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Abstract. Non-small cell lung carcinomas (NSCLC) are 
common and are the leading cause of cancer-associated 
mortality worldwide. Heptadecanoic acid (C17:0) is an 
odd-chain saturated fatty acid. The effect of C17:0 on lung 
cancer has remained elusive. The present study examined 
the role of C17:0 in the PC-9 NSCLC cell line and PC-9 cells 
with acquired‑gefitinib resistance (PC‑9/GR) in vitro. Cell 
proliferation, migration, apoptosis, fatty acid composition and 
the activation of relevant signaling pathways were assessed. 
The results indicated that C17:0 significantly inhibited cell 
proliferation, and migration, while promoting apoptosis 
in PC-9 and PC-9/GR cells. Furthermore, C17:0 enhanced 
the cytotoxicity of gefitinib to PC‑9 and PC‑9/GR cells. 
Mechanistical analysis indicated that the activation of the phos-
phoinositide 3-kinase/Akt signaling pathway was suppressed 
in C17:0-treated PC-9 and PC-9/GR cells. Furthermore, the 
addition of C17:0 led to accumulation of 10-cis-heptadecenoic 
acid in NSCLC cells. Collectively, the present study demon-
strated that C17:0 is an effective agent against NSCLC cells 
in vitro and the results may imply that the intake of C17:1 or 
C17:0‑rich food may be beneficial during the treatment of 
NSCLC.

Introduction

Non-small cell lung cancer (NSCLC) accounts for the majority 
of lung cancers, and is the leading cause of cancer-associated 
mortality worldwide (1). In NSCLC, the human epidermal 
growth factor receptor (EGFR) is commonly amplified or 

mutated, leading to constitutive activation of downstream 
signaling pathways, including phosphoinositide 3-kinase 
(PI3K)/Akt and extracellular signal-activated kinase signaling 
pathways. Furthermore EGFR mutation is frequently encoun-
tered in women and non-smokers in East Asia with NSCLC (2). 
The application of EGFR tyrosine kinase inhibitors (TKIs), 
including gefitinib, has marked efficacy with higher response 
rates and longer progression-free survival (3,4). However, 
patients with NSCLC who initially respond to EGFR-TKIs 
often acquire resistance due to the secondary mutations 
of EGFR, including T790M (5). Gene mutations may be 
accelerated by environmental factors, including smoking, air 
pollution and lifestyle. Environmental factors are as important 
as genetic factors in provoking tumor occurrence and devel-
opment. Recently nutritional therapy has drawn increasing 
attention in cancer treatment. Certain nutrients have been 
demonstrated to be correlated with the progression of various 
diseases. For instance, asparagine has been demonstrated to 
stimulate metastasis in a model of breast cancer (6). Dietary 
fat has been demonstrated to promote prostate cancer develop-
ment, suggesting that inhibition of fatty acid synthase may be 
useful for controlling prostate cancer (7,8). Hence, screening 
of functional dietary nutrients may provide an approach for 
controlling lung cancer development and resistance to thera-
pies, including chemotherapy.

Heptadecanoic acid (CH3(CH2)15COOH; C17:0), also 
known as margaric acid, is an odd-chain saturated fatty 
acid (OCS-FA). It exists in animal fat at a small concentra-
tion (1‑5%), while it hardly occurs in natural vegetable lipids. 
With the development of analytical techniques, OCS-FAs were 
identified to be rich in ruminant fats and fish oils. OCS‑FAs 
are present at insignificant plasma concentrations ranging 
from 0 to 1% in human bodies. C17:0 and pentadecanoic 
acid (CH3(CH2)13COOH; C15:0) are commonly used as low 
cost internal standards in quantitative analysis. Studies have 
indicated that C15:0 and C17:0 are associated with health 
and several diseases, including the incidence of coronary 
heart disease (9), prediabetes and type 2 diabetes (10) as 
well as multiple sclerosis (11). In addition, the tissue levels of 
OCS‑FAs were identified to be lower in Alzheimer's disease 
compared with those in a control group (12). Certain studies 
have indicated that odd branched‑chain fatty acid (OBCFA) 
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possesses a marked anti-tumor activity (13,14). Similarly, 
C17:0 has been reported to be effective against lymphoma 
cells (15). However, the efficacy of C17:0 against lung cancer 
cells and gefitinib‑resistant NSCLC cells has remained elusive. 
Studies on the association between OCS‑FAs and cancer 
would reveal more comprehensive functions of OCS-FAs and 
provide a potential application of health nutritional therapy in 
lung cancer prevention and treatment.

In the present study, the PC-9 NSCLC cell line and 
PC‑9 cells with acquired‑gefitinib resistance (PC‑9/GR) were 
used. The effect of C17:0 on NSCLC was compared with that 
of other dietary fatty acids contained in animal oils. In the 
experiments, C17:0 was identified to be effective against PC‑9 
and PC-9/GR cells. Furthermore, the effects of C17:0 on cell 
migration and apoptosis, as well as alterations in the fatty acid 
composition and associated signaling pathways were assessed.

Materials and methods

Cell culture. A normal human bronchial epithelioid (HBE) 
cell line was purchased from the Cell Bank of Typical Culture 
Preservation Committee of the Chinese Academy of Sciences 
(Shanghai, China), and was maintained in KM medium 
(ScienCell Research Laboratories, Inc., San Diego, CA, USA). 
NSCLC cells (PC‑9, sensitive to gefitinib; PC‑9/GR, resistant 
to gefitinib) were maintained in Dulbecco's modified Eagle's 
medium (DMEM; Biological Industries, Kibbutz Beit Haemek, 
Israel). The cell lines PC-9 and PC-9/GR were kindly provided 
by Guangdong Lung Cancer Institute (Guangdong, China) and 
were described in a previous study (16).

Cell proliferation and apoptosis assay. Cells were equally 
seeded into 96‑well plates at 37˚C for incubation overnight. 
various fatty acids (C14:0, C15:0, C16:0, C17:0, C18:0, C18:1 or 
C20:0) (Sigma‑Aldrich; Merck KGaA, Darmstadt, Germany) 
dissolved in anhydrous ethanol and filtered (17) were added 
at the indicated concentrations (10, 50, 90, 130, 170, 210 or 
250 µM), followed by incubation for 48 h. The cells were then 
incubated with MTT for 4 h at room temperature and cell prolif-
eration was determined using a spectrophotometer (Molecular 
Devices, LLC, Sunnyvale, CA, USA) by determining the 
optical density at OD 490 nm. For apoptosis detection, an 
equal number of cells was washed with PBS and re‑suspended 
in binding buffer contained in the Annexin v‑fluorescein 
isothiocyanate (FITC) kit (TransGen Biotech Co., Ltd., 
Beijing, China). The cell suspension was then transferred to a 
new reaction tube and stained by Annexin v‑FITC and prop-
idium iodide (PI) according to the manufacturer's protocol. 
After incubation in the dark for 15 min at 25˚C, cells were 
re‑suspended in binding buffer and subjected to apoptosis 
measurement by flow cytometry.

Cell migration assay. Cells were seeded in 6‑well plates 
and cultured at 37˚C with 5% CO2. until the concentration 
reached 95%. Cells were scratched with a sterile pipette tip to 
generate a cell-free path (width, ~1 mm) and cells were washed 
with PBS two times, followed by culture in DMEM (Biological 
Industries) containing the indicated fatty acids (C16:0, 
C17:0 or C18:0). After 48 h of incubation 37˚C, images of 
the cells were captured through a fluorescent microscope at 

low‑magnification. The wound gaps were measured and the 
mean healing ratios were quantified with ImageJ software 
(National Institutes of Health, Bethesda, MA, USA).

Cell clone formation assay. PC-9 and PC-9/GR cells were 
seeded into a 6‑well plate at a density of 300 cells/well and 
incubated for 48 h. The cells were refreshed with culture 
media with or without C17:0 (final concentraion, 50 µM) 
every 48 h. Approximately 12-14 days later cells were 
fixed with 4% paraformaldehyde (Beijing Solarbio Science 
& Technology Co., Ltd., Beijing, China) at 4˚C for 30 min and 
stained with 0.1% crystal violet at 25˚C for 10 min (Beijing 
Solarbio Science & Technology Co., Ltd.) and cell images 
were captured with a fluorescence microscope and the number 
of cell colonies (>50 colonies) was counted.

Fatty acid analysis of the cells by gas chromatography‑mass 
spectrometry (GC‑MS). Equal amounts of PC-9 and PC-9/GR 
cells were seeded for incubation overnight. Cells were incu-
bated with or without C17:0 (final concentration, 100 µM) for 
48 h. The cells were then collected and washed with PBS three 
times. Cells were counted and a cell suspension was prepared 
with 3 ml HCl-methanol (v/v=5%), followed by the addition of 
10 µl of C15:0 internal standard (C15:0 in chloroform, the final 
concentration, 5 mg/ml). The tubes were sealed and heated in 
an incubator at 90˚C for 4 h. After natural cooling to room 
temperature, 4 ml Na2CO3 (w/w=10%) was added. Subsequently 
1 ml n‑hexane was added, followed by agitation for 5 min and 
centrifugation at 1,000 x g for 10 min. A total of 400 µl of 
supernatant containing methyl esters of fatty acids was trans-
ferred to an automatic injector vial and subjected to a GC‑MS 
assay according to the manufacturer's protocol. In brief, the 
compositions of methyl esters of fatty acids in the cells were 
analyzed by a 30‑m polar capillary column (0.32 mm internal 
diameter; SH‑FameWax) on a Shimadzu gas chromatograph 
containing a flame ionization detector (GCMS‑QP2010 Ultra; 
Shimadzu, Kyoto, Japan). Of the samples, 1 µl was injected 
(injector temperature, 240˚C). The column temperature was 
held at 130˚C for 1 min, and increased at a rate of 3˚C/min 
to 200˚C, then increased at a rate of 2˚C/min to 220˚C and 
maintained for 10 min. Fatty acids in cells were quantified by 
an internal standard method using C15:0 methyl ester.

Western blotting. Cells were collected and incubated with 
RIPA lysis buffer (Beyotime Institute of Biotechnology, 
Haimen, China), followed by centrifugation at 10,000 x g, 
4˚C for 10 min. Supernatants were harvested and total protein 
was quantified by a BCA assay. Total protein (30‑60 µg) was 
subjected to 10% SDS‑PAGE and transferred onto polyvi-
nylidene fluoride (PvDF) membranes, followed by blocking 
with TBST (10 mM Tris‑HCl, pH 7.4, 150 mM NaCl and 
0.1% Tween-20) containing 5% dried skimmed milk for 
2 h at room temperature. Then the membranes were blotted 
with primary antibodies against GLUT1 (dilution 1:5,000; 
cat. no. ab115730; Abcam, Cambridge, UK), GLUT4 (dilu-
tion 1:2,000; cat. no. ab654; Abcam), p‑S6K (dilution 1:1,000; 
cat. no. sc‑8416; Santa Cruz Biotechnology, Dallas, TX, 
USA), S6K (dilution 1:1,000; cat. no. sc‑8418; Santa Cruz 
Biotechnology), AKT (dilution 1:5,000; cat. no. ab179463; 
Abcam), p‑AKT (dilution 1:5,000; cat. no. 81283; Abcam) 
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and GAPDH (dilution 1:5,000; cat. no. ab181602; Abcam) at 
4˚C, for overnight. After washing with TBST for three times, 
membranes were further incubated with secondary antibody 
goat anti‑rabbit IgG‑HRP (dilution 1:5,000; cat. no. AS014; 
ABclonal) or goat anti‑mouse IgG‑HRP (dilution 1:5,000; 
cat. no. AS003; ABclonal) for 1 h at room temperature. At the 
end, the membranes were incubated with a ECL kit (cwbio-
tech) and subjected to exposure with X‑ray films in dark room.

Statistical analysis. Differences between two groups were 
statistically analyzed by one‑way analysis of variance with a 
Tukey's post hoc test using SPSS 19.0 software (IBM Corp., 
Armonk, NY, USA). All experiments were performed at least 
three times. Results were expressed as the mean ± standard 
deviation. P<0.05 was considered to indicate a statistically 
significant difference.

Results

C17:0 inhibits PC‑9 and PC‑9/GR cell proliferation. Dietary 
saturated fatty acids may exert antitumor effects, and screening 
functional fatty acids may provide candidates that may serve as 
adjuvants in cancer therapy. Beef tallow and mutton tallow are 
common dietary animal oils. C16:0, C18:0 and C18:1 are the three 
dominant fatty acids in beef and mutton tallow. In a preliminary 
analysis, the content of C17:0 was determined to be 2.09% in 
beef tallow and 2.05% in mutton tallow (data not shown).

To investigate the impact of major dietary fatty acids from 
ruminant animal oils on lung cancer cells, a cell proliferation 
assay was performed. C14:0, C15:0, C16:0, C17:0, C18:0, C18:1 

or C20:0 were directly added into HBE, PC‑9 and PC‑9/GR 
cells. As presented in Fig. 1A and B, the results of the MTT 
assay indicated that these fatty acids did not affect the prolif-
eration of HBE cells, while 4 types of fatty acids (C16:0, C17:0, 
C18:0 and C20:0) significantly inhibited the proliferation of 
PC‑9 and PC‑9/GR cells. Furthermore, C17:0 was identified 
to be the most effective fatty acid against PC‑9 and PC‑9/GR 
cells, and its effects were dose‑dependent (Fig. 1C and D). The 
effect of C17:0 in other lung cancer cells, including A549 and 
H1975, was also examined. Similarly, the results revealed that 
C17:0 inhibited cell proliferation in A549 and H1975 (data not 
shown). These results indicated that C17:0 may be a fatty acid 
suitable for lung cancer treatment.

C17:0 inhibits cell migration, clone formation and promotes 
apoptosis of PC‑9 and PC‑9/GR cells. The present study then 
focused on the functional role of C17:0 in lung cancer cells. 
A wound healing assay indicated that C16:0, C17:0 and C18:0 
inhibited the wound closure ratio of PC‑9 and PC‑9/GR cells 
(Fig. 2A and B). Furthermore, the impact of C17:0 on cell 
migration was the greatest among all fatty acids tested. The 
apoptosis ratio was also determined by flow cytometry. As 
presented in Fig. 3A, C17:0 induced 16.62 and 29.63% apop-
tosis in PC-9 cells and PC-9/GR cells respectively. C18:0 also 
performed similarly in the two cell line variants. In addition, 
the results of the cell clone formation assay indicated that 
C17:0 suppressed the proliferation of PC-9 and PC-9/GR 
cells (Fig. 3B). These results indicated that C17:0 treatment 
in PC-9 and PC-9/GR cells was able to induce lung cancer 
cell death.

Figure 1. C17:0 inhibits PC‑9 and PC‑9/GR cell proliferation. (A) HBE (3x103) cells or (B) PC‑9 and PC‑9/GR cells were individually seeded in 96‑well plates 
and incubated for attachment overnight. Each fatty acid was added at a final concentration of 100 µmol/l, followed by incubation for 48 h and cell proliferation 
ratios were determined by a MTT assay. (C) PC‑9 (4x103) and (D) PC‑9/GR cells were prepared as aforementioned and treated with C17:0 at the indicated 
concentrations for 48 h, followed by assessment of the cell proliferation ratios by a MTT assay. values are expressed as the mean ± standard deviation. **P<0.01, 
***P<0.001, experimental vs. the control group (ethanol group). C17:0, heptadecanoic acid; PC‑9/GR, gefitinib‑resistant PC‑9 cell line; HBE, human bronchial 
epithelioid cell line.
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Figure 2. C17:0 inhibits wound healing in PC‑9 and PC‑9/GR cells. (A) PC‑9 and PC‑9/GR cells were seeded in 6‑well plates and incubated for attachment 
overnight. A scratch was made in the confluent cell layer by using a pipette tip and culture media with various fatty acids (100 µM), without serum was added, 
followed by incubation for 48 h. Finally, images of the cells were captured using an optical microscope. (B) Cell layer wound healing ratios in each group were 
statistically analyzed with ImageJ software. values are expressed as the mean ± standard deviation. **P<0.01, experimental vs. the control group (NC group). 
C17:0, heptadecanoic acid; PC‑9/GR, gefitinib‑resistant PC‑9 cell line.

Figure 3. C17:0 promotes apoptosis, while it inhibits clone formation in PC‑9 and PC‑9/GR cells. (A) PC‑9 and PC‑9/GR cells were seeded in 6‑well plates and 
incubated overnight. C17:0 or C18:0 was then added to the cells and after 48 h of incubation, the cells were harvested and stained with FITC‑Annexin v and 
PI. Finally, cell apoptosis ratios in each group were determined by flow cytometry. (B) PC‑9 and PC‑9/GR cells were seeded in a 6‑well plate and incubated for 
48 h. The cells were refreshed with media containing C17:0 (final concentration, 50 µM) or without C17:0 every 48 h. After 12‑14 days of culture, visible cell 
colonies were fixed and stained. The number of cell colonies was counted under a microscope. values are expressed as the mean ± standard deviation. **P<0.01, 
***P<0.001, experimental vs. the control group (ethanol group). C17:0, heptadecanoic acid; C18:0, octadecanoic acid; PC‑9/GR, gefitinib‑resistant PC‑9 cell 
line; PI, propidium iodide; FITC, fluorescein isothiocyanate.
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C17:0 enhances the cytotoxicity of gefitinib in PC‑9 and 
PC‑9/GR cells. EGFR-TKIs are widely used in lung cancer 
therapy and exhibit marked efficacy. To investigate the addi-
tive/enhancing effect of C17:0 on EGFR-TKIs, an MTT assay 
was also performed on PC-9 and PC-9/GR cells treated with 
gefitinib plus C17:0. As presented in Fig. 4A and B, C17:0 
promoted the inhibitory effect of gefitinib in PC‑9 and PC‑9/GR 
cells in a dose‑dependent manner. The greatest inhibition ratio 
in the two cell variants reached ~80%. These results indicated 
that C17:0 at increasing concentrations enhanced the effect of 
gefitinib on NSCLC cells in vitro.

Effect of C17:0 on the fatty acid composition of PC‑9 and 
PC‑9/GR cells. Changes in the fatty acid composition of PC-9 
and PC-9/GR cells in response to C17:0 treatment was assessed 
by GC‑MS and C15:0 was used as the internal standard. As 
presented in Fig. 5 and Table I, the contents of various fatty 
acids ranging from C14:0 to C24:0 were analyzed. In HBE, 
PC-9 and PC-9/GR cells, the addition of C17:0 increased the 
content of 10-cis-heptadecenoic acid (C17:1). The concentra-
tion of C17:1 in PC-9 and PC-9/GR cells was higher than that 
in HBE cells. Furthermore, the concentration of C18:1 in HBE 
cells was lower than that in PC-9 and PC-9/GR cells. In response 

Figure 4. C17:0 promotes the cytotoxic effect of gefitinib in PC‑9 and PC‑9/GR cells. PC‑9 and PC‑9/GR cells were seeded into 96‑well plates. Gefitinib 
(5 nM) plus C17:0 with indicated concentrations were added into PC‑9 cells. In addition, PC‑9/GR cells were incubated with 5 µM Gefitinib and C17:0 
with varying concentrations. After 48 h of incubation, cell inhibition ratios in (A) PC‑9 cells and (B) PC‑9/GR cells were assessed by an MTT assay. 
Inhibition ratio=(ODcontrol‑ODtreated)/ODcontrol x100%. Values are expressed as the mean ± standard deviation. ***P<0.001, experimental vs. the control group. 
C17:0, heptadecanoic acid; PC‑9/GR, gefitinib‑resistant PC‑9 cell line.

Figure 5. Fatty acid composition assay in HBE, as well as and PC‑9 and PC‑9/GR cells. Equal amounts of HBE, PC‑9 and PC‑9/GR cells were seeded into 
plates and incubated overnight. C17:0 was added and the cells were incubated for 48 h. The cells were collected and subjected to a GC‑MS assay according to 
the manufacturer's protocol. C17:0, heptadecanoic acid; PC‑9/GR, gefitinib‑resistant PC‑9 cell line; HBE, human bronchial epithelioid cell line.
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to the addition of C17:0, C18:1 was identified to be downregu-
lated in HBE cells, while it was not altered in PC‑9 cells and 
only slightly upregulated in PC-9/GR cells. In HBE cells, the 

total fatty acid composition was not altered during incubation 
with C17:0. However, the ratio of total fatty acids in PC-9 and 
PC-9/GR cells was higher than that in HBE cells, indicating 
that these lung cancer cells have a higher lipid synthesis activity 
and accumulation (Fig. 6). The increase of C17:1 in PC‑9/GR 
cells may contribute to lung cancer cell death.

C17:0 inhibits the activation of PI3K/Akt signaling in PC‑9 
and PC‑9/GR cells. To further explore the molecular mecha-
nisms associated with the inhibition of C17:0 on PC‑9 and 
PC-9/GR cells, the activation of relevant signaling pathways 
was detected. The PI3K/Akt signaling pathway is one pivotal 
pathway regulating cell proliferation and tumor development. 
Therefore, its activation was detected in PC-9 and PC-9/GR 
cells in response to treatment with C17:0. As presented in 
Fig. 7, the phosphorylation of Akt and S6K was inhibited. In 
particular, the levels of p‑S6K in PC‑9/GR cells were mark-
edly downregulated by C17:0 in a dose‑dependent manner. In 
general, cancer cells may upregulate the expression or enhance 
the activation of glucose transporters, including GLUT1 and 
GLUT4, to increase glucose import from the extracellular 
environment into the cytoplasm to compensate ATP produc-
tion (18). Thus, the expression of GLUT1 and GLUT4 in the 
two cell line variants in the absence or presence of C17:0 was 
also detected. The results indicated that treatment of PC-9 and 
PC-9/GR cells with C17:0 caused downregulation of GLUT1 
and GLUT4. Collectively, the present results indicated that 
addition of C17:0 to PC-9 and PC-9/GR cells inhibited the 
activation of PI3K/Akt signaling and glucose consumption.

Table I. Fatty acid composition analysis.

 HBE HBE+C17:0 PC‑9 PC‑9+C17:0 PC‑9/GR PC‑9/GR+C17:0

C14:0 0.64±0.07 0.33±0.04b 1.41±0.26 1.32±0.11b 1.45±0.06 1.16±0.04b

C16:0 12.12±1.02 7.4±0.73b 14.8±0.55 12.6±0.46 12.64±0.17 9.98±0.1c

C16:1 1.97±0.34 1.04±0.02b 4.9±0.63 4.27±0.59 3.38±0.18 2.71±0.04b

C17:0 0.7±0.2 12.99±0.42c 0.47±0.18 7.56±0.48c 0.39±0.05 8.09±0.1c

C17:1 0.43±0.39 2.83±0.1c 0.9±0.3 8.58±0.29c 0.31±0.27 4.56±0.14c

C18:0 10.8±1.08 7.97±0.78b 10.98±1.3 9.18±0.67 10.78±0.44 11.84±0.49a

C18:1 20.03±1.69 12.71±1.63b 35.32±1.07 36.98±3.98 29.16±0.71 33.15±0.81b

C18:2 1.65±0.27 1.33±0.12 1.29±0.3 1.44±0.05 1.41±0.04 1.8±0.05b

C19:0 0±0 0.44±0.03c 0±0 0±0 0±0 0±0
C20:0 0±0 0±0 0±0 0±0 0.12±0.2 0±0
C20:1 0.24±0.22 0±0 0.23±0.06 0±0b 0.28±0.3 0.31±0.01
C20:3 0.59±0.55 0.29±0.04 0.49±0.09 0.22±0.2 0.2±0.18 0.39±0.34
C18:3 0±0 0±0 0±0 0±0 0.11±0.19 0.2±0.35
C20:4 3.96±0.48 3.13±0.01b 2.68±0.5 2.86±0.13 3.08±0.32 3.95±0.42a

C20:5 0.39±0.36 0.59±0.06 0.14±0.25 0±0 0.28±0.26 0.44±0.38
C22:0 0.22±0.23 0±0 0.21±0.36 0±0 0.17±0.3 0±0
C22:1 0±0 0±0 0±0 0±0 0.15±0.25 0±0
C22:4 0.23±0.25 0±0 0.18±0.31 0±0 0.35±0.31 0.24±0.42
C22:6 3.17±0.79 1.81±0.32b 2.07±0.75 2.19±0.9 2.81±0.66 2.14±0.34
C24:0 0.45±0.4 0±0 0±0 0±0 0±0 0±0

Numbers represent the ratios of each fatty acid to the internal standard (C15:0). aP<0.05, bP<0.01 and cP<0.001 compared to each control group. 
ND, not detected.

Figure 6. Fatty acid composition assay by GC‑MS. Equal amounts of HBE, 
PC‑9 and PC‑9/GR cells were seeded into plates and incubated overnight. 
C17:0 was then added and the cells were incubated for 48 h, followed by 
collection and analysis using the GC-MS assay. The ratios of SFA, MUFA 
and PUFA were statistically analyzed. The ratios of total fatty acids in the 
control group and C17:0-treated group were preceded to statistical analysis. 
Values are expressed as the mean ± standard deviation. *P<0.05, experimental 
vs. the control group. C17:0, heptadecanoic acid; PC‑9/GR, gefitinib‑resistant 
PC‑9 cell line; HBE, human bronchial epithelioid cell line; GC‑MS, gas 
chromatography-mass spectrometry; SFA, saturated fatty acid; MUFA, 
monounsaturated fatty acid; PUFA, polyunsaturated fatty acid.
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Discussion

Recently, alteration of lipid metabolism in cancer cells has 
drawn increasing attention. Accumulating studies have 
reported that lipid metabolism is associated with lung cancer 
development and resistance therapies, including chemo-
therapy (19‑23). Modulation of metabolic pathways has been 
demonstrated to control cancer cell proliferation and death, 
indicating that application of relative molecules or reagents 
involved in this process may be beneficial for cancer therapy. 
Fatty acids from dietary oils are the major substrates for lipid 
synthase. The amounts and types of fatty acids ingested are 
important for nutritional therapy in patients with cancer. 
Polyunsaturated fatty acids (PUFAs) have also been demon-
strated to inhibit colon cancer cell growth (24). Palmitic acid 
has been demonstrated to impair hepatocellular carcinoma 
development by suppressing cell membrane fluidity and 
glucose intake (25). These studies indicate that functional fatty 
acids may be beneficial for clinical cancer therapy. Therefore 
investigation of the association between fatty acid intake and 
lung cancer development may provide nutritional suggestions 
for patients receiving lung cancer therapy. In the present study, 
the effects of major dietary fatty acids derived from rumi-
nant animal oils in lung cancer cells were assessed using the 
PC‑9 cell line and its derivative with acquired gefitinib‑resis-
tance PC‑9/GR. The results indicated that C17:0 significantly 
inhibited the proliferation and migration of the two cell line 
variants. Furthermore, treatment with C17:0 induced greater 
apoptosis in PC-9 and PC-9/GR cells. The results of the MTT 
assay also indicated that C17:0 enhanced the cytotoxic effect 
of gefitinib. The present study demonstrated the role and func-
tion of C17:0 in NSCLC and provided a potential application 
in clinical treatment.

First, it was demonstrated that various concentrations of 
C16:0, C17:0, C18:0 and C20:0 inhibit PC‑9 and PC‑9/GR cells. 
Further study indicated that C17:0 had the greatest cytotoxic 
effect in PC‑9 cells, confirming that C17:0 is able to inhibit 
NSCLC cells. This result indicated that certain saturated fatty 
acids are able to inhibit tumor cell proliferation. Of note, a 
previous study argued that saturated fatty acids are not the 
primary cause for certain diseases, including arterial occlu-
sion (26). Therefore, saturated fatty acids may have a potential 
function regarding health and diseases, which requires further 
study and rational analysis. In addition, C15:0 was not effec-
tive in PC-9 and PC-9/GR cells, while C17:0 was particularly 
effective in NSCLC cells. The effect of OCS-FAs with different 
lengths of carbon chain on NSCLC may also require further 
study to provide more functional fatty acids for lung cancers. 
Notably, C18:1 and cis-9,10-epoxy stearic acid, an oxidation 
product of C18:1, have been previously reported to be effective 
in decreasing the cell viability of HepG2 cells (27). However, 
the addition of C18:1 did not affect the viability in PC‑9 and 
PC-9/GR cells in the present study, indicating that certain 
fatty acids may exert a different impact on different tumor cell 
types.

Certain OBCFAs have been demonstrated to be effective 
against certain types of tumor cells, e.g. breast cancer (28), 
indicating that straight odd‑chain or branched‑chain fatty 
acids may exert similar effects on tumor cells. The present 
results indicated that C17:0 significantly suppressed wound 
healing in PC-9 and PC-9/GR cells. Furthermore, C17:0 
produced a greater increase in FITC-Annexin V and 
PI-stained cells, suggesting that C17:0 triggers cell apoptosis. 
Similarly, omega‑3 PUFAs have been demonstrated to inhibit 
A549 cell proliferation by promoting apoptosis and inhibiting 
the PI3K/Akt signaling pathway (29). In the present study, the 
impact of C17:0 on apoptosis and relevant signaling pathways 
was also evaluated. The results were consistent with those of 
the aforementioned study, indicating that C17:0 and omega-3 
PUFA/docosahexenoic acid inhibit lung cancer cells via a 
similar mechanism. Furthermore, potential changes in the 
fatty acid profiles in the cell lines upon treatment with C17:0 
were detected. An increase of C17:1 was observed in two cell 
lines after supplementation with C17:0. The function of C17:1 
in lung cancer cells remains elusive. However, stearoyl-CoA 
desaturase‑1, a key rate‑limiting enzyme for monounsaturated 
fatty acid (MUFA) synthesis, has been revealed to be involved 
in maintaining rapid cell proliferation, apoptosis evasion, 
cancer cell development and transformation in a panel of 
cancer types, including lung cancer (30,31). The alteration of 
MUFAs is correlated with cancer development, which may 
be contrary to the present results, as no alteration of C17:1 
was detected in these studies. The results of the present study 
indicated that C17:1 may inhibit lung cancer cell proliferation. 
Furthermore, supplementation of C17:0 increased the ratios of 
C18:2 and C20:4, which may contribute to enhanced oxidative 
stress and cell death. The function of C17:0 and C17:1 in lung 
cancer cells requires a more comprehensive analysis.

To evaluate the effect of EGFR-TKIs plus C17:0 on 
NSCLC, PC‑9 and PC‑9/GR cells treated with a combination 
of C17:0 and gefitinib were subjected to MTT assays. C17:0 
was indicated to enhance the inhibitory effect of gefitinib on 
PC‑9 as well as PC‑9/GR cells. This combination effect was 

Figure 7. C17:0 inhibits PI3K/Akt signaling in PC‑9 and PC‑9/GR cells. PC‑9 
and PC‑9/GR cells were equally seeded in 35‑mm plates and incubated over-
night. C17:0 with varying concentrations was added, followed by incubation for 
48 h. Cells were harvested and subjected to SDS‑PAGE and immuno blotting 
assay with the indicated antibodies. C17:0, heptadecanoic acid; PC‑9/GR, 
gefitinib‑resistant PC‑9 cell line.
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greater in PC-9 cells than that in PC-9/GR cells, consistent 
with the effects of C17:0 in the two cell line variants alone. 
These results indicated that C17:0 may be a suitable candidate 
for nutritional therapy for lung cancer. In fact, there are some 
references concerning the physiological concentration of 
C17:0 in humans. The OCS-FAs are one class of fatty acids 
with insignificant plasma concentrations, which account for 
<0.5% total plasma fatty acid concentration and their varying 
range in blood plasma is 0‑1% (32,33). Therefore, the physi-
ological concentration of C17:0 is low. However, studies have 
reported that C17:0 is a biomarker or potential protective fatty 
acid against a series diseases, such as metabolic syndrome and 
type 2 diabetes (34‑36). In addition, C17:0 concentration in 
plasma could be elevated successfully by increasing people's 
dietary intake of C17:0-rich dairy food (37,38). For example, 
a study reported that the intake of conventional dairy prod-
ucts containing 1% milk, 1.5% yogurt and 34% cheese could 
increase the level of cardioprotective fatty acid C15:0 and 
C17:0 and have a minor effect on the lipid profile (38). C17:0 is 
high in milk and whole fat yogurt. Thus, we propose that C17:0 
may be a potential contributor for clinical treatment of lung 
cancer. Supplementation of n‑3 PUFAs has been demonstrated 
to be effective to increase body weight and control the inflam-
matory status of patients with lung cancer clinically (39,40). 
Therefore, further study of EGFR-TKIs plus C17:0 in vivo 
is required to validate the efficacy of C17:0 in lung cancer 
treatment.
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