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Abstract. Single nucleotide polymorphisms (SNPs) are the 
most common genetic variation in mammalian cells with 
prognostic potential. Anillin-actin binding protein (ANLN) 
has been identified as being involved in PI3K/PTEN signaling, 
which is critical in cell life/death control, and kinase insert 
domain receptor (KDR) encodes a key receptor mediating 
the cancer angiogenesis/metastasis switch. Knowledge of 
the intrinsic connections between PI3K/PTEN and KDR 
signaling, which represent two critical transitions in carcino-
genesis, led the present study to investigate the effects of the 
potential synergy between ANLN and KDR on breast cancer 
outcome and identify relevant SNPs driving such a synergy 
at the genetic level. The survival associations of SNPs from 
KDR and ANLN were assessed through pairwise interaction 
survival analysis, quantitative trait loci analysis, pathway 
enrichment analysis and network construction, and the interac-
tions between ANLN and KDR were validated in vitro. It was 
found that both rare homozygotes in the ANLN:rs12535394  
and  KDR:rs11133360 SNP pair are prognostic of favorable 
breast cancer survival and underpin the prominent roles of the 
immune response in cancer state control. This study contributes 
to breast cancer prognosis and therapeutic design by providing 
genetic evidence of interactions between ANLN and KDR, 
and suggesting the prominent role of the immune response in 
driving the synergies between the cancer cell life/death and 
angiogenesis/metastasis transitions during carcinogenesis.

Introduction

Breast cancer is the leading cause of cancer-related mortality 
amongst women worldwide (1), with a mortality rate 

of ~627,000 annually estimated in 2018 (2). Uncontrolled 
proliferative growth and angiogenesis are two basic cancer 
hallmarks governing the critical transitions towards malig-
nancy during carcinogenesis (3). PI3K/PTEN signaling, 
frequently altered in breast carcinoma (4), confers a survival 
advantage to tumor cells (5). Anillin, encoded by anillin 
actin-binding protein (ANLN), is an actin-binding protein, 
which has been identified as being involved in the PI3K/PTEN 
pathway (6,7). It is an F‑actin binding protein, which maintains 
podocyte cytoskeletal dynamics, cell motility and signaling 
through its interaction with CD2-associated protein, which 
stimulates the phosphorylation of AKT at serine 473 (6,8). The 
inhibition of PI3K/AKT activity in non‑small cell lung cancer 
cells decreased ANLN stability and reduced nuclear levels, 
suggesting the critical involvement of ANLN in PI3K/AKT 
signaling (7). ANLN also serves a significant role in pulmo-
nary carcinogenesis through PI3K/AKT pathway‑dependent 
nuclear function (7). The nuclear expression of ANLN in tumor 
cells is independently prognostic of a poor outcome in patients 
with breast cancer (9,10), and ANLN mutations are suggestive 
of estrogen receptor-positive breast cancer tumorigenesis and 
endocrine therapy resistance (11) due to the hyperactivation 
of PI3K/PTEN (6). VEGFR‑2, also known as kinase insert 
domain receptor (KDR), promotes angiogenesis (12,13). 
PI3K/PTEN activation enhances VEGF signaling, forming 
a positive feedback loop leading to uncontrolled progres-
sive signaling in tumor cells (4,5). This body of evidence is 
indicative of the potential synergy between ANLN and KDR 
influencing breast cancer prognosis.

The majority of breast malignancies are caused by acquired 
and uncorrected genetic adjustments in somatic genes due to 
inherited gene shuffling (14). Single nucleotide polymorphisms 
(SNPs) represent a predominant genetic variation in the 
human genome (15), a large number of which are associated 
with various types of cancer (16). ANLN undergoes genetic 
changes, including amplification, deletion and SNP mutations, 
in patients with several types of cancer; mutation rates vary 
between 0.2% in clear cell renal cell carcinoma and 19.6% 
in prostate cancer (17,18). A total of 27 mutations, including 
12 amplifications, two deletions and 13 SNPs, were identified 
in lung adenocarcinoma (19). The potential functional genetic 
variant rs10013228 in KDR is a prognostic marker of resected 
colorectal cancer (20) and renal cell carcinoma (21). SNPs 
rs10020464, rs11941492 and rs12498529 of KDR are associated 
with KRAS2-mutated tumors, which are also microsatellite 
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instable and CpG island methylator phenotype-positive (22), 
and rs11941492 is significantly associated with the early onset 
of esophageal adenocarcinoma (23). The genetic variant 
rs1870377 of KDR is associated with sunitinib-mediated 
overall survival (OS) rate (24). However, no SNPs of KDR with 
clinical implications have been reported for breast cancer (25). 
In the present study, the potential synergy between ANLN and 
KDR and its effect on breast cancer outcome were investi-
gated, and relevant SNPs driving this synergy at the genetic 
level were identified.

Materials and methods

Datasets. A total of 14,481 SNPs for ANLN and 11,704 SNPs 
for KDR were retrieved from the dbSNP NCBI database (26). 
Among these, 20 SNPs of ANLN and 13 SNPs of KDR were 
mapped to the Affymetrix SNP6.0 Array, which was used in 
The Cancer Genome Atlas (TCGA; http://cancergenome.nih.
gov). Genotype data of the 33 SNPs covering 501 samples were 
retrieved from the TCGA. The gene expression and clinical 
data were retrieved from the TCGA bioportal (http://www.
cbioportal.org/), containing 20,440 genes and 1,102 samples.

Pairwise SNP survival analysis. Breast cancer OS analysis 
was conducted on interactions between SNPs of ANLN and 
KDR using the Cox proportional hazard model. The reces-
sive and dominant models were tested in the pairwise SNP 
association analysis. In the recessive model, the heterozy-
gote is combined with the common homozygote, assuming 
that the disease-associated phenotype is caused by the 
concomitant presence of both rare alleles; the dominant 
model combines the heterozygote with the rare homozygote, 
assuming that the disease-associating phenotype is caused 
by the presence of the rare allele. A 10-year breast cancer OS 
analysis was performed utilizing the ‘survival’ package (27) 
in R software (28) and a log-rank test was used to assess 
the statistical significance of the association between SNPs 
and the clinical outcome. An SNP pair was considered inter-
active if the P-values of the Cos regression model and the 
interaction term were both <0.05 and the number of itera-
tions was <10.

Expression quantitative trait loci analysis (eQTL) and function 
predictions. To identify those genes for which expression was 
significantly affected by the identified disease-associating 
SNPs, eQTL analysis was performed using a linear model in 
R to identify genes associated with complex phenotypes (29). 
Whether the allele status (rare homozygote, heterozygote or 
common homozygote) of a given SNP was linearly associated 
with the expression of a given gene was assessed. The top 25 
percentile of the SNPs with a P-value in the linear model at 
P<0.05 were considered eQTLs of a gene.

The combined impact of ANLN and KDR on genes identi-
fied from the eQTL analysis was investigated by stratifying 
the expression of the genes of interest by the combined 
expression of ANLN and KDR. One‑way ANOVA and a 
Least Significant Difference (LSD) post hoc test were applied 
using R (version 3.5.2) to assess the statistical significance, 
with P<0.05 used as the threshold suggestive of a significant 
trilateral correlation.

The PredictSNP version 2.1 interface (30) was used to 
predict the functional interaction network of the SNPs of 
interest, which uses a series of tools and databases for SNP 
functional prediction. PredictSNP2 provides easy access to 
binary predictions and uniform confidence values for the five 
best‑performing prediction tools CADD, DANN, FATHMM, 
FunSeq2 and GWAVA, and the results obtained from these 
tools are combined into a consensus score (31). CADD (32) 
estimates the relative pathogenicity of human genetic variants, 
DANN (33) uses a deep learning approach for annotating the 
pathogenicity of genetic variants, GWAVA (34) is designed 
for the analysis of regulatory variants, and the FunSeq2 (31) 
framework annotates and prioritizes non-coding regulatory 
variants in cancer.

Pathway analysis and network construction. In order to 
investigate the biologically functional consequences intro-
duced by SNPs, pathway enrichment analysis was performed 
using genes affected by SNPs with statistical significance. 
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 
(http://www. genome.jp/kegg/) (35) and Gene Ontology (GO) 
term enrichment analyses were performed using the packages 
clusterProfiler (36) and org.Hs.eg.db (37) in R, and Chi‑square 
and Fisher's exact tests were used for statistical assessment.

The genes identified from the enriched pathways were 
collected for gene regulatory network construction using 
GeneMANIA (http://www.genemania.org) (38), which uses the 
label propagation algorithm to predict gene-gene interactions 
at seven levels (co-expression, co-localization, genetic inter-
action, physical interaction, shared protein domain, pathway 
and predicted). The interactions at the co-localization, genetic 
interaction, physical interaction, shared protein domain and 
pathway levels were used for network construction. The output 
comprises a regulatory network that uses the user-defined 
gene list based on databases and publications from multiple 
resources (38,39). The ‘max resultant genes’ was set as five, the 
‘max resultant attributes’ was set as 10, and the GO weighting 
system was used, which uses biological process (BP)-based, 
molecular function (MF)‑based and cellular component 
(CC)‑based approaches. The complete workflow is illustrated 
in Fig. 1.

Experimental validation
Cell culture. One human normal mammary epithelial cell 
line (MCF10A) and one breast cancer cell line (SUM149PT) 
were purchased from ATCC and used in the present study. 
The MCF10A cells were cultured in DMEM/F12 (Gibco; 
Thermo Fisher Scientific, Inc.) supplemented with 5% char-
coal‑stripped horse serum (Gibco; Thermo Fisher Scientific, 
Inc.), 10 µg/ml insulin (PeproTech, Inc.), 20 ng/ml epithelial 
growth factor (PeproTech, Inc.) and 1.4x10-6 mol/l hydrocorti-
sone (PeproTech, Inc.). The SUM149PT cells were cultured in 
F12 (Gibco; Thermo Fisher Scientific, Inc.) supplemented with 
5% fetal bovine serum (Gibco; Thermo Fisher Scientific, Inc.), 
20 µg/ml insulin (PeproTech, Inc.), 1% HEPES (PeproTech, 
Inc. and 2.8x10-6 mol/l hydrocortisone (PeproTech, Inc.). 
Assay-ready cells were prepared by culturing the cells in 
a large batch and aliquoting them into ampules that were 
kept in liquid nitrogen in solution containing 90% FBS and 
10% DMSO. Immediately prior to transfection, the cells 
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were thawed and washed with culture medium and the cell 
number was counted using a hemocytometer (Thermo Fisher 
Scientific, Inc.).

SgR NA preparat ion.  pLent i‑U6 ‑sgRNA‑PGK‑Neo 
(cat. no. K019), piLenti‑EF1a‑dCas9‑SAM (cat. no. K015) and 
piLenti‑EF1a‑dCas9‑KRAB (cat. no. K203) were purchased 
from Applied Biological Materials, Inc. The sgRNAs were 
designed using the publicly available software CHOPCHOP 
(version 3, https://chopchop.cbu.uib.no/) (40) (Table SI), 
supplemented with the BbsI restriction site, and synthesized 
from Applied Biological Materials (ABM), Inc. Each sgRNA 
was added with a sequence complementary to the sticky ends of 
BbsI, following ligation with the pLenti‑U6‑sgRNA‑PGK‑Neo 
vector digested using BbsI, and the recombinant plasmid 
was amplified in DH5 Escherichia coli (Sigma-Aldrich; 
Merck KGaA). The plasmids containing sgRNAs were 
validated using PCR, enzyme digestion and sequencing, 
and transfected together with piLenti‑EF1a‑dCas9‑SAM 
or piLenti‑EF1a‑dCas9‑KRAB into cells. The controls 
were designed as cells concomitantly transfected with 
all sgRNAs modulating the target gene alone, without 
piLenti‑EF1a‑dCas9‑SAM or piLenti‑EF1a‑dCas9‑KRAB.

Cell transfection. A total of 1x106 cells per well were added 
in 2 ml of culture medium and transferred to 6-well plates 

(Nalgene, cat. no. 167018). The cells were incubated overnight 
and were at 70-80% confluence prior to transfection. The 
medium was replaced with 2 ml serum-free medium prior to 
transfection. Subsequently, 100 µl Opti‑MEM (Gibco; Thermo 
Fisher Scientific, Inc.) containing 1 µg sgRNA (ABM, Inc.) 
and 1 µg CRISPR/dCas9 (ABM, Inc.) plasmids were added 
to 100 µl Opti‑MEM containing 6 µl lipo2000 transfection 
reagent per well and mixed for 15-20 min prior to transfection. 
The mixture was transferred to 6-well plate and incubated 
at 37˚C for 5‑8 h in the presence of 5% CO2 (HERA Cell 150i, 
Thermo Fisher Scientific, Inc.). The serum‑free medium was 
replaced with 2 ml medium containing 10% serum. The cells 
were incubated at 37˚C for 24 h, followed by the addition of 
G418 and puromycin and incubation for 48 h.

Reverse transcription‑quantitative PCR (RT‑qPCR) assay. 
Following transfection, the cells were collected and extracted 
for total RNA using TRIzol reagent (Tiangen Biotech Co., Ltd.) 
3 days after transfection. The cDNA was synthesized using 
PrimeScript RT reverse transcriptase as per the manufacturer's 
protocol (Takara Bio, Inc.). The primers used for RT‑qPCR 
analysis are listed in Table SII. The qPCR sample consisted 
of 5 µl 2X SYBR premix ex Taq, 0.4 µl, 10 µm forward and 
reverse primers, 0.2 µl ROX reference dye, 2 µl cDNA and 
2 µl H2O. The detailed procedure for RT-qPCR was as follows: 
Initial denaturation at 95˚C for 5 min, 45 cycles of denaturation 

Figure 1. Workflow of the study. The square boxes represent data or results and the diamond boxes show the analytical processes. Values shown within square 
brackets represent the quantity of the results obtained. SNPs, single nucleotide polymorphisms; TCGA, The Cancer Genome Atlas; OS, overall survival; eQTL, 
expression quantitative trait loci analysis.
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at 95˚C for 5 sec, annealing at 57˚C for 30 sec, extension 
at 72˚C for 15 sec. The absorbance value was recorded at the 
extension stage. The relative expression level was calculated 
using the 2-∆∆Cq method (41). All RT-qPCR experiments were 
performed using the ABI StepOnePlus Real‑Time PCR system 
(ABI; Thermo Fisher Scientific, Inc.).

Statistical analysis. One‑way ANOVA coupled with Scheffe's 
post hoc test were conducted using R software (version 3.5.2) 
to evaluate the significance of changes in the expression level 
of ANLN or KDR following genetic modulations compared 
with each corresponding control where the P-value threshold 
was set as 0.05.

Results

SNPs of ANLN and KDR synergistically affect breast cancer 
survival rates. Pairwise SNP survival analysis was performed 
using multivariate Cox regression models and statistical 
significance was assessed using the likelihood ratio test. Of all 
260 SNP pairs, two pairs were identified with significant syner-
gistic effects on breast cancer survival rate from the dominant 
model (Fig. 2A‑D). The two pairs were ANLN:rs12535394  and  
KDR:rs11133360 and ANLN:rs10275489  and  KDR:rs11941492. 
The concurrent presence of both rare homozygotes in the 
ANLN:rs12535394  and  KDR:rs11133360 SNP pair is asso-
ciated with favorable clinical outcomes (HR=0.52, P=0.03), 
whereas the ANLN:rs10275489  and  KDR:rs11941492 SNP 
pair was associated with poor breast cancer prognosis (HR=1.8, 
P=0.05). These four SNPs are non‑linkage disequilibrium 
(LD) linked and were defined as disease‑associated SNPs. 
Of these four disease-associated SNPs, KDR:rs11133360 was 
identified as intronic (chr4:55116585) and its rare allele was 
predicted as deleterious by the FunSeq2 and GWAVA tools 
(Table I).

Genes affected by disease‑associated SNPs. The eQTL 
analysis of the four disease-associated SNPs resulted in 
401 genes with KEGG annotations (Tables SIII and SIV; 
Figs. 3 and 4). Amongst these genes, the expression of 
microtubule-associated protein 10 [MAP10; correlation 

(cor)=0.554, P=0.001] was significantly positively correlated 
with the number of rare alleles of ANLN:rs12535394 (P=0.007, 
Fig. 3A), and interacted with ANLN at the transcriptional level 
to predict breast cancer OS (Fig. 4C and D). Furthermore, 
the overexpression of MAP10 conveyed favorable clinical 
outcomes (HR=0.73, P=9.5E‑5, Fig. 4A), but was associated 
with poor breast cancer OS when the expression of ANLN 
was concomitantly low (HR=2.66, P=0.0062, Fig. 4C). The 
expression of MAP10 was not directly associated with that of 
ANLN (cor=0.04, P=0.198, Fig. 3B), but was expressed at a low 
level under the concomitant low expression of both ANLN and 
KDR (P=9.3E‑5, Fig. 3C), further suggesting the involvement 
of MAP10 in the synergy created between ANLN and KDR 
at the transcriptional level. Zinc finger protein 133 (ZNF133) 
was the top gene whose expression was significantly associ-
ated with the allele status of ANLN:rs12535394. The SNP rare 
allele was associated with a high and statistically significant 
expression of ZNF133 (P=1.4E‑5). The rare allele status of this 
SNP was positively correlated with the expression of ZNF133 
(cor=0.14, P=0.3.8E‑6, Fig. 3D) and negatively correlated 
with the expression of ANLN. The expression of ZNF133 was 
stratified into distinct expression levels by the expression of 
ANLN (P=0.0001); the expression of ZNF133 and expression 
of ANLN were negatively correlated (cor=‑0.22, P=1.6E‑12, 
Fig. 3E), suggesting a negative correlation between the rare 
allele of ANLN:rs12535394 and the expression of ANLN. Such 
a negative association was exemplified by the low expression 
of KDR, i.e., the concomitant underexpression of ANLN and 
KDR was associated with the overexpression of ZNF133 
(P=3.23E‑9, Fig. 3F). Given the favorable clinical outcome 
associated with the high expression of ZNF133 (HR=0.76, 
P=7.8E‑7, Fig. 4E), it was reasoned that the ANLN rare allele is 
associated with desirable breast cancer relapse-free survival. 
Furthermore, ZNF133 interacted with ANLN to influence 
breast cancer OS at the transcriptional level (Fig. 4G and H), 
providing further evidence of the association between the allele 
status of ANLN:rs12535394 and the expression and prognostic 
value of ANLN. Similar to ZNF133, C14ORF80 was the top 
gene whose expression was significantly positively correlated 
with the rare allele expression of KDR:rs11133360 (cor=0.2, 
P=0.001). The SNP rare allele was significantly associated 

Table I. Effects of the identified disease‑associated single nucleotide polymorphisms predicted using PredictSNP2.

 KDR: rs11133360 (position: chr4:55116585) KDR: rs11941492 (position: chr4:55112043)
 ---------------------------------------------------------------------------------------------- -------------------------------------------------------------------------------------------
Function predictor Prediction Score Expected accuracy Prediction Score Expected accuracy

PredictSNP2 Neutral -1 0.88 Neutral -1 0.88
CADD Neutral 8.242 0.76 Neutral 3.493 0.82
DANN Neutral 0.3796 0.8 Neutral 0.5371 0.82
FATHMM Neutral 0.1461 0.91 Neutral 0.0614 0.95
FunSeq2 Deleterious 2.3903 0.67 ‑ 0.7762 0.45
GWAVA Deleterious 0.49 0.64 Neutral 0.15 0.79

For KDR: rs11133360 and KDR: rs11941492, the common allele was C, the rare allele was T and the region was intronic. PredictSNP2 provides 
easy access to other tools, including CADD, DANN, FATHMM, FunSeq2 and GWAVA, with binary predictions and uniform confidence values 
as the outputs.
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with a high expression of C14ORF80 (P=0.006, Fig. 5A) and 
negatively correlated with the expression of KDR (cor=‑0.4, 
P<2.2E-16). The expression of C14ORF80 was stratified into 

distinct expression levels by the expression of KDR (P<2.2E-16, 
Fig. 5B), indicating a negative correlation between the rare 
allele of KDR:rs11133360 and expression of KDR. In addition, 

Figure 2. Kaplan‑Meier plots showing the prognostic value of the identified disease‑associated SNP pair and the corresponding gene pair. (A) Overall breast 
cancer survival for the SNP pair ANLN:rs12535394  and  KDR:rs11133360. (B) Overall breast cancer survival for the SNP pair ANLN:rs10275489  and  
KDR:rs11941492. ‘SNPs=rare’ refers to rare homozygote, ‘SNPs=common’ represents either a common homozygote or heterozygote. (C) Overall breast cancer 
survival with concomitantly low expression of ANLN and KDR. ‘Genes=low’ refers to concomitant low expression of both genes, ‘Genes=not low’ includes 
cases where expression of at least one gene is not low. (D) Overall breast cancer survival with concomitantly high expression of ANLN and KDR. ‘Genes=high’ 
refers to concomitant high expression of both genes, ‘Genes=not high’ includes cases where expression of at least one gene is not high. SNP, single nucleotide 
polymorphism; ANLN, anillin actin-binding protein; KDR, kinase insert domain receptor.

Figure 3. Evidence of associations between ANLN:rs12535394 and the expression of ANLN. (A) Association between the allele status of ANLN:rs12535394 
and the gene expression of MAP10. (B) Expression of MAP10 stratified by that of ANLN. (C) Expression of MAP10 stratified by the joint expression of ANLN 
and KDR. (D) Association between the allele status of ANLN:rs12535394 and the gene expression of ZNF133. (E) Expression of ZNF133 stratified by that of 
ANLN. (F) Expression of ZNF133 stratified by the joint expression of ANLN and KDR. 0, 1 and 2 represent the numbers of rare alleles in ANLN:rs12535394. 
The Cancer Genome Atlas data was used for producing all panels. ANLN, anillin actin-binding protein; KDR, kinase insert domain receptor; MAP10, micro-
tubule-associated protein 10; ZNF133, zinc finger protein 133.
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Figure 5. Evidence of associations between KDR:rs11133360 and the expression of KDR and the prognostic value of a key gene associated with ANLN:rs12535394 
and its impact on interactions between ANLN and KDR on breast cancer survival. (A) Association between the allele status of KDR:rs11133360 and the gene 
expression of C14ORF80. 0, 1 and 2 represents the number of rare alleles in KDR:rs11133360. (B) Expression of C14ORF80 stratified by that of KDR. 
(C) Expression of C14ORF80 stratified by the joint expression of ANLN and KDR. (D) Prognostic value of C14ORF80 on breast cancer overall survival, drawn 
using TCGA data. (E) Expression of C14ORF80 and breast cancer survival under low expression of KDR. (F) Expression of C14ORF80 and breast cancer 
survival under high expression of KDR. TCGA data was used for drawing all panels. The prognostic value of C14ORF80 on breast cancer overall survival 
drawn using Kaplan Meier Plotter is not present as this gene was not available in that database. ANLN, anillin actin-binding protein; KDR, kinase insert domain 
receptor; TCGA, The Cancer Genome Atlas.

Figure 4. Prognostic value of key genes associated with ANLN:rs12535394 and their impact on the interactions between ANLN and KDR on breast cancer 
survival. (A) Prognostic value of MAP10 on breast cancer relapse‑free survival, drawn using Kaplan Meier Plotter. (B) Prognostic value of MAP10 on breast 
cancer overall survival drawn using TCGA data. (C) Expression of MAP10 on breast cancer survival under ANLN low expression, drawn using TCGA data. 
(D) Expression of MAP10 on breast cancer survival under high expression of ANLN, drawn using TCGA data. (E) Prognostic value of ZNF133 on breast 
cancer relapse‑free survival, drawn using Kaplan Meier Plotter. (F) Prognostic value of ZNF133 on breast cancer overall survival, drawn using TCGA 
data. (G) Expression of ZNF133 on breast cancer survival under low expression of ANLN, drawn using TCGA data. (H) Expression of ZNF133 on breast 
cancer survival under high expression of ANLN, drawn using TCGA data. ANLN, anillin actin-binding protein; KDR, kinase insert domain receptor; MAP10, 
microtubule-associated protein 10; ZNF133, zinc finger protein 133; TCGA, The Cancer Genome Atlas.
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the concomitant high expression of ANLN and KDR was 
associated with a high expression of C14ORF80 (P=6E‑11, 
Fig. 5C), which was prognostic of favorable breast cancer OS 
(HR=0.61, P=0.0279, Fig. 5D), suggesting the favorable prog-
nostic value of KDR:rs11133360. Furthermore, C14ORF80 
was shown to interact with KDR to influence breast cancer 
OS at the transcriptional level (Fig. 5E and F), supporting the 
association between the allele status of KDR:rs11133360 and 
the expression and prognostic value of KDR. The rare alleles 
of ANLN:rs12535394 and KDR:rs11133360 have been impli-
cated with favorable clinical outcomes, which is consistent 
with the observations at the SNP level in the present study 
(HR=0.52, P=0.0313, Fig. 2A), and have been associated with 
a low expression of ANLN and KDR at the transcriptional 
level, which was in accordance with what was observed at the 
transcriptional level in the present study (Fig. 2C).

No genes were found to be significantly associated with 
the ANLN:rs10275489 allele status and expression of ANLN, 
or with the KDR:rs11941492 allele status and expression of 
KDR.

Pathway and network construction using eQTL genes 
influenced by disease‑associated SNPs. Pathway enrich-
ment analysis showed that these genes were significantly 
enriched in the primary immunodeficiency disorder (PID) 
pathways (hsa05340, P=10-4; Fig. 6). Genes enriched in 
hsa05340 included ORAI1, DCLRE1C, IL2RG, RFXANK, 

ADA, AIRE, CD19, TNFRSF13C and ZAP70. The expres-
sion of six of these nine genes, i.e., ADA (P=0.0141), IL2RG 
(P=0.0284), DCLRE1C (P=2E‑16), ORAI1 (P=0.0141), 
RFXANK (P=2E‑16) and TNFRSF13C (P=0.0081) varied 
significantly across the groups stratified by the joint assess-
ment of ANLN and KDR expression (Fig. 7A‑I). Significant 
pairs were ‘high_high vs. low_high’, ‘high_low vs. low_high’, 
‘high_low vs. low_low’ in ADA, ‘high_high vs. low_high’ and 
‘high_high vs. low_low’ in IL2RG, ‘high_high vs. low_high’, 
‘high_low vs. low_high’, ‘high_high vs. low_low’, ‘high_low 
vs. low_low’ in DCLRE1C, ‘high_high vs. high_low’, ‘high_
high vs. low_high’, ‘high_high vs. low_low’, ‘high_low vs. 
low_high’, ‘low_high vs. low_low’ in ORAI1, ‘high_high vs. 
high_low’, ‘high_low vs. low_high’, ‘high_high vs. low_low’, 
‘high_low vs. low_low’, ‘low_high vs. low_low’ in RFXANK, 
and ‘high_low vs. low_high’ and ‘high_low vs. low_low’ in 
TNFRSF13C. All statistical P‑values from ANOVA and the 
LSD test for pairwise comparisons are listed in Table SV.

The network constructed from GeneMANIA using KDR, 
ANLN and the genes affected by the disease-associated 
SNPs as the initial input exhibited different topological 
structures when constructed using different GO-weighted 
approaches (Fig. 8A‑C). In addition to ANLN and KDR, the 
network included PTEN, PDGFRB, ZAP70, ORAI1, STIM1, 
TNFSF13B and TNFRSF13C when BP was used as the 
weighting approach, FYN, ZAP70, IL2RG and AIRE when 
the weighting criteria was based on MF, and PTEN, MEN1, 

Figure 6. Pathway enrichment analysis of genes with eQTL associations with identified disease‑associated SNPs. (A) Enriched pathways of genes with eQTL 
associations with identified disease‑associated SNPs. The ‘primary immunodeficiency pathway (hsa05340)’ was enriched from the Kyoto Encyclopedia of 
Genes and Genomes (36) and is illustrated. Genes whose expression were quantitatively associated with the identified disease‑associating SNPs are high-
lighted in red. Cell developmental stages are annotated using green boxes. HSC, hematopoietic stem cell; DP, CD4+CD8+; NK, natural killer; eQTL, expression 
quantitative trait loci.
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Figure 7. Expression of PID pathway genes (A‑I) with expression quantitative trait loci associations stratified by the expression of ANLN and KDR. ANOVA 
and the LSD post hoc test were used to assess the statistical significance of variations in the expression of one PID pathway gene stratified by the joint expres-
sion of ANLN and KDR. The expression of 9 genes in total was presented in boxplot where data were stratified by high/low expression of ANLN and KDR. 
PID, primary immunodeficiency disorder; ANLN, anillin actin-binding protein; KDR, kinase insert domain receptor.

Figure 8. Networks of ANLN and KDR. Networks were constructed using GeneMania (39) with (A) molecular function, (B) biological process, (C) cellular 
component as the weighting strategies. ANLN, anillin actin-binding protein; KDR, kinase insert domain receptor.
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TNFRSF13C, TNFSF13B, STIM1, ORAI1 and ZAP70 when 
CC was used in weighting. The network was segregated into 
two areas when CC was used as the weighting method.

Experimental validation of interactions between ANLN and 
KDR. In the in vitro experiments, ANLN did not affect the 
expression of KDR in the MCF10A normal breast epithelial 
cells (P=0.27 when ANLN was upregulated, P=0.09 when 
ANLN was downregulated, Fig. 9B), but positively regulated 
the expression of KDR in the SUM149PT breast cancer cells 
(P=2.74E‑6 when ANLN was upregulated, P=1.47E‑2 when 
ANLN was downregulated, Fig. 9A). KDR had an opposing 
effect on the expression of ANLN in the MCF10A cells 
(P=2.82E‑4 when KDR was upregulated, P=3.36E‑9 when 
KDR was downregulated, Fig. 9B), but positively influenced 
the expression of ANLN in SUM149PT cells (P=1.82E‑7 
when KDR was upregulated, P=1.25E‑4 when KDR was 
downregulated, Fig. 9A). All statistical P‑values from ANOVA 
with Scheffe's test for all pairwise comparisons are listed in 
Table SVI.

Discussion

Through pairwise interactive OS analyses of the SNPs of ANLN 
and KDR, the present study identified four disease‑associated 
SNPs (ANLN:rs12535394, KDR:rs11133360, ANLN:rs10275489 
and KDR:rs11941492), where ANLN:rs12535394 paired 
with KDR:rs11133360, and ANLN:rs10275489 paired with 
KDR:rs11941492 to synergistically influence the clinical 
outcome of breast cancer. Of the two SNP pairs, the allele 
status of ANLN:rs12535394 and KDR:rs11133360 was associ-
ated with the expression of ANLN and KDR, respectively, via 
ZNF133 and C14ORF80, and were synergistically prognostic 
of a favorable clinical outcome in breast cancer.

The quantity of the rare allele of ANLN:rs12535394 was 
positively associated with the expression of ZNF133 and nega-
tively correlated with the expression of ANLN with statistical 

significance, and the overexpression of ZNF133 was prognostic 
for a favorable clinical outcome. These results indicate that the 
rare allele of ANLN:rs12535394 is protective and associated 
with a low expression of ANLN via ZNF133. Therefore, ZNF133 
interacts with ANLN to affect breast cancer survival, in which 
the protective effect of the overexpression of ZNF133 is ampli-
fied under the high expression of ANLN (Fig. 4F and H). Few 
ZNF133 functionalities have been reported in cancer, but the 
transcriptionally suppressive activity of zinc finger protein 
has been reported for its overamplification in neuroblastoma 
cells (42) and overexpression in chronic myeloid leukemia (43) 
in two independent high‑throughput studies. These findings 
collectively suggest the tissue‑specific pathological function-
alities of ZNF133, i.e., ZNF133 is tumor suppressive in breast 
cancer, particularly in situations under a high expression of 
ANLN, which warrants experimental validation.

Furthermore, the quantity of the rare allele of 
ANLN:rs12535394 was positively associated with the expres-
sion of MAP10. MAP family proteins regulate microtubule 
properties (44) and serve an important role in an array of 
cellular processes, including cell division, cell motility, 
intracellular trafficking, microtubule stability and cell 
morphology maintenance (45). The overexpression and 
post‑translational modifications of MAPs contribute to the 
dysregulation of microtubule dynamics and the development 
of serious diseases including human breast cancer (46-50). 
In the present study, the overexpression of MAP10 was not 
pathologically relevant but conveyed a poor clinical outcome 
when the expression of ANLN was low (Fig. 4C), suggesting 
the conditional prognostic value of MAP10 in breast cancer, 
i.e., protective when the expression of ANLN is high and risky 
when the expression of ANLN is low.

Similarly, the quantity of the rare allele of KDR:rs11133360 
was positively associated with the expression of C14ORF80, 
which was significantly negatively correlated with the expres-
sion of KDR, and the overexpression of C14ORF80 was 
prognostic for favorable breast cancer OS (Fig. 5); these results 

Figure 9. Interactions between ANLN and KDR as validated using SUM149PT and MCF10A cells. (A) Expression of KDR on modulating the expression 
of ANLN and the expression of ANLN after modulating KDR in SUM149PT breast cancer cells. (B) Expression of KDR after modulating the expression 
of ANLN and the expression of ANLN after modulating KDR in MCF10A normal breast epithelial cells. Bars represent the mean ± SD from at least three 
independent experiments (*0.01<P<0.05 and **P<0.01 by ANOVA and Scheffe's post hoc test). Gene expression in each experimental group was normalized 
by the corresponding control. ANLN‑up, dCas9‑SAM and sgRNA upregulating ANLN were co‑transfected into SUM149PT or MCF10A cells; ANLN‑down, 
dCas9‑KRAB and sgRNA downregulating ANLN co‑transfected into cells; KDR‑up, dCas9‑SAM and sgRNA upregulating KDR co-transfected into cells; 
KDR‑down, dCas9‑KRAB and sgRNA downregulating KDR co-transfected into cells; Control, sgRNAs up- and downregulating ANLN and KDR co‑trans-
fected into cells; ANLN, anillin actin-binding protein; KDR, kinase insert domain receptor.
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indicate that the rare allele of KDR:rs11133360 is negatively 
associated with the expression of KDR via the overexpression 
of C14ORF80 and conveys desirable prognostic value on the 
clinical outcome of breast cancer. The prognostic value of 
C14ORF80 was increased under a low expression of KDR, 
suggesting interactions between these genes. C14ORF80, 
also termed TEDC1, has not previously been annotated nor 
shown to be associated with cancer. There are currently no 
publications available on this gene from the Web of Science. 
The present study highlights the potential prognostic role of 
C14ORF80 in predicting breast cancer survival rates and its 
involvement in KDR-mediated tumor angiogenesis.

The synergy created amongst SNPs affecting breast cancer 
survival may involve more than two SNPs. However, it is 
plausible to include fewer indicators in the diagnostic panel 
for the sake of clinical convenience. Therefore, pairwise 
interaction models were used initially in the present study 
to examine the potential synergy; establishing multivariate 
models was a consideration if no specific results were obtained 
from the pairwise interaction analysis.

A total of 401 genes were obtained for which the expression 
profiles were significantly affected by the disease‑associated 
SNPs and these were annotated in the KEGG. These genes 
were enriched in the PID pathway. PID is a diverse group of 
illnesses characterized by defects in the function of one or 
more components of the immune system, which predisposes 
affected individuals to an increased incidence of infections, 
autoimmunity and malignancies (51). Patients with PID are 
at increased risk of developing malignancies compared with 
healthy individuals in the population (52), and the overall risk 
for developing cancer in patients with PID was estimated to 
be up to 25% (53). The majority of these identified genes have 
immune‑related functionalities. For example, ADA encodes 
an enzyme that increases the rate of hydrolyzation of adenine 
to inosine and serves a potential role in the development of 
the immune system and maturation of mammalian cells (54). 
IL2RG encodes a protein that is an important signaling 
component of numerous interleukin receptors, including those 
of interleukin‑2, ‑4, ‑7 and ‑21. Importantly, of the nine genes 
involved in the PID pathway and transcriptionally associated 
with the rare allele status of these disease-associated SNPs, six 
are significantly affected by interactions between ANLN and 
KDR at the transcriptional level. Together, these results suggest 
the prominent role of the immune response in the synergies 
created between ANLN and KDR on their prognostic value in 
breast cancer survival, which may be the driving force behind 
the life/death control of cells and angiogenesis/metastasis 
transition during carcinogenesis.

The network constructed using ANLN, KDR and genes 
affected by the identified disease‑associated SNPs as the input 
revealed differential networks depending on the weighting 
approaches used. ANLN and KDR were connected through 
PTEN and PDGFRB when BP weighting was used, were 
linked through FYN when MF weighting was used, and did 
not connect when CC was used as the weighting approach. 
The differential topological structures obtained through the 
use of different GO weighting approaches suggest that ANLN 
and KDR interact and create synergies in BPs and MFs, but 
do not share the use or functionalities of CCs. PDGFRB 
encodes a typical receptor tyrosine kinase, PDGFRβ, which 

physically interacts with PTEN according to an in situ prox-
imity ligation assay (55). PTEN is a representative molecule 
in PI3K/PTEN signaling that shares the same biological 
pathway with ANLN (7). FYN physically interacts with ANLN 
according to the human interactome generated from quanti-
tative proteomics (56), and FYN shares similar oncological 
roles with ANLN, i.e., the overexpression of FYN promotes 
cell proliferation, migration and invasion in breast cancer 
cells (57,58).

Experimentally the present study showed that ANLN and 
KDR interact in normal breast epithelial cells and breast 
cancer cells. ANLN alterations did not affect the expression 
of KDR, however, modulating the expression of KDR led to 
the inverse regulation of ANLN in normal breast epithelial 
cells, suggesting that KDR is an upstream regulator of ANLN 
under normal conditions. When the cells were attracted in 
the malignant state, altering either ANLN or KDR led to 
regulation of the other gene in the same direction, suggesting 
the formation of a feed-forward loop that may lead to onco-
logical signal amplification. This is clinically plausible as 
the concomitant low expression of ANLN and KDR, which is 
associated with favorable breast cancer survival, was easily 
achieved by targeting ANLN or KDR alone, with ANLN 
being a more plausible therapeutic target than KDR as it is 
a downstream effector of KDR in non-malignant cells. By 
contrast, a change in the interaction mode of the two genes 
in normal and cancer cells implicates the importance of the 
ANLN‑KDR interaction in the transition of cells between 
normal and cancerous states and on breast cancer clinical 
outcomes. Whether ANLN‑KDR interactions constitute to or 
are the consequence of carcinogenesis remain to be eluci-
dated.

The present study used a triple-negative breast cancer 
cell line to experimentally validate interactions between 
ANLN and KDR, as the main effect of the synergy is driven 
by that in triple‑negative breast cancer (Fig. S1). In addition, 
the use of SNP/gene pairs with synergistic prognostic values 
for triple-negative breast cancer carriers is more plausible 
clinically than other subtypes, as the triple-negative subtype 
is highly malignant and lacks targeted therapies (59,60). 
However, investigating the association between ANLN‑KDR 
synergy and breast cancer subtyping is worthwhile and 
remains the subject of future investigations.

In conclusion, the concurrent presence of both rare 
homozygotes in ANLN:rs12535394 and KDR:rs11133360 
was identified as prognostic for favorable survival in breast 
cancer. The quantity of the rare allele of ANLN:rs12535394 
was negatively associated with the expression of ANLN, and 
that of KDR:rs11133360 was negatively associated with the 
expression of KDR, both of which are protective. Novel roles 
of genes that bridge the gap between SNPs and corresponding 
genes were revealed and merit in-depth investigation, 
including the potential tissue‑specific tumor suppressive roles 
of ZNF133 in breast cancer, the conditional effects of MAP10 
on breast cancer survival rates and the possible suppressive 
role of C14ORF80 (a gene not being annotated) during tumor 
angiogenesis. Pathways controlling cell proliferation/apoptosis 
and angiogenesis/migration genetically interact and ultimately 
influence immune responses and patient clinical outcomes, 
suggesting the intrinsic connection amongst cancer hallmarks 
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and the prominent role for immunotherapy in cancer state 
transition. Experimental validations confirmed the roles of 
the ANLN‑KDR interaction in the transition of cells between 
normal and cancerous states and in breast cancer prognosis, 
and implicate the therapeutic potential of ANLN.
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