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Abstract. Prostate cancer is one of the most common malignan-
cies diagnosed in males. Cancer‑related inflammatory factors 
include tumor necrosis factor, inflammasomes, cytokines, 
chemokines, transcription factors, infiltrating or circulating 
immune cells, reactive oxygen species, and sex hormone 
receptors. These are mainly associated with the local immune 
response at the tumor site. Emodin, a chemical compound that 
can be isolated from the plant rhubarb among others, has been 
shown to exhibit anti‑inflammatory and anticancer properties in 
prostate cancer. This review summarizes the effects of emodin on 
prostate cancer and analyzes whether it interferes with prostate 
cancer through anti‑inflammatory pathways. New information 
regarding the development of emodin derivatives including their 
increased solubility and reduced side effects through chemical 
structure modifications is also reviewed.
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1. Introduction

Prostate cancer is one of the most common malignancies 
diagnosed in males (1). The pathogenesis of prostate cancer 
has not been clearly elucidated to date, and requires further 
exploration to facilitate early diagnosis and effective treat-
ment (2). Prostate is a human organ that is easily susceptible 
to infections and inflammations. Chronic inflammation plays 
a significant role in the development of various types of cancer 
including prostate cancer (3).

Approximately 15‑20% of cancer patients are associated 
with infections or inflammation and prostate cancer is one 
such cancer type (4). In a self‑reported prospective cohort 
study of 5,821 men over 65 years of age, chronic prostatitis was 
shown to be a significant factor in the occurrence of prostate 
cancer (5). Chronic inflammation triggers proliferative inflam-
matory atrophy (PIA) of the prostate, which in turn acts as a 
potential precursor lesion to prostatic intraepithelial neoplasia 
(PIN) and carcinoma (6).

Emodin (1,3,8‑3 hydroxy‑6‑methyl anthraquinone), with a 
molecular formula of C15H10O5, (Fig. 2A) is an active ingre-
dient of the plant rhubarb, and is mostly used for relieving 
abdominal distension, constipation and other gastrointestinal 
symptoms (7). Recent studies show that emodin exhibits 
anti‑inflammatory and anticancer effects on prostate cancer (8). 
In this review, we aim to clarify the correlation between inflam-
mation and prostate cancer, as well as the mechanism of action 
of emodin in prostate cancer to explore its role in the inhibition 
of prostate cancer through anti‑inflammatory pathways.

2. Inflammation in prostate cancer development

Correlation between inflammation and prostate cancer. 
Inflammation is regarded as a hallmark of the occurrence and 
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development of cancer (9). In 1863, Rudolf Virchow found 
leukocytes in neoplastic tissues and hypothesized ‘lymphatic 
infiltration’ as the first step in cancer progression in chronic 
inflammatory regions. In the 1990s, the study of an inflam-
matory microenvironment in tumor tissues was the main 
research focus in the field of cancer research (4). A sustained 
inflammatory microenvironment induces several reactive 
oxygen species (ROS), reactive nitrogen species (RNS), cyto-
kines and chemokines, growth factors and other inflammatory 
mediators, changing the stability of the cellular environ-
ment. This in turn induces cell proliferation, chemotaxis, 
and inflammatory cells, leading to DNA oxidative damage. 
This indicates that the proliferation of these cells loose their 
control in the inflammatory microenvironment (10). This 
finally induces tumors, causing inflammation in the local 
environment of the tumor. Inflammation plays two roles in 
the turmor microenvironment. Firstly, it shows benign local 
effects, such as T‑cell mediated cytotoxicity, leading to tumor 
inhibition; and secondly, the inflammation is characterized 
by persistent, adverse effects, such as promotion of malig-
nant cell proliferation, angiogenesis, and metastasis, which 
subsequently destroys the immune response and weakens 
the body's response to hormones and chemotherapy drugs. 
This results in the occurrence of lymphoma B symptoms 
(i.e., fever, sweating, weight loss) and cachexia. At the same 
time, oncogenes can induce the formation of an inflammatory 
microenvironment (9) (Fig. 1).

The main signaling pathways, inflammatory mediators, 
inflammatory cells, and cytokines involved in the inflamma-
tory immune system of prostate cancer. The prostate consists 
of three different regions: the central zone (CZ), the transition 
zone (TZ) and the peripheral zone (PZ). Benign prostatic 
hyperplasia (BPH) occurs in the TZ area, whereas prostatitis 
and cancer occur mainly in the PZ area (11). Several studies 
have reported that inflammatory mediators such as inflam-
matory pathways, inflammatory cytokines, and inflammatory 
cells promote the development and progression of prostate 
cancer (9). Both external inflammatory pathways and inherent 
genetic pathways can lead to activation of inflammatory 
signaling pathways, mainly nuclear factor (NF)‑κB signaling, 
JAK/Stat, hypoxia‑inducible factor 1 (HIF‑1) signaling 
and mechanistic target of rapamycin (mTOR) signaling 
pathways (9). NF‑κB is a crucial transcription factor in the 
inflammatory reaction, which increases the expression of 
tumor‑promoting factors, such as interleukin (IL)‑6 and tumor 
necrosis factor (TNF)-α. The crosstalk between NF‑κB and 
multiple pathways, including Stat3, AP1, interferon regula-
tory factor, Nrf2, Notch, Wnt/β-catenin affects cancer cell 
behaviors in regards to metabolism, invasion, metastasis, 
angiogenesis and resistance to treatment. The JAK/Stat 
pathway is an inflammatory pathway that is activated under 
moderate stress conditions. It is closely related with the occur-
rence and development of prostate cancer (12). Stat1 regulates 
immune suppression induced by macrophages and bone 
marrow‑derived suppressor cells (BMSCs) through the expres-
sion of nitric oxide synthase. Stat3 is upregulated in cancer 
and immune cells, and is associated with increased synthesis 
of key inflammatory mediators, cytokines and chemokines. 
HIF1 signal transduction pathways are activated by oncogenes, 

which in turn can assist in identifying the hypoxic state of 
the tumor cells and adjust tumor metabolism by increasing 
glycolysis and reducing mitochondrial function to promote the 
survival of tumor cells (13). One reason for age-related cancers 
such as prostate cancer could be an inflammatory milieu 
driven by mTOR in senescent cells (14). The main function 
of TORC2 is phosphorylation of Akt at Ser473 and TORC2 
was found to play an important role in the proliferation and 
anchorage‑independent growth of PC‑3 prostate cells. Akt was 
fount to be highly activated by phosphorylation at Ser473 in 
prostate cancer cell lines (PC‑3 and LN‑CaP). Knockdown of 
Rictor (a component of TORC2) reduced Akt Ser473, delaying 
prostate cancer cell proliferation (15).

All inflammatory cytokines (IL‑1, IL‑6, IL‑11, IL‑18, IL‑7, 
TNF-α and mic‑1/GDF‑15) are involved in the occurrence 
of prostate cancer (11). Both IL‑1β and TNF-α enhance the 
recruitment of immunosuppressive cells, increase the expres-
sion of chemokine factors on the tumor cell surface, promote 
the ability of tumor cell invasion and metastasis ability and 
finally promote tumor formation (16). IL‑6 is an important 
inflammatory cytokine in the JAK/Stat pathway and a key 
regulatory factor in tumor formation (17). Previous studies 
revealed the existence of IL‑6 in the epithelial cells of prostate 
cancer patients (18). A variety of inflammatory lesions stimu-
late IL‑6, and together with its gp130 (GP130) subunit activates 
JAK/STAT, ERK1/2, MARK, PI3K, AKT and mTORC1 
signaling pathways to regulate prostate cancer cell prolifera-
tion and apoptosis (18). The high expression of IL‑17 in PIA 
lesions is the direct evidence for the involvement of the inflam-
matory microenvironment in the development of prostate 
cancer. The IL‑17‑MMP7 signaling pathway has been found 
to be involved in the transition of prostate epithelial neoplasia 
to prostate cancer (19). IL‑18 helps in maintaining the inflam-
matory microenvironment of prostate cancer by damaging 
the function of natural killer (NK) cells and allowing tumor 
cells to escape the host immune response (13). The expression 
of IL‑32 in the prostate gland helps reduce the occurrence of 
prostate cancer, and thus has become a ‘hot’ research topic 
in the treatment of prostate cancer (20). MIC‑1/GDF‑15 is 
regulated by inflammatory cytokines, and the combina-
tion of MIC‑1/GDF‑15 and prostate‑specific antigen (PSA) 
in the serum can improve the specificity of prostate cancer 
detection (11). Tumor cells and inflammatory cells secrete 
TGF-β, which enhances the expression of CXCL12/CXCR4 
and CXC5/CXCR2 in tumor cells, suggesting the initiation 
of tumor metastasis. INF-γ plays a positive role in inhibiting 
tumor occurrence. Macrophage migration inhibitory factor 
(MIF) represents a link between inflammation and cancer. 
This promotes macrophages present in inflammation, local 
invasion, proliferation, activation and secretion of TNF‑α, 
IL‑1 and IL‑8 cytokines; and induces macrophages to produce 
NO, increasing DNA damage. Moreover, MIF with the help of 
Erk1/Erk2 phosphorylation events can activate NF‑κB, COX‑2 
and increase NOS2, with or without dependence on P53 apop-
tosis inhibition (21). A new inflammatory factor (composed of 
NLR proteins) has recently been reported to be associated with 
prostate cancer cell apoptosis and can lead to the secretion and 
maturity of IL‑1 and IL‑18 cytokines (20).

In the tumor tissues of prostate cancer, distribution of 
tumor‑associated macrophages (TAMs) can have an effect 
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on tumor stage and progression (21). The proportion of CD4+ 
T cells in prostate cancer tissues was found to be much higher 
than that in peripheral blood, especially TH1, TH17 and Treg 
cells (22,23). Infiltrating macrophages, mast cells, neutrophils, 
T cells, B cells and their related subgroups in the tumor release 
TNF-α, epidermal growth factor (EGF), vascular endothelial 
growth factor (VEGF), fibroblast growth factor 2 (FGF2) and 
other cytokines. Infiltration of these inflammatory mediators 
could also mediate epithelial‑mesenchymal transition (EMT), 
promoting tumor growth and metastasis. Furthermore, inflam-
mation could induce differentiation of BMSCs and tumor 
stem cells into epithelial and interstitial fibroblast cells, thus 
promoting tumor growth and angiogenesis. Meanwhile, the 
inhibitory effects of BMSCs on cytotoxic T lymphocytes 
(CTLs) and NK cells also maintain tumor cell viability in the 
immune mechanism (24).

Other factors associated with inflammation and prostate 
cancer. Mitochondria, complement activation, ROS and 
RNS, DNA methylation, chemokines, innate immune genes, 
estrogen and oxidative stress are all also involved in the 
immunoregulatory function of prostate cancer. Mitochondria 
are known as the heart of immunity, and can activate main 
innate immune signaling pathways such as NF‑κB (25). 
In addition to the components of innate immunity, comple-
ment activation also participates in the adaptive immune 
response and inflammation. Complement activation end 
product and its receptor reduces cell apoptosis, promotes cell 
differentiation, proliferation, and migration by regulating 
immune response in the tumor microenvironment (26). 
Continuous generation of ROS (OH-, O2) and RNS (NO, 
OONO-) in chronic inflammation induces damage of the 

cellular macromolecules, especially DNA chain rupture and 
base mutation. This subsequently leads to tumor‑suppressor 
gene mutation and protein modification after translation that 
is related to basic processes such as cell apoptosis, DNA 
repair, and cell cycle checkpoint, increasing the risk of 
chronic inflammation. In addition, DNA methylation is one 
of the major epigenetic changes, in which significant hyper-
methylation occurs in various tumors. The hypermethylation 
of the promoter can induce transcriptional silencing of APC, 
p16, BRCA1, Rb, MDM2, and other tumor‑suppressor genes. 
The methylated CpG site aids in easily removing ammonia, 
leading to missense mutation of the tumor-related genes. 
Research has revealed that hypermethylation is often trig-
gered by chronic inflammation in microbial infections, and 
thus DNA methylation also reflects the association between 
inflammation and cancer (10). Chemokines induce inflam-
matory cells towards the inflammatory site and surrounding 
lesions, regulating the occurrence, development, adhesion, 
and spread of prostate cancer cells (27). The migration and 
invasion ability of PC‑3 cells were significantly improved 
after treatment with exogenous CXCL16, suggesting that 
CXCL16/CXCR6 might act as an independent chemokine 
axis in prostate bone metastasis (27). The expression of 
CXCL1/GROα was found to be increased in prostate cancer 
after castration, promoting prostate cancer cell proliferation, 
migration and invasion by decreasing fibulin‑1 expression 
through NF-κB/HDAC1 epigenetic regulation (28). CXCR4 
interacts with matrix proteins (such as laminin, fibronectin, 
collagen) in prostate cancer cells and acts on tumor cells 
through its ligand CXCL12, thus regulating the expression 
of synthase, FAK phosphorylation, p38MARK and ROCK 
kinase (27,29).

Figure 1. Correlation between inflammation and cancer.



TU et al:  EMODIN IN PROSTATE CANCER1262

Two innate immune‑related genes, the inactivated mutants 
E265X and M1I in L‑ ribonuclease (RNaseL), have been asso-
ciated with prostate cancer susceptibility. RNase L, which is 
activated and expressed after a novel γ-retrovirus infection, 
is prone to cause prostatitis. RNase L when activated by its 
cognate‑induced ligand induces 2',5'‑related oligoadenylation, 
which is encoded by the MIC1 gene. Locus is defined as the 
site of susceptibility to prostate cancer. Single nucleotide poly-
morphisms (SNPs) in RNase L are implicated in inflammation 
and prostate cancer risk (30,31).

Androgen receptors (ARs) are ligand‑activated transcrip-
tion factors of the nuclear receptor superfamily that mediate 
the biological effects of androgens in the prostate. AR 
signaling regulates inflammation, which in turn affects the 
progression of BPH and plays an important role in prostate 
cancer development and progression (32). Studies on immune 
inflammation conducted in 105 BPH specimens showed that 
patients with stronger immune inflammation have larger 
prostate size, higher AR expression levels and higher serum 
PSA levels (33). Immunohistochemical analysis showed that 
BPH patients had more infiltrated macrophages in the prostate 
and higher expression of CCL3 than those with normal pros-
tate. Stromal AR could increase the expression of CCL3 by 
recruiting infiltrating macrophages, which thereby promotes 
the development of BPH (34). Interestingly, the opposite effect 
of androgen/AR signaling showed that dihydrotestosterone 
can regulate the immune system in BPH by inhibiting inflam-
matory cytokines in stromal cells (35).

The overexpression of aromatase (AROM+) can increase 
mast cells in the prostatic tissues of mice affected by endog-
enous estrogen, and a large number of infiltrated inflammatory 
cells in the matrix and cavity of the prostate. According to 
PCR array, CCL20, CCL8, CCR6, CCR5, and CCR2 showed 
significant expression as bridge factors in the association of 
inflammation and cancer. The atypical epithelial cells and 
micropapillary growth pattern then appeared in the inflamma-
tory infiltration area. Additionally, several atypical nuclei with 
prominent nucleoli appeared, and these changes were associ-
ated with high levels of stromal tumor cell proliferation in 
the surrounding tissues, suggesting chronic inflammation and 
precancerous lesions. Therefore, it is believed that estrogen 
acts as a connection linking chronic prostatitis and prostatic 
intraepithelial neoplasia (PIN) (36). Another potential mecha-
nism in which inflammation is related with cancer is that the 
oxidative stress induced by inflammatory cytokines can lead 
to epigenetic recruitment in the sites of DNA injury, producing 
DNA methyltransferase, chromatin remodeling, and inhibiting 
factor complex. Therefore, a wide abnormal DNA methylation 
and transcriptional silencing of gene promoters occurred in 
prostate cancer progression and metastasis (22,37). Oxidative 
stress can also make inflammatory cytokines, such as TNF 
release signals, leading to DNA cracking with proximity 
induction of AR signals, making prostate epithelial cells 
and TMPRSS2‑ERG gene fusion, and promoting prostate 
cancer (38) (Table I).

3. Antitumor effect of emodin in prostate cancer

PIM1, a proto‑oncogene, is responsible for encoding serine/thre-
onine PIM1 kinase, and plays a vital role in regulating prostate 

cancer cell cycle and apoptosis. As a kinase inhibitor, emodin 
was found to selectively inhibit PIM kinase and inhibit the 
growth of DU‑145 prostate cancer cells, which were isolated 
from the brain metastases of prostate cancer. DU145 cells are 
androgen‑independent prostate cancer cells with low differen-
tiation degree, and lack the expression of endogenous AR (39). 
PC3 cells, isolated from the bone metastases of human prostate 
cancer, are low differentiated androgen‑independent prostate 
cancer cells, without endogenous AR. PC3 prostate cancer cell 
experiments have shown that emodin inhibited the growth of 
PC3 cells by activating the Notch signaling pathway, inducing 
cell apoptosis, and blocking the cells in the G2/M phase. In 
addition, emodin inhibited the role of VEGF in anticancer 
mechanisms (40). Emodin was found to act as a strong growth 
inhibitor in LNCaP cells isolated from the left supraclavicular 
lymph node of a male patient in 1977, which is sensitive to 
androgen, and the cytotoxic mechanism was related to the 
production of ROS. In oxygen and low‑oxygen environment, 
emodin can reduce the expression of AR in LNCaP cells (41).

The chemokine receptor CXCR4‑CXCL12 axis promotes 
invasion and metastasis of protate tumor cells. Emodin was 
found to inhibit the activation of NF-κB and to lower CXCR4 
and HER2 at the transcription level, thereby inhibiting the 
invasion and metastasis of DU145 prostate cancer cells (42). 
Compared with PC3 cells, emodin significantly induced the 
apoptosis of LNCaP cells and inhibited their proliferation. 
These findings suggested that emodin inhibits prostate LNCaP 
cell proliferation by regulating the activity of AR and p53‑p21 
pathways, increasing caspase‑3 and ‑9, increasing the ratio 
of Bax/Bcl‑2, and inducing LNCaP cell apoptosis through 
mitochondrial signaling pathway (43). Emodin enhanced the 
cytotoxicity of chemotherapeutic drugs in prostate cancer 
cells, and its mechanism was found to be related to the inhi-
bition of multidrug resistance (MDR) and hypoxia‑inducing 
factors. Emodin is proven to be an ROS generator and a novel 
small inhibitor of HIF‑1. It has been shown that co‑treatment 
with emodin plus cisplatin in DU145 cells and mouse xeno-
grafts dramatically elevated ROS levels, downregulated 
MDR1 expression and HIF‑1 transactivation. HIF1 acts as an 
upstream controller of MDR1 and is redox‑sensitive (44).

Emodin was found to downregulate the transcriptional 
activity of AR by preventing AR nuclear translocation, 
disrupting the association between AR and heat shock protein 
90 (HSP90), increasing the interaction and ubiquitination of 
AR with E3 ligase MDM2 (murine double minute 2), leading 
to AR degradation through a proteasome‑mediated pathway 
in a ligand‑independent manner (8). In in vivo studies, emodin 
demonstrated low drug toxicity and maintained physical 
activity in prostate cancer‑induced C3(1)/SV40 transgenic 
mice (8).

The activation of p53 can induce the expression of p21. 
Emodin increased the expression of p53 and p21 in LNCaP 
cells, thus inducing significant apoptosis. LNCaP is an AR‑ 
and LRP1‑positive prostate cancer cell line, and has been 
found to be more susceptible to emodin than PC‑3 cells, which 
are AR‑negative LRP‑positive prostate cancer cells. LRP1 
and AR are expressed in prostate cancer and are upregulated 
in hypoxic conditions. In AR‑positive LNCaP cells, AR was 
markedly upregulated under CoCl2‑induced hypoxia‑like 
conditions, decreased by emodin and CoCl2 co-treatment. 
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These data indicate that emodin induces ROS-mediated 
growth inhibition (41).

4. Antitumor effects of emodin derivatives in prostate 
cancers

Aloe vera is the most commercialized Aloe species belonging 
to the Xanthorrhoeaceae family (45). Aloe‑Emodin (AE) 
(Fig. 2B) is an ahydroxyanthraquinone obtained from Aloe vera 
leaves, which is structurally very similar to emodin. AE was 
found to suppress the proliferation and anchorage‑independent 
growth in PC‑3 cells in a dose‑dependent manner with a peak 
concentration at 15 mM. The phosphorylation of Akt at Ser473 
was strongly inhibited by AE (15). In an ex vivo pull‑down 
assay, AE‑conjugated Sepharose 4B beads pulled down 
endogenous Rictor together with mTOR and Akt (15).

Emodin‑derived aloin can combine with mTORC2 in the 
cells to inhibit kinase activity by inhibiting mTORC2, Akt and 
PKC‑α substrate downstream activity. This in turn was found 
to inhibit the proliferation and nondependent growth of PC3 
cells (15). This suggests that aloin can inhibit the development 
of prostate cancer through the mTOR signaling pathway (15) 
(Table II). An experiment that investigated the effect of AE 
in rat C6 glioma cells showed that AE led to the formation of 

intracytoplasmic acidic vesicles indicating autophagic cell death, 
blockage of the cell cycle and caspase‑dependent apoptosis. AE 
had no affects on the activation of MAPK p38, Jun‑N‑terminal 
kinase, or transcription factor NF‑κB. But according to the 
results of cell‑based ELISA, AE markedly inhibited the activa-
tion of extracellular signal‑regulated kinases 1 and 2 (ERK1/2) 
in C6 cells. These results indicated that anti-glioma action of 
AE involved ERK‑independent induction of both apoptosis and 
autophagy (46). However, whether AE also shows these effects 
in prostate cancer warrants further investigation.

AMAD (Fig. 2C), an emodin azide methyl anthraquinone 
derivative extracted from the nature knotweed rhizome, has 
potent cytotoxic effects on human breast cancer cell line 
MDA‑MB‑453 and human lung adenocarcinoma Calu‑3 cells. 
Moreover, AMAD was found to induce apoptosis via a mito-
chondrial pathway involving caspase‑8/Bid activation in both cell 
lines (47). Overexpression of HER2/neu is well‑known to predict 
a poor prognosis in cancer. Another study showed that AMAD 
has the capability of potently decreasing Her2/neu protein and 
inhibiting the downstream MAPK and PI3K‑Akt signaling path-
ways in dose‑ and time‑dependent manners (48). Realistic data 
suggested that blockage of Her2/neu binding to Hsp90 followed 
by proteasomal degradation of Her2/neu were involved in emodin 
AMAD‑induced apoptosis in Her2/neu‑overexpressing cancer 

Figure 2. Chemical structure of emodin and some of its most active derivatives. (A) Emodin. (B) Aloe‑Emodin. (C) Emodin‑AMAD. (D) Synthetic route to 
aloe emodin derivatives 4(a‑j). (E) Emodin and 4‑aminoethylamino‑emodin (L4). (F) Quaternary ammonium salts of Emodin(4a). (G) Sulfur‑substituted 
anthra[1,2‑c][1,2,5]thiadiazole‑6,11‑diones(6g).
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cells (48). Further investigation is needed to ascertain whether 
AMAD has a role in this respect in prostate cancer.

5. Emodin analog development in prostate cancer

Emodin has some drawbacks as a therapeutic agent, such 
as low water solubility, low bioavailability after oral admis-
sion and relatively high toxicity to the liver and kidney (7). 
The structural modification of emodin side chain, such as 
polymethyleneamine, sugar, or minocycline, combined with 
methyl, hydroxyl and aryl ring sites showed enhanced anti-
tumor efficacy (49). The other achieved derivatives through 
intercalating amino groups and glycosidic bonds displayed 

higher levels of antitumor activities (50). For example, addi-
tion of sugar chains in the emodin C3‑hydroxyl site not only 
increased its solubility but also significantly improved its 
antitumor activity. Similarly, when the hydroxyl groups of C‑1 
and C‑8 position of emodin were methylated, its anti‑prolif-
erative activity also showed improvement (51). EM‑d‑Rha 
is an anthracene L‑rhamnopyranoside derivative of emodin 
by connecting L‑rhamnopyranosides to a planar aromatic 
molecule, which has 10‑fold stronger antitumor activity and 
growth inhibitory effects. Introduction of one or two positively 
charged side chains in the tricyclic coplanar structure of the 
tricyclic compounds, such as anthranone compound anthra-
cenedion, decreased the toxic effect on tumor cells (51). The 

Table II. Mechanisms of emodin in prostate cancer.

Natural drug name Mechanism in prostate cancer Impact on prostate cancer

Emodin  Inhibits PIM kinase Inhibits the growth of DU‑145 prostate cancer cells
 Activates Notch signaling pathway; inhibits Inhibited the growth of PC3 prostate cancer cells, 
 VEGF induced cell apoptosis; and blocked the cell cycle in 
  G2/M phase; anti‑cancer mechanisms
 Reduces the expression of AR in oxygen and Effect in LNCaP prostate cancer cells
 low‑oxygen environment
Emodin derivative aloin Inhibits mTOR signaling pathway through Inhibits the proliferation and nondependent growth of
 inhibition of mTORC2, Akt and PKC‑α PC3 cells in the development of prostate cancer
 substrate downstream activity
Emodin Inhibits the activation of NF-κB and lowers Inhibit the invasion and metastasis of prostate cancer
 CXCR4 and HER2 cells
Emodin Regulates the activity of AR and p53‑p21 Inhibits prostate LNCaP cell proliferation
 pathways, increases caspase‑3 and ‑9,
 increases the ratio of Bax/Bcl‑2; and
 induces LNCaP cell apoptosis through the
 mitochondrial pathway
Emodin Inhibits multidrug resistance and Enhances the cytotoxicity of chemotherapy drugs in
 hypoxia‑inducing factors prostate cancer cells
Co‑treatment with Dramatically elevates ROS levels,  Inhibit the tumor growth in DU145 cells and mouse
emodin plus cisplatin downregulates MDR1 expression and xenografts, owing to oxidative stress and MDR1 
 HIF‑1 transactivation down‑regulation within tumors
Emodin Downregulates AR transcriptional activity Low drug toxicity; maintains physical activity in
 by preventing AR nuclear translocation, prostate cancer‑induced C3(1)/SV40 transgenic mice
 disrupts the association between AR and
 heat shock protein 90, increasing the
 interaction and ubiquitination of AR with
 E3 ligase MDM2, leading to AR degradation
 through proteasome‑mediated pathway in a
 ligand‑independent manner
Emodin Increases the expression of p53 and p21;  Induces significant apoptosis in LNCaP cells
 thus, inhibits ROS‑mediated growth in AR‑
 and LRP1‑positive prostate cell line LNCaP
Aloe‑Emodin Inhibits phosphorylation of Akt at Ser473 Suppresses proliferation and anchorage‑independent
  growth in PC‑3 cells

mTOR, mammalian target of rapamycin; mTORC, mammalian target of rapamycin complex; PKC‑α, Protein kinase C α; NF‑κB, nuclear 
factor κB; CXCR, CXC‑chemokine receptor; HER, human epidermal growth factor receptor; Bax, B‑cell lymphoma protein 2‑associated X; 
Bcl, B‑cell lymphoma; ROS, reactive oxygen species; MDR, multidrug resistance; HIF‑1, hypoxia‑inducible factor 1; VEGF, vascular endothe-
lial growth factor; AR, androgen receptor; ROS, reactive oxygen species; MDM2, murine double minute 2; LRP, lipoprotein receptor‑related 
protein.
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use of emodin for tumor treatment may be one of the future 
research directions if the side effects of emodin can be reduced 
without affecting its antitumor effect.

Through the combination of amino acid esters and substi-
tuted aromatic amines, water‑soluble derivatives of AE have 
been synthesized (Fig. 2D). These compounds have demon-
strated a more effective antitumor activity in HepG2 and 
NCI‑H460 cells. The structural activity relationship of L‑serine 
methyl ester, β‑alanine ethyl ester and 3‑(2‑aminoethyl) 
pyridine substituents showed improvement in their antitumor 
activity (52). GSK‑3β plays a vital role in Wnt signal trans-
duction by mediating degradation of β‑catenin. Revoking 
GSK‑3β‑dependent phosphorylation of β‑catenin by Wnt 
growth factors or inhibitors of GSK‑3β led to the accumulation 
of hypophosphorylated uncomplexed β‑catenin in the cytosol 
and nucleus, prompting the transcription of target gene. A 
new emodin derivative 4‑[N‑(aminoethyl) 2‑amino]‑Emodin 
(L4 compound) (Fig. 2E) acts as a strong GSK‑3β inhibitor. 
It binds to the ATP binding site that is close to the two key 
residues Asp133 and Val135 and prevents TCF/LEF trans-
activation. Meanwhile, the L4 compound demonstrated low 
cytotoxicity when compared with other GSK‑3β inhibitors (53).

A series of novel quaternary ammonium salts of emodin 
were synthesized in an experiment and their anticancer 
activities have been investigated in vitro in A375, BGC‑823, 
HepG2 and HELF cells. The results revealed that compound 
4a (Fig. 2F) has the ability to induce morphological changes 
and decrease cell viability. Compound 4a induced apoptosis of 
A375 cells by dissipating mitochondrial membrane potential 
(ΔΨm), resulting in the upregulation of P53 and caspase‑3. In 
addition, the results of this research group showed no direct 

correlation between alkylating reactivities of emodin deriva-
tives and their anticancer activities and the presence of only a 
weak interaction between emodin and DNA. This implied that 
DNA might not be the main target of emodin derivatives. At 
the same time, the compound's hydrophilicity was unfavorable 
intracellularly. But a conclusion can be drawn that there is a 
close relationship between the ability to generate ROS and 
anticancer activity. Both compound 4d and 4a were found to 
be fat soluble and contain one and two long carbon chains in 
N cations, respectively. Compound 4a has the highest capa-
bility to generate ROS (4a > 4d > emodin) (54). A series of 
sulfur‑substituted anthra[1,2‑c][1,2,5]thiadiazole‑6,11‑diones 
were synthesized. Among the tested compounds, 6g (Fig. 2G) 
appears to be the most active compound of this series that 
not only induced apoptosis in DU‑145 cancer cells but also 
attenuated ERK1/2 and p38 signaling pathways. Further devel-
opment of these compounds as potential anticancer agents is 
required (55).

6. Prospects of emodin in the inflammatory immune 
microenvironment of prostate cancer

There is limited research regarding the mechanism of emodin 
in the inflammatory immune microenvironment of prostate 
cancer, and the affect on the immune microenvironment in 
a tumor by this agent has raised wide concern (56,57). The 
following suggestions have been proposed for future research.

The difference between beneficial inflammation that 
stimulates the body's positive immunity and detrimental 
inflammation that aggravates pathological damage must be 
explored. For example, the M1 phenotype can promote the 

Figure 3. The signaling pathways with marked action of emodin (or derivatives) involved in prostate cancer development.
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differentiation of monocytes into macrophages and promote the 
sustained and effective adaptive immune response to tumors 
via the TLR4‑Myd88 signaling pathway. In the pathogenesis 
of prostate cancer, how can benign immunity be triggered with 
agents is still an unanswered question. The exact mechanisms 
involved in transforming a tumor‑promoted microenviron-
ment (TH2 cells and M2 macrophages) to a tumor‑inhibited 
microenvironment (TH1 cells and M1 macrophages) warrants 
further elucidation.

Sex steroid hormones act as influential factors in the occur-
rence, development, and outcomes of prostate cancer. One 
reason for this might be due to the innate immune system or the 
nonspecific immune system regulation of inflammation (58); 
macrophages in prostate cancer can produce IL‑1, in which the 
selective androgen receptor modulators (SARMs) were used to 
activate the function of androgen receptor‑induced gene instead 
of inhibition. This process contains TAB2 protein, which is 
a type of inflammatory signal sensor, and is the component 
of TAB2/N‑CoR/HDAC blocker complex. Inflammation 
induces the phosphorylation of TAB2, triggering more gene 
transcription, and effecting prostate cancer by regulating the 
inflammatory microenvironment. The mechanism of emodin 
in hormone intervention treatment of prostate cancer should 
be further elucidated.

TAMs are specialized partners of tumor cell migration, 
invasion, and metastasis, and their affect on tumor cell 
metastasis is based on the macrophage environment. It has 
been reported that macrophages have increased peritoneal 
proliferation in ovarian cancer cells, and whether such a 
condition exists in prostate cancer is still unclear. ANXA5 
usually induces anti‑inflammatory and cell death activities. 
It has been found that ANXA5 plays an inhibitory role on 
Cox‑2 in prostate cancer and could induce phosphorylation 
of NF-κBp65, but its role in cancer is unclear (13,59,60). 
Programmed death ligand 1 (PD‑L1) interacts with 
programmed death 1 (PD‑1) receptor on T cells to induce 
an immune response, which induces tumor cells to avoid 
immune monitoring. The role of anti-PD-1 antibodies and 
drugs in tumor immunotherapy has attracted much atten-
tion (61). It is interesting to understand how emodin regulates 
and interferes with PD‑L1/PD‑1, thereby affecting tumor 
immunity. Mesenchymal stem cells (MSCs) are a major 
concern in studying cancer and the immune microenviron-
ment in recent years. MSCs are often recruited for local 
inflammation and tumor microenvironment, promoting the 
production of proinflammatory cytokines. The same is true 
for prostate cancer, and its specific mechanisms and drug 
intervention study should be further identified (3).

Abnormal expression of integrin induces tumor cell migra-
tion and invasion abilities, which can change the intracellular 
signal transduction to make them survive in the microenvi-
ronement of other organs and does not trigger the internal 
mechanisms of apoptosis (62). It can also cause drug resis-
tance in tumor cells (63). The abnormal expression of α6β1 in 
prostate cancer can promote the metastasis of prostate cancer, 
activate PI3K/AKT and NF‑κB signaling pathways, and inhibit 
cell apoptosis, thus maintaining the survival of tumor cells. 
The role of emodin on this aspect should be further studied.

The acquisition and maintenance of type M1/M2 macro-
phage phenotypes depends on the regulation of transcription 

and post‑transcriptional levels. Epigenetic changes are the 
key molecular mechanisms for controlling heterogeneity and 
plasticity of macrophages. Of these, the study on microRNAs 
(miRNAs), DNA methylation (DNAm), and epigenetic regula-
tion of histone modification has been extensively studied. miRs 
are important regulatory factors in the proliferation, differ-
entiation, and apoptosis of macrophage cells, and regulation 
of phenotypic balance of macrophages in miRs can alleviate 
inflammation and immune function (64,65).

In conclusion, the inflammatory response should be consid-
ered as an increased risk of prostate cancer. Emodin exhibits 
anticancer action by targeting the inflammatory pathway such 
as ROS, HIF‑1, PIM1, AR, p53 and PI3K‑Akt‑mTOR, providing 
a prospective area as an adjuvant therapy. Chemical modifica-
tion may improve the solubility and utilization ratio of emodin 
avoiding the side effects; this issue deserves further investigation.
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