at a constant 
temperature in an oven at 65˚C for 30 min, and then depa-
raffinized in two changes of xylenes (Sinopharm Chemical 
Reagent Co., Ltd., Shanghai, China) for 15 min each. The 
deparaffinized sections were then rehydrated in 100, 95, 85 
and 75% ethanol solutions for 5 min each, which was followed 
by washing once in tap water for 10 min. Following antigen 
retrieval with 0.01 M sodium citrate buffer (pH 6.0) at ~95˚C 
for 15 min, the slides were incubated with 0.3% H2O2 for 10 min 
at room temperature in a humidified chamber and washed with 
0.02 M phosphate-buffered saline (PBS). Subsequently, the 
slides were incubated with a rabbit antibody against TRIM52 
(dilution 1:500; cat. no. NBP2-31651; Novus Biologicals, 
LLC, Littleton, CO, USA) at room temperature for 1 h in a 
humidified chamber. The slides were then incubated with a 
horseradish peroxidase-labeled broad-spectrum secondary 
antibody (dilution 1:1,000; cat. no. D-3004; Shanghai Long 
Island Biotechnology Co., Ltd., Shanghai, China) at room 
temperature for 25 min. At room temperature, following DAB 
staining for 5 min, a washing with tap water, (cat. no. FL-6001; 
Shanghai Long Island Biotechnology Co., Ltd.), the sections 
were stained with hematoxylin (cat. no. 714094; Zhuhai BASO 
Biotechnology Co., Ltd., Zhuhai, China) for 3 min at room 
temperature, exposed to 1% hydrochloric acid-alcohol at room 
temperature for 3 sec for differentiation and flushed with tap 
water once for 10 min. After drying, mounting and cover-slip-
ping, the slides were imaged by an upright light microscope at 
x200 magnification (ECLIPSE Ni; Nikon Corporation, Tokyo, 
Japan) and were analyzed by an IMS image analysis system 
(DS-Ri2; Nikon Corporation).
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RT‑qPCR. RT-qPCR was performed to detect the TRIM52 
mRNA level in cells. The total RNA in cells (H1975, H466, 
A549, H358 and H1299) that were or were not treated with lenti-
viruses was extracted by TRIzol® reagent (cat. no. 1596-026; 
Invitrogen; Thermo Fisher Scientific, Inc.), and following 
quantification, the integrity of the RNA was confirmed by 1% 
agarose gel electrophoresis. The extracted RNA was reversed 
transcribed into cDNA using a Reverse Transcription kit 
(cat. no. K1622; Fermentas; Thermo Fisher Scientific, Inc.). 
With cDNA used as a template and a SYBR®-Green PCR kit 
(cat. no. K0223; Thermo Fisher Scientific, Inc.), RT‑qPCR reac-
tions were performed in an ABI 7300 Real-Time PCR system 
(ABI‑7300; Applied Biosystems; Thermo Fisher Scientific, 
Inc.). The expression of TRIM52 mRNA normalized to 
GAPDH was analyzed by ABI Prism 7300 SDS software 1.4v 
(Applied Biosystems; Thermo Fisher Scientific, Inc.) and was 
calculated using the 2-∆∆Cq method (33). The primer sequences 
were as follows: TRIM52, forward, 5'-GTG CCA TCT GCT 
TGG ATT AC-3', and reverse, 5'-TCA TCT TCC TCC TCG 
TTC TG-3', and GAPDH, forward, 5'-AAT CCC ATC ACC 
ATC TTC-3', and reverse, 5'-AGG CTG TTG TCA TAC TTC-3'. 
The RT‑qPCR reaction conditions were as follows: 95˚C for 
10 min; 95˚C for 15 sec and 60˚C for 45 sec for 40 cycles; 
95˚C for 15 sec; 60˚C for 1 min; 95˚C for 15 sec; and 60˚C for 
15 sec (34).

Western blot analysis. Total proteins were extracted from 
lentivirus-treated H358, H1299 or H1975 cells by radioim-
munoprecipitation assay buffer (Beijing Solarbio Science & 
Technology Co., Ltd.; R0010), which contained protease and 
phosphatase inhibitors, and were quantified by a Bicinchoninic 
Assay quantification kit (Thermo Fisher Scientific, Inc.; 
PICPI23223). Approximately 25 µg of proteins was sepa-
rated by 10% SDS-PAGE (JRDUN Biotechnology Co., Ltd, 
Shanghai), followed by a semi-dry transfer onto polyvinylidene 
fluoride membranes (cat. no. HATF00010; EMD Millipore, 
Billerica, MA, USA) by electroblotting. After 1 h of blocking 
in 5% skim milk at room temperature (cat. no. BYL40422; 
BD Biosciences; Becton, Dickinson and Company, Franklin 
Lakes, NJ, USA), the blots were incubated with primary anti-
bodies against TRIM52 (1:200; cat. no. sc-135589; Santa Cruz 
Biotechnology, Inc., Dallas, TX, USA), β-catenin (1:5,000; 
cat. no. ab32572; Abcam, Cambridge, UK), PCNA (1:1,000; 
cat. no. ab29; Abcam), c-Myc (1:1,000; cat. no. ab32072; 
Abcam), Cyclin D1 (1:5,000; cat. no. ab134175; Abcam) and 
β-actin (1:1,000; cat. no. 4970; Cell Signaling Technology, 
Inc., Danvers, MA, USA) with gentle shaking at 4˚C 
overnight. Following the incubation with the horseradish 
peroxidase-conjugated secondary antibodies goat anti-rabbit 
(cat. no. A0208), donkey anti-goat (cat. no. A0181), and goat 
anti-mouse (cat. no. A0216) (1:1,000; Beyotime Institute of 
Biotechnology, Shanghai, China) for 1 h at 37˚C, the blots 
were incubated with chemiluminescent detection reagent 
(cat. no. WBKLS0100; EMD Millipore) for 5 min in the 
dark. Bound proteins were then visualized using an Enhanced 
Chemiluminescent imaging system (Tanon-5200; Tanon 
Science and Technology Co., Ltd., Shanghai, China). Finally, 
using β-actin as the loading control, the relative protein levels 
were calculated by ImageJ software 1.47v (National Institutes 
of Health, Bethesda, MD, USA).

Proliferation assay. H358, H1299 or H1975 cells in a loga-
rithmic growth phase were digested by 0.25% trypsin (Beijing 
Solarbio Science & Technology Co., Ltd.; P1300-100) and 
counted under a optical microscope at x10 magnification 
(cat. no. XDS-500C; Shanghai Cai Kang Optical Instrument 
Co., Ltd., Shanghai, China) to prepare a cell suspension of 
3x104 cells/ml. Subsequently, 100 µl of each cell suspension 
was inoculated in 96-well culture plates (cat. no. TR4001; 
TrueLine, Romeoville, IL, USA) in triplicate and cultured 
overnight at 37˚C in a humidified 5% CO2 incubator. After 
0, 24, 48 and 72 h of treatment according to the experimental 
grouping, Cell Counting Kit-8 (CCK-8; cat. no. CP002; 
Signalway Antibody, College Park, MD, USA) reagent and 
serum-free RPMI-1640 medium were mixed at a volume ratio 
of 1:10, and 100 µl of the mixture was added to each well. The 
plates were incubated for 1 h at 37˚C in a 5% CO2 incubator. 
Using a microplate reader (cat. no. DNM-9602; Beijing Pulang 
New Technology Co., Ltd., Beijing, China), the absorbance 
value (optical density) at 450 nm was measured.

Cell cycle detection. Following treatment, according to the 
experimental grouping, H358, H1299 or H1975 cells were 
collected and centrifuged for 5 min at 1,000 x g at room 
temperature and were then resuspended in 300 µl of PBS 
supplemented with 10% fetal bovine serum. Subsequently, 
700 µl absolute ethanol pre‑cooled at ‑20˚C was added to fix 
the cells for 24 h at 4˚C. The next day, following centrifuga-
tion at 1,000 x g at room temperature for 5 min, the fixed cells 
were washed with 1 ml pre-cooled PBS once. Subsequently, 
the cell pellets were slowly and fully resuspended in 100 µl 
1 mg/ml RNase A solution (cat. no. R8020-25; Beijing 
Solarbio Science & Technology Co., Ltd.) and incubated in 
the dark for 30 min at 37˚C. Finally, the cells were incubated 
with 400 µl 50 µg/ml propidium iodide solution in the cell 
cycle and apoptosis detection kit (cat. no. C001-200; Shanghai 
Qibao Xintai Biological Technology Co., Ltd., Shanghai, 
China), which was added to stain the nucleus, for 10 min in 
the dark at room temperature. Following staining, the cell 
cycle status of these cells was detected with a flow cytometer 
(BD Biosciences; Becton, Dickinson and Company; Accuri 
C6) and analyzed by FlowJo software 7.6.1v (Tree Star, Inc., 
Ashland, OR, USA).

Matrigel assay. Prior to inoculation, the 24-well plates and 
Transwell chambers (cat. no. 3422; Costar; Corning, Inc., 
Corning, NY, USA) were soaked in PBS for 5 min, and then 
the chambers were coated with 80 µl Matrigel and clotted for 
30 min in an incubator at 37˚C. Following overnight nutrient 
starvation in serum-free RPMI-1640 medium, the treated cells 
(H1975 and A549) were trypsinized and inoculated in the 
upper chamber (5x104 cells/well). RPMI-1640 medium with 
10% fetal bovine serum was added to the lower chamber. After 
24 h of incubation, the non-invading cells in the upper chamber 
were carefully scraped, and the cells that had invaded into the 
lower chamber were fixed in 4% formaldehyde (Sinopharm 
Chemical Reagent Co., Ltd., Shanghai, China) for 10 min at 
room temperature, followed by a 30 min incubation in 0.5% 
crystal violet (Beijing Solarbio Science & Technology Co., 
Ltd.; C8470) at room temperature. Subsequently, using an 
upright optical microscope (cat. no. XDS-500C; Shanghai Cai 
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Kang Optical Instrument Co., Ltd.), the invading cells were 
counted in 3 random fields at a magnification of x200.

Statistical analysis. The statistical analyses of all data in 
the present study were performed using GraphPad Prism 7.0 
software (GraphPad Software, Inc., La Jolla, CA, USA). 
Student's t-test was used to evaluate the differences between 
two groups, while one-way analysis of variance followed 
by Tukey's multiple comparison was performed to evaluate 
the comparisons among ≥3 groups. Based on at least three 
independent experiments, quantitative data are shown as 
the mean ± standard deviation. P<0.05 was considered to 
indicate a statistically significant difference.

Results

TRIM52 expression is elevated in the tumor tissues of patients 
with lung cancer and in lung cancer cell lines. After 43 pairs 
of lung tumor and paracancer tissues were collected, immu-
nohistochemistry (Fig. 1A) indicated that compared with the 
paracancer tissues, the TRIM52 level was notably increased in 
tumors. All cases were grouped according to the overall level 
of TRIM52 expression in tissues: <5% positivity; 5≤n<25; 
25≤n<50; 50≤n<75; and ≥75%. The increased expression of 
TRIM52 was further demonstrated by RT-qPCR and western 
blot analysis (Fig. 1B and C). Statistical analysis of the 

immunohistochemical results demonstrated that high expres-
sion of TRIM52 was observed in 97.7% of tumor tissues (data 
not shown). Additionally, the TRIM52 mRNA and protein 
levels in lung cancer cell lines (H1975, H466, A549, H358 
and H1299) were significantly increased, compared with 
pulmonary epithelial cells (16HBE). The TRIM52 levels 
were increased in H358 and H1299 cells, compared with 
the other cell lines, while the levels were reduced in H1975 
cells (Fig. 1C). These observations indicated that TRIM52 
may be involved in the development and progression of lung 
cancer. A total of 3 lung cancer cell lines (H358, H1299 and 
H1975) were therefore selected for the following experiments.

Down‑ and upregulation of TRIM52 in lung cancer cell 
lines. To investigate the effect of TRIM52, shTRIM52 and 
oeTRIM52 lentiviral vectors were used to regulate the 
TRIM52 level in lung cancer cell lines. As depicted in Fig. 2, 
the levels of TRIM52 mRNA and protein were significantly 
downregulated by shTRIM52 infection in H358 (Fig. 2A) 
and H1299 (Fig. 2B) cells, and the effects of shTRIM52-1 
and shTRIM52-4 were more notable. Furthermore, the 
TRIM52 level in H1975 cells was significantly upregu-
lated by oeTRIM52 (Fig. 2C). Therefore, the shTRIM52-1, 
shTRIM52-4 and oeTRIM52 lentiviral vectors were selected 
for further study due to their more effective regulation of 
TRIM52 expression.

Figure 1. TRIM52 expression is elevated in the tumor tissues of patients with lung cancer and in lung cancer cell lines. A total of 43 pairs of tumor and para-
cancer tissues were collected from patients with lung cancer. (A) The TRIM52 level in tumor and paracancer tissues was detected by immunohistochemistry. 
Tissues were imaged under a microscope at a magnification of x200, and a table with all cases grouped according to the overall level of TRIM52 expression 
is presented. (B) Reverse transcription-quantitative polymerase chain reaction and western blotting were performed to analyze the expression of TRIM52 in 
tissues. (C) Reverse transcription‑quantitative polymerase chain reaction and western blotting were performed to analyze the expression of TRIM52 in five 
lung cancer cell lines (H1975, H466, A549, H358 and H1299). The data are presented as the mean ± standard deviation. *P<0.05, **P<0.01, ***P<0.001 and 
****P<0.0001, compared with paracancer tissues or 16HBE cells. TRIM52, tripartite motif 52.
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Downregulation of TRIM52 inhibits lung cancer cell prolif‑
eration by cell cycle arrest. Following downregulation of the 
TRIM52 level in H358 and H1299 cells, cell proliferation 
and the cell cycle were evaluated. As depicted in Fig. 3, the 
proliferation of H358 and H1299 cells was notably inhibited 
when TRIM52 was downregulated (Fig. 3A). Furthermore, 
downregulation of TRIM52 significantly arrested the cell 
cycle at G1 phase in lung cancer cells, which reduced the 
proportion of cells in S/G2 phase (Fig. 3B). Additionally, the 
protein levels of β-catenin, PCNA, c-Myc and Cyclin D1 were 
significantly decreased in TRIM52‑silenced H358 and H1299 
cells (Fig. 3C). All results indicated that TRIM52 downregula-
tion exerted an inhibitory effect on the proliferation of lung 
cancer cells by blocking cell cycle progression possibly via 
Wnt/β-catenin signaling.

TRIM52 regulates cell proliferation, cell cycle progression and 
invasion through the Wnt/β‑catenin pathway. Wnt/β-catenin 
signaling activation has been reported to be a critical onco-
genic event in the initiation and progression of tumors, and 
c-Myc and Cyclin D1 are two downstream Wnt/β-catenin 
signaling molecules (35). PCNA, a non-histone nuclear protein 
that functions in DNA synthesis, is a marker of cell prolifera-
tive activity in lung cancer (36) and has important prognostic 
value (37,38). The application of the Wnt/β-catenin inhibitor 
XAV939 has been reported in numerous studies (39,40). In 
the present study, the Wnt/β-catenin inhibitor XAV-939 was 
applied for further study. As depicted in Fig. 4, the upregulation 
of TRIM52 significantly promoted cell proliferation (Fig. 4A) 
and facilitated the entry of cells into the S phase from the 

G1 phase (Fig. 4B), which was concurrent with increases in 
β-catenin, PCNA, c-Myc and Cyclin D1 expression (Fig. 4C). 
The upregulation of TRIM52 in normal epithelial 16HBE 
cells also induced cell proliferation and S-phase progression. 
Furthermore, the invasiveness of H1975 and A549 cells was 
significantly increased by TRIM52 upregulation (Fig. 4D). In 
contrast, treatment with XAV-939 completely counteracted 
the effect of TRIM52 upregulation in lung cancer cells, and 
a rescue effect of TRIM52 upregulation was observed upon 
Wnt/β-catenin inhibition. It has been reported that the activa-
tion of Wnt/β-catenin signaling is frequently observed in lung 
cancer and that it promotes the proliferation of lung cancer 
cells (11,41), which is consistent with the present results. These 
results further demonstrated that TRIM52 regulates the prolif-
eration and invasiveness of lung cancer cells possibly through 
regulation of Wnt/β-catenin pathway activation.

Discussion

Increasing evidence demonstrates that TRIM proteins, 
including TRIM29 (42), TRIM16 (43) and TRIM15 (44), 
are of great importance in the development and progression 
of cancer. TRIM proteins were revealed to be involved in 
the regulation of various cellular processes, including cell 
proliferation, in cancer (45). A previous study indicated 
that TRIM59 is overexpressed in NSCLC, and promotes 
the proliferation and migration of NSCLC cells (46). In the 
present study, it was determined that TRIM52 was elevated 
in tumor tissues of patients with lung cancer and in tumor 
cell lines, which indicates that TRIM52 may act as an 

Figure 2. Down- and upregulation of TRIM52 in lung cancer cell lines. Lung cancer cells (H358, H1299 and H1975) were infected with lentiviruses of 
shNC/shTRIM52 or vector/oeTRIM52, while the cells treated with RPMI-1640 medium served as controls. The total RNA and proteins were extracted from 
the treated cells after 48 h. (A) TRIM52 mRNA (upper) and protein (lower) levels in TRIM52-slienced H358 cells were detected by reverse transcription-quan-
titative polymerase chain reaction and western blotting, respectively. (B) Additionally, TRIM52 expression in TRIM52-silenced H1299 cells was also detected. 
(C) The TRIM52 level in TRIM52-overexpressing H1975 cells was detected. All data are presented as the mean ± standard deviation. **P<0.01, ***P<0.001 and 
****P<0.0001, compared with shNC or vector. TRIM52, tripartite motif 52; NC, control; sh, short hairpin.
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oncogene in lung cancer. The downregulation of TRIM52 
in lung cancer cells significantly inhibited cell proliferation 
by arresting cell cycle progression, and TRIM52 upregula-
tion promoted proliferation and invasion. Notably, recent 
genomic analysis indicated that in certain genetic cancer 
cell backgrounds, an appropriate expression of TRIM52 

may be essential for efficient proliferation and survival of 
certain cancer cell lines (47,48), which are in agreement 
with the present data. This indicates that the inhibitory 
effect of TRIM52 downregulation on the proliferation of 
lung cancer cells may contribute to novel treatments for 
lung cancer.

Figure 3. Downregulation of TRIM52 inhibits lung cancer cell proliferation via cell cycle arrest. Lung cancer cells (H358 and H1299) were infected with 
shNC/shTRIM52 lentiviruses, while the cells treated with RPMI-1640 medium served as controls. (A) The proliferation of TRIM52-slienced H358 and 
H1299 cells was determined at 0, 24, 48 and 72 h with a Cell Counting Kit‑8 assay. (B) Subsequently, 48 h after infection, the cell cycle was detected by flow 
cytometry. (C) The protein levels of β‑catenin, PCNA, c‑Myc and Cyclin D1 were quantified by western blotting. Data are presented as the mean ± standard 
deviation. **P<0.01, ***P<0.001 and ****P<0.0001, compared with shNC. TRIM52, tripartite motif 52; NC, control; sh, short hairpin; PCNA, proliferating cell 
nuclear antigen.
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Furthermore, it was also investigated the mechanism 
that underlies TRIM52 in the regulation of lung cancer cell 
proliferation and invasion. It has been reported that aberrant 
activation of the Wnt/β-catenin pathway is associated with 
the development and progression of cancer (49-51). Control 
of Wnt/β-catenin signaling by disheveled binding antagonist 
of β-catenin 3 has potential as a therapeutic strategy for 
colorectal cancer (52). The proto-oncogene c-Myc has been 
reported to serve a primary role in the biological processes 
of tumors, including growth and apoptosis (53). When it 
forms a complex with its partner kinases, including cyclin 
dependent kinase 4 (CDK4) and CDK6, Cyclin D1, which is 
overexpressed in a variety of human cancer types, including 
breast and colon carcinoma cancer (16,54,55), allows cells 

to proceed into the S phase (56). Compared with Cyclin D1, 
PCNA has been reported to be elevated in the late G1 and 
S phases of the cell cycle (57-59). Additionally, in the present 
study, TRIM52-induced cell proliferation and S-phase cell 
cycle progression were counteracted by the β-catenin inhib-
itor XAV939. This was concurrent with decreased expression 
of β-catenin, PCNA, c-Myc and Cyclin D1 proteins, and a 
rescue effect of TRIM52 upregulation on Wnt/β-catenin 
inhibition. These observations are in agreement with those 
of previous reports, in that TRIM52 ablation increases the 
proportion of cells in the G0/G1-phase (30,31,60), which 
reveals that TRIM52 may regulate lung cancer cell prolif-
eration through activation of the Wnt/β-catenin signaling 
pathway.

Figure 4. TRIM52 regulates proliferation, cell cycle and invasion through the Wnt/β-catenin pathway. H1975 and A549 cells were treated with vector/oeTRIM52 
lentiviruses and 20 µM XAV939 (Wnt/β-catenin inhibitor), and 16HBE cells were treated with vector/oeTRIM52 lentiviruses. RPMI-1640 medium-treated 
cells served as controls. (A) The proliferation of treated‑H1975, A549 and 16HBE cells was assessed with a Cell Counting Kit‑8 assay. (B) Using flow cytom-
etry, the cell cycle was evaluated after 48 h. (C) The levels of β-catenin, PCNA, c-Myc and Cyclin D1 proteins were also detected.
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In summary, it was demonstrated that TRIM52 may act 
as an oncogene in lung cancer progression. The downregula-
tion of TRIM52 significantly suppressed lung cancer cell 
proliferation via blocking cell cycle progression, and TRIM52 
upregulation promoted proliferation and invasion, which may 
have occurred through activation of Wnt/β-catenin signaling. 
Therefore, targeting TRIM52 is a potential therapeutic strategy 
for the treatment of lung cancer.
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