A germline MBD4 mutation was identified in a patient with colorectal oligopolyposis and early‑onset cancer: A case report

  • Authors:
    • Kohji Tanakaya
    • Kensuke Kumamoto
    • Yuhki Tada
    • Hidetaka Eguchi
    • Keiichiro Ishibashi
    • Hitoshi Idani
    • Tetsuhiko Tachikawa
    • Kiwamu Akagi
    • Yasushi Okazaki
    • Hideyuki Ishida
  • View Affiliations

  • Published online on: July 17, 2019     https://doi.org/10.3892/or.2019.7239
  • Pages: 1133-1140
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

A 42‑year‑old woman presented with ~30 adenomatous polyps of the left sided‑colon with early rectosigmoid cancer. The patient had no previous medical history and no familial history of inherited colorectal disease. No germline gene mutations associated with colorectal adenomatous polyposis, including APC regulator of WNT signaling pathway, mutY DNA glycosylase, DNA polymerase‑ε, catalytic subunit, DNA polymerase δ1, catalytic subunit, and mismatch repair genes, were detected via germline genetic testing. A heterozygous germline mutation in methyl‑CpG binding domain 4, DNA glycosylase (MBD4), c.217C>T/p.Gln73*, which resulted in the generation of a stop codon, was identified by genetic analyses including whole‑exome sequencing. Immunohistochemical staining analysis revealed that the expression of MBD4 protein was absent in the cancer tissue, while it was expressed in the normal epithelium. Sequencing and copy‑number analyses demonstrated the loss of the remaining allele of MBD4 in the cancer tissue. Furthermore, somatic mutation signature analysis showed preferential transition of cytosine to thymine residues at CpG dinucleotides in cancer tissues. Although it has been previously reported that germline missense mutations and somatic mutations of MBD4 are associated with the development of colorectal cancer, this is the first report, to the best of our knowledge, in which a germline nonsense mutation of the MBD4 gene has been identified in an early‑onset colorectal cancer patient with oligopolyposis.

References

1 

Grover S, Kastrinos F, Steyerberg EW, Cook EF, Dewanwala A, Burbidge LA, Wenstrup RJ and Syngal S: Prevalence and phenotypes of APC and MUTYH mutations in patients with multiple colorectal adenomas. JAMA. 308:485–492. 2012. View Article : Google Scholar : PubMed/NCBI

2 

Brensinger JD, Laken SJ, Luce MC, Powell SM, Vance GH, Ahnen DJ, Petersen GM, Hamilton SR and Giardiello FM: Variable phenotype of familial adenomatous polyposis in pedigrees with 3′ mutation in the APC gene. Gut. 43:548–552. 1998. View Article : Google Scholar : PubMed/NCBI

3 

Spier I, Holzapfel S, Altmüller J, Zhao B, Horpaopan S, Vogt S, Chen S, Morak M, Raeder S, Kayser K, et al: Frequency and phenotypic spectrum of germline mutations in POLE and seven other polymerase genes in 266 patients with colorectal adenomas and carcinomas. Int J Cancer. 137:320–331. 2015. View Article : Google Scholar : PubMed/NCBI

4 

Palles C, Cazier JB, Howarth KM, Domingo E, Jones AM, Broderick P, Kemp Z, Spain SL, Guarino E, Salguero I, et al: Germline mutations affecting the proofreading domains of POLE and POLD1 predispose to colorectal adenomas and carcinomas. Nat Genet. 45:136–144. 2013. View Article : Google Scholar : PubMed/NCBI

5 

Pursell ZF, Isoz I, Lundström EB, Johansson E and Kunkel TA: Yeast DNA polymerase epsilon participates in leading-strand DNA replication. Science. 317:127–130. 2007. View Article : Google Scholar : PubMed/NCBI

6 

Bellacosa A: Functional interactions and signaling properties of mammalian DNA mismatch repair proteins. Cell Death Differ. 8:1076–1092. 2001. View Article : Google Scholar : PubMed/NCBI

7 

Weren RD, Ligtenberg MJ, Kets CM, de Voer RM, Verwiel ET, Spruijt L, van Zelst-Stams WA, Jongmans MC, Gilissen C, Hehir-Kwa JY, et al: A germline homozygous mutation in the base-excision repair gene NTHL1 causes adenomatous polyposis and colorectal cancer. Nat Genet. 47:668–671. 2015. View Article : Google Scholar : PubMed/NCBI

8 

Adam R, Spier I, Zhao B, Kloth M, Marquez J, Hinrichsen I, Kirfel J, Tafazzoli A, Horpaopan S, Uhlhaas S, et al: Exome sequencing identifies biallelic MSH3 germline mutations as a recessive subtype of colorectal adenomatous polyposis. Am J Hum Genet. 99:337–351. 2016. View Article : Google Scholar : PubMed/NCBI

9 

Horpaopan S, Spier I, Zink AM, Altmüller J, Holzapfel S, Laner A, Vogt S, Uhlhaas S, Heilmann S, Stienen D, et al: Genome-wide CNV analysis in 221 unrelated patients and targeted high-throughput sequencing reveal novel causative candidate genes for colorectal adenomatous polyposis. Int J Cancer. 136:E578–E589. 2015. View Article : Google Scholar : PubMed/NCBI

10 

Weren RD, Venkatachalam R, Cazier JB, Farin HF, Kets CM, de Voer RM, Vreede L, Verwiel ET, van Asseldonk M, Kamping EJ, et al: Germline deletions in the tumour suppressor gene FOCAD are associated with polyposis and colorectal cancer development. J Pathol. 236:155–164. 2015. View Article : Google Scholar : PubMed/NCBI

11 

Spier I, Kerick M, Drichel D, Horpaopan S, Altmüller J, Laner A, Holzapfel S, Peters S, Adam R, Zhao B, et al: Exome sequencing identifies potential novel candidate genes in patients with unexplained colorectal adenomatous polyposis. Fam Cancer. 15:281–288. 2016. View Article : Google Scholar : PubMed/NCBI

12 

Hendrich B, Hardeland U, Ng HH, Jiricny J and Bird A: The thymine glycosylase MBD4 can bind to the product of deamination at methylated CpG sites. Nature. 401:301–304. 1999. View Article : Google Scholar : PubMed/NCBI

13 

Sobin LH, Gospodarowicz MK and Wittekind Ch: Digestive system tumours, colon and rectum. TNM Classification of Malignant Tumors. 7th. Wiley-Blackwell; Hoboken, NJ: pp. 100–105. 2009

14 

Kohda M, Kumamoto K, Eguchi H, Hirata T, Tada Y, Tanakaya K, Akagi K, Takenoshita S, Iwama T, Ishida H and Okazaki Y: Rapid detection of germline mutations for hereditary gastrointestinal polyposis/cancers using HaloPlex target enrichment and high-throughput sequencing technologies. Fam Cancer. 15:553–562. 2016. View Article : Google Scholar : PubMed/NCBI

15 

Li H and Durbin R: Fast and accurate short read alignment with Burrows-wheeler transform. Bioinformatics. 25:1754–1760. 2009. View Article : Google Scholar : PubMed/NCBI

16 

McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M and DePristo MA: The Genome analysis toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20:1297–1303. 2010. View Article : Google Scholar : PubMed/NCBI

17 

Cibulskis K, Lawrence MS, Carter SL, Sivachenko A, Jaffe D, Sougnez C, Gabriel S, Meyerson M, Lander ES and Getz G: Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat Biotechnol. 31:213–219. 2013. View Article : Google Scholar : PubMed/NCBI

18 

Gehring JS, Fischer B, Lawrence M and Huber W: SomaticSignatures: Inferring mutational signatures from single-nucleotide variants. Bioinformatics. 31:3673–3675. 2015.PubMed/NCBI

19 

Team RC: R, . A language and environment for statistical computing. R foundation for statistical computing; Vienna, Austria: simplehttps://cran.r-project.org/src/base/R-3/

20 

Yamaguchi-Kabata Y, Nariai N, Kawai Y, Sato Y, Kojima K, Tateno M, Katsuoka F, Yasuda J, Yamamoto M and Nagasaki M: iJGVD: An integrative Japanese genome variation database based on whole-genome sequencing. Hum Genome Var. 2:150502015. View Article : Google Scholar : PubMed/NCBI

21 

Tricarico R, Cortellino S, Riccio A, Jagmohan-Changur S, Van der Klift H, Wijnen J, Turner D, Ventura A, Rovella V, Percesepe A, et al: Involvement of MBD4 inactivation in mismatch repair-deficient tumorigenesis. Oncotarget. 6:42892–42904. 2015. View Article : Google Scholar : PubMed/NCBI

22 

Wu P, Qiu C, Sohail A, Zhang X, Bhagwat AS and Cheng X: Mismatch repair in methylated DNA. Structure and activity of the mismatch-specific thymine glycosylase domain of methyl-CpG-binding protein MBD4. J Biol Chem. 278:5285–5291. 2003. View Article : Google Scholar : PubMed/NCBI

23 

Bellacosa A, Cicchillitti L, Schepis F, Riccio A, Yeung AT, Matsumoto Y, Golemis EA, Genuardi M and Neri G: MED1, a novel human methyl-CpG-binding endonuclease, interacts with DNA mismatch repair protein MLH1. Proc Natl Acad Sci USA. 96:3969–3974. 1999. View Article : Google Scholar : PubMed/NCBI

24 

Bader S, Walker M and Harrison D: Most microsatellite unstable sporadic colorectal carcinomas carry MBD4 mutations. Br J Cancer. 83:1646–1649. 2000. View Article : Google Scholar : PubMed/NCBI

25 

Bader S, Walker M, Hendrich B, Bird A, Bird C, Hooper M and Wyllie A: Somatic frameshift mutations in the MBD4 gene of sporadic colon cancers with mismatch repair deficiency. Oncogene. 18:8044–8047. 1999. View Article : Google Scholar : PubMed/NCBI

26 

Evertson S, Wallin A, Arbman G, Rütten S, Emterling A, Zhang H and Sun XF: Microsatellite instability and MBD4 mutation in unselected colorectal cancer. Anticancer Res. 23:3569–3574. 2003.PubMed/NCBI

27 

Riccio A, Aaltonen LA, Godwin AK, Loukola A, Percesepe A, Salovaara R, Masciullo V, Genuardi M, Paravatou-Petsotas M, Bassi DE, et al: The DNA repair gene MBD4 (MED1) is mutated in human carcinomas with microsatellite instability. Nat Genet. 23:266–268. 1999. View Article : Google Scholar : PubMed/NCBI

28 

Bader SA, Walker M and Harrison DJ: A human cancer-associated truncation of MBD4 causes dominant negative impairment of DNA repair in colon cancer cells. Br J Cancer. 96:660–666. 2007. View Article : Google Scholar : PubMed/NCBI

29 

Millar CB, Guy J, Sansom OJ, Selfridge J, MacDougall E, Hendrich B, Keightley PD, Bishop SM, Clarke AR and Bird A: Enhanced CpG mutability and tumorigenesis in MBD4-deficient mice. Science. 297:403–405. 2002. View Article : Google Scholar : PubMed/NCBI

30 

Wong E, Yang K, Kuraguchi M, Werling U, Avdievich E, Fan K, Fazzari M, Jin B, Brown AM, Lipkin M and Edelmann W: Mbd4 inactivation increases Cright-arrowT transition mutations and promotes gastrointestinal tumor formation. Proc Natl Acad Sci USA. 99:14937–14942. 2002. View Article : Google Scholar : PubMed/NCBI

31 

Hes FJ, Nielsen M, Bik EC, Konvalinka D, Wijnen JT, Bakker E, Vasen HF, Breuning MH and Tops CM: Somatic APC mosaicism: An underestimated cause of polyposis coli. Gut. 57:71–76. 2008. View Article : Google Scholar : PubMed/NCBI

32 

Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, Bignell GR, Bolli N, Borg A, Børresen-Dale AL, et al: Signatures of mutational processes in human cancer. Nature. 500:415–421. 2013. View Article : Google Scholar : PubMed/NCBI

33 

Schmutte C, Yang AS, Beart RW and Jones PA: Base excision repair of U:G mismatches at a mutational hotspot in the p53 gene is more efficient than base excision repair of T:G mismatches in extracts of human colon tumors. Cancer Res. 55:3742–3746. 1995.PubMed/NCBI

34 

Kleihues P, Schäuble B, zur Hausen A, Estève J and Ohgaki H: Tumors associated with p53 germline mutations: A synopsis of 91 families. Am J Pathol. 150:1–13. 1997.PubMed/NCBI

35 

Fearon ER and Vogelstein B: A genetic model for colorectal tumorigenesis. Cell. 61:759–767. 1990. View Article : Google Scholar : PubMed/NCBI

36 

Kudo SE, Sugihara Y, Kida H, Ishida F, Miyachi H, Mori Y, Misawa M, Hisayuki T, Kodama K, Wakamura K, et al: Depressed-type colonic lesions and ‘De Novo’ cancer in familial adenomatous polyposis: A colonoscopist's viewpoint. ISRN Gastroenterol 2013. 8381342013.

37 

Saito Y, Kanai Y, Sakamoto M, Saito H, Ishii H and Hirohashi S: Expression of mRNA for DNA methyltransferases and methyl-CpG-binding proteins and DNA methylation status on CpG islands and pericentromeric satellite regions during human hepatocarcinogenesis. Hepatology. 33:561–568. 2001. View Article : Google Scholar : PubMed/NCBI

38 

Rodrigues M, Mobuchon L, Houy A, Fiévet A, Gardrat S, Barnhill RL, Popova T, Servois V, Rampanou A, Mouton A, et al: Outlier response to anti-PD1 in uveal melanoma reveals germline MBD4 mutations in hypermutated tumors. Nat Commun. 9:18662018. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

September 2019
Volume 42 Issue 3

Print ISSN: 1021-335X
Online ISSN:1791-2431

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Tanakaya, K., Kumamoto, K., Tada, Y., Eguchi, H., Ishibashi, K., Idani, H. ... Ishida, H. (2019). A germline MBD4 mutation was identified in a patient with colorectal oligopolyposis and early‑onset cancer: A case report. Oncology Reports, 42, 1133-1140. https://doi.org/10.3892/or.2019.7239
MLA
Tanakaya, K., Kumamoto, K., Tada, Y., Eguchi, H., Ishibashi, K., Idani, H., Tachikawa, T., Akagi, K., Okazaki, Y., Ishida, H."A germline MBD4 mutation was identified in a patient with colorectal oligopolyposis and early‑onset cancer: A case report". Oncology Reports 42.3 (2019): 1133-1140.
Chicago
Tanakaya, K., Kumamoto, K., Tada, Y., Eguchi, H., Ishibashi, K., Idani, H., Tachikawa, T., Akagi, K., Okazaki, Y., Ishida, H."A germline MBD4 mutation was identified in a patient with colorectal oligopolyposis and early‑onset cancer: A case report". Oncology Reports 42, no. 3 (2019): 1133-1140. https://doi.org/10.3892/or.2019.7239